請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77656
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳基旺 | zh_TW |
dc.contributor.advisor | Ji-Wang Chern | en |
dc.contributor.author | 劉佳蓉 | zh_TW |
dc.contributor.author | Jia-Rong Liu | en |
dc.date.accessioned | 2021-07-10T22:14:05Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-11 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. Curr Med Chem 2017, 24, 3002-3009.
2. Alifieris, C.; Trafalis, D. T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015, 152, 63-82. 3. Ellis, H. P.; Greenslade, M.; Powell, B.; Spiteri, I.; Sottoriva, A.; Kurian, K. M. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front Oncol 2015, 5, 251. 4. Bezecny, P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014, 31, 985. 5. Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R. C.; Ludwin, S. K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J. G.; Eisenhauer, E.; Mirimanoff, R. O.; European Organisation for, R.; Treatment of Cancer Brain, T.; Radiotherapy, G.; National Cancer Institute of Canada Clinical Trials, G. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352, 987-96. 6. Lin, F.; de Gooijer, M. C.; Roig, E. M.; Buil, L. C.; Christner, S. M.; Beumer, J. H.; Wurdinger, T.; Beijnen, J. H.; van Tellingen, O. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res 2014, 20, 2703-13. 7. Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J. Y.; Capelle, L.; Cornu, P.; Sanson, M.; Hoang-Xuan, K.; Delattre, J. Y.; Idbaih, A. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 2016, 8, 343re2. 8. Wei, K. C.; Chu, P. C.; Wang, H. Y.; Huang, C. Y.; Chen, P. Y.; Tsai, H. C.; Lu, Y. J.; Lee, P. Y.; Tseng, I. C.; Feng, L. Y.; Hsu, P. W.; Yen, T. C.; Liu, H. L. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One 2013, 8, e58995. 9. Kang, J. H.; Adamson, C. Novel chemotherapeutics and other therapies for treating high-grade glioma. Expert Opin Investig Drugs 2015, 24, 1361-79. 10. Glozak, M. A.; Seto, E. Histone deacetylases and cancer. Oncogene 2007, 26, 5420-32. 11. Lane, A. A.; Chabner, B. A. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009, 27, 5459-68. 12. Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci 2017, 18(7):1414. 13. Reardon, D. A.; Egorin, M. J.; Quinn, J. A.; Rich, J. N.; Gururangan, S.; Vredenburgh, J. J.; Desjardins, A.; Sathornsumetee, S.; Provenzale, J. M.; Herndon, J. E., 2nd; Dowell, J. M.; Badruddoja, M. A.; McLendon, R. E.; Lagattuta, T. F.; Kicielinski, K. P.; Dresemann, G.; Sampson, J. H.; Friedman, A. H.; Salvado, A. J.; Friedman, H. S. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005, 23, 9359-68. 14. Slingerland, M.; Guchelaar, H. J.; Gelderblom, H. Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 2014, 25, 140-9. 15. Li, G.; Jiang, H.; Chang, M.; Xie, H.; Hu, L. HDAC6 alpha-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci 2011, 304, 1-8. 16. Kovacs, J. J.; Murphy, P. J.; Gaillard, S.; Zhao, X.; Wu, J. T.; Nicchitta, C. V.; Yoshida, M.; Toft, D. O.; Pratt, W. B.; Yao, T. P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005, 18, 601-7. 17. Kaluza, D.; Kroll, J.; Gesierich, S.; Yao, T. P.; Boon, R. A.; Hergenreider, E.; Tjwa, M.; Rossig, L.; Seto, E.; Augustin, H. G.; Zeiher, A. M.; Dimmeler, S.; Urbich, C. Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 2011, 30, 4142-56. 18. Kanno, K.; Kanno, S.; Nitta, H.; Uesugi, N.; Sugai, T.; Masuda, T.; Wakabayashi, G.; Maesawa, C. Overexpression of histone deacetylase 6 contributes to accelerated migration and invasion activity of hepatocellular carcinoma cells. Oncol Rep 2012, 28, 867-73. 19. Li, C. W.; Lim, S. O.; Xia, W.; Lee, H. H.; Chan, L. C.; Kuo, C. W.; Khoo, K. H.; Chang, S. S.; Cha, J. H.; Kim, T.; Hsu, J. L.; Wu, Y.; Hsu, J. M.; Yamaguchi, H.; Ding, Q.; Wang, Y.; Yao, J.; Lee, C. C.; Wu, H. J.; Sahin, A. A.; Allison, J. P.; Yu, D.; Hortobagyi, G. N.; Hung, M. C. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 2016, 7, 12632. 20. Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett 2009, 277, 8-21. 21. Valenzuela-Fernandez, A.; Cabrero, J. R.; Serrador, J. M.; Sanchez-Madrid, F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 2008, 18, 291-7. 22. Aldana-Masangkay, G. I.; Sakamoto, K. M. The role of HDAC6 in cancer. J Biomed Biotechnol 2011, 875824. 23. Buckley, R. C. Tissue Culture Studies of the Glioblastoma Multiforme. Am J Pathol 1929, 5, 467-472 5. 24. Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 2010, 132, 10842-6. 25. Santo, L.; Hideshima, T.; Kung, A. L.; Tseng, J. C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J. H.; Mazitschek, R.; Ogier, W. C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K. C.; Jones, S. S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579-89. 26. Lee, J. Y.; Koga, H.; Kawaguchi, Y.; Tang, W.; Wong, E.; Gao, Y. S.; Pandey, U. B.; Kaushik, S.; Tresse, E.; Lu, J.; Taylor, J. P.; Cuervo, A. M.; Yao, T. P. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 2010, 29, 969-80. 27. Lam, H. C.; Cloonan, S. M.; Bhashyam, A. R.; Haspel, J. A.; Singh, A.; Sathirapongsasuti, J. F.; Cervo, M.; Yao, H.; Chung, A. L.; Mizumura, K.; An, C. H.; Shan, B.; Franks, J. M.; Haley, K. J.; Owen, C. A.; Tesfaigzi, Y.; Washko, G. R.; Quackenbush, J.; Silverman, E. K.; Rahman, I.; Kim, H. P.; Mahmood, A.; Biswal, S. S.; Ryter, S. W.; Choi, A. M. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 2013, 123, 5212-30. 28. Koeneke, E.; Witt, O.; Oehme, I. HDAC Family Members Intertwined in the Regulation of Autophagy: A Druggable Vulnerability in Aggressive Tumor Entities. Cells 2015, 4, 135-68. 29. Kanzawa, T.; Germano, I. M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004, 11, 448-57. 30. Li, Y. Y.; Feun, L. G.; Thongkum, A.; Tu, C. H.; Chen, S. M.; Wangpaichitr, M.; Wu, C.; Kuo, M. T.; Savaraj, N. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy. Int J Mol Sci 2017, 18 (6). pii: E1297. 31. Serrador, J. M.; Cabrero, J. R.; Sancho, D.; Mittelbrunn, M.; Urzainqui, A.; Sanchez-Madrid, F. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 2004, 20, 417-28. 32. de Zoeten, E. F.; Wang, L.; Butler, K.; Beier, U. H.; Akimova, T.; Sai, H.; Bradner, J. E.; Mazitschek, R.; Kozikowski, A. P.; Matthias, P.; Hancock, W. W. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells. Mol Cell Biol 2011, 31, 2066-78. 33. Halili, M. A.; Andrews, M. R.; Labzin, L. I.; Schroder, K.; Matthias, G.; Cao, C.; Lovelace, E.; Reid, R. C.; Le, G. T.; Hume, D. A.; Irvine, K. M.; Matthias, P.; Fairlie, D. P.; Sweet, M. J. Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. J Leukoc Biol 2010, 87, 1103-14. 34. Yu, C. W.; Chang, P. T.; Hsin, L. W.; Chern, J. W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease. J Med Chem 2013, 56, 6775-91. 35. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X. F.; Yao, T. P. HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417, 455-8. 36. Gao, Y. S.; Hubbert, C. C.; Lu, J.; Lee, Y. S.; Lee, J. Y.; Yao, T. P. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol Cell Biol 2007, 27, 8637-47. 37. Hou, H.; Zhao, L.; Chen, W.; Li, J.; Zuo, Q.; Zhang, G.; Zhang, X.; Li, X. Expression and significance of cortactin and HDAC6 in human prostatic foamy gland carcinoma. Int J Exp Pathol 2015, 96, 248-54. 38. Lee, J. Y.; Koga, H.; Kawaguchi, Y.; Tang, W. X.; Wong, E.; Gao, Y. S.; Pandey, U. B.; Kaushik, S.; Tresse, E.; Lu, J. R.; Taylor, J. P.; Cuervo, A. M.; Yao, T. P. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. Embo Journal 2010, 29, 969-980. 39. Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991, 266, 17707-12. 40. Tanida, I.; Waguri, S. Measurement of autophagy in cells and tissues. Methods Mol Biol 2010, 648, 193-214. 41. Bjorkoy, G.; Lamark, T.; Pankiv, S.; Overvatn, A.; Brech, A.; Johansen, T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009, 452, 181-97. 42. Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A. N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A. J.; Grogan, T. R.; Mateus, C.; Tomasic, G.; Glaspy, J. A.; Emerson, R. O.; Robins, H.; Pierce, R. H.; Elashoff, D. A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568-71. 43. Atsaves, V.; Tsesmetzis, N.; Chioureas, D.; Kis, L.; Leventaki, V.; Drakos, E.; Panaretakis, T.; Grander, D.; Medeiros, L. J.; Young, K. H.; Rassidakis, G. Z. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 2017, 31, 1633-1637. 44. Mimura, K.; Teh, J. L.; Okayama, H.; Shiraishi, K.; Kua, L. F.; Koh, V.; Smoot, D. T.; Ashktorab, H.; Oike, T.; Suzuki, Y.; Fazreen, Z.; Asuncion, B. R.; Shabbir, A.; Yong, W. P.; So, J.; Soong, R.; Kono, K. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018, 109(1):43-53. 45. Park, S. J.; Kim, J. K.; Bae, H. J.; Eun, J. W.; Shen, Q.; Kim, H. S.; Shin, W. C.; Yang, H. D.; Lee, E. K.; You, J. S.; Park, W. S.; Lee, J. Y.; Nam, S. W. HDAC6 sustains growth stimulation by prolonging the activation of EGF receptor through the inhibition of rabaptin-5-mediated early endosome fusion in gastric cancer. Cancer Lett 2014, 354, 97-106. 46. Saji, S.; Kawakami, M.; Hayashi, S.; Yoshida, N.; Hirose, M.; Horiguchi, S.; Itoh, A.; Funata, N.; Schreiber, S. L.; Yoshida, M.; Toi, M. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 2005, 24, 4531-9. 47. Zhang, Z.; Cao, Y.; Zhao, W.; Guo, L.; Liu, W. HDAC6 serves as a biomarker for the prognosis of patients with renal cell carcinoma. Cancer Biomark 2017, 19, 169-175. 48. Li, S.; Liu, X.; Chen, X.; Zhang, L.; Wang, X. Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling. Tumour Biol 2015, 36, 9661-5. 49. Tan, Y.; Ci, Y.; Dai, X.; Wu, F.; Guo, J.; Liu, D.; North, B. J.; Huo, J.; Zhang, J. Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget 2017, 8, 47890-47901. 50. Harding, R. J.; Ferreira de Freitas, R.; Collins, P.; Franzoni, I.; Ravichandran, M.; Ouyang, H.; Juarez-Ornelas, K. A.; Lautens, M.; Schapira, M.; von Delft, F.; Santhakumar, V.; Arrowsmith, C. H. Small Molecule Antagonists of the Interaction between the Histone Deacetylase 6 Zinc-Finger Domain and Ubiquitin. J Med Chem 2017, 60, 9090-9096. 51. Toure, M.; Crews, C. M. Small-Molecule PROTACS: New Approaches to Protein Degradation. Angew Chem Int Ed Engl 2016, 55, 1966-73. 52. Ottis, P.; Crews, C. M. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chem Biol 2017, 12, 892-898. 53. Lai, A. C.; Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 2017, 16, 101-114. 54. Kenific, C. M.; Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 2015, 25, 37-45. 55. Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J. M.; Amaravadi, R. K.; Baehrecke, E. H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D. A.; Karantza, V.; Kimmelman, A.; Kumar, S.; Levine, B.; Maiuri, M. C.; Martin, S. J.; Penninger, J.; Piacentini, M.; Rubinsztein, D. C.; Simon, H. U.; Simonsen, A.; Thorburn, A. M.; Velasco, G.; Ryan, K. M.; Kroemer, G. Autophagy in malignant transformation and cancer progression. EMBO J 2015, 34, 856-80. 56. Fulda, S.; Kogel, D. Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015, 34, 5105-13. 57. Villanueva, M. T. Autophagy: Exploring the anticancer effects of autophagy inhibition. Nat Rev Cancer 2015, 15, 512-3. 58. Levy, J. M. M.; Towers, C. G.; Thorburn, A. Targeting autophagy in cancer. Nat Rev Cancer 2017, 17, 528-542. 59. Patel, S.; Hurez, V.; Nawrocki, S. T.; Goros, M.; Michalek, J.; Sarantopoulos, J.; Curiel, T.; Mahalingam, D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget 2016, 7, 59087-59097. 60. Clark, C. A.; Gupta, H. B.; Sareddy, G.; Pandeswara, S.; Lao, S.; Yuan, B.; Drerup, J. M.; Padron, A.; Conejo-Garcia, J.; Murthy, K.; Liu, Y.; Turk, M. J.; Thedieck, K.; Hurez, V.; Li, R.; Vadlamudi, R.; Curiel, T. J. Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Res 2016, 76, 6964-6974. 61. Noman, M. Z.; Janji, B.; Kaminska, B.; Van Moer, K.; Pierson, S.; Przanowski, P.; Buart, S.; Berchem, G.; Romero, P.; Mami-Chouaib, F.; Chouaib, S. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 2011, 71, 5976-86. 62. Janji, B.; Viry, E.; Moussay, E.; Paggetti, J.; Arakelian, T.; Mgrditchian, T.; Messai, Y.; Noman, M. Z.; Van Moer, K.; Hasmim, M.; Mami-Chouaib, F.; Berchem, G.; Chouaib, S. The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget 2016, 7, 17591-607. 63. Weissenberger, J.; Loeffler, S.; Kappeler, A.; Kopf, M.; Lukes, A.; Afanasieva, T. A.; Aguzzi, A.; Weis, J. IL-6 is required for glioma development in a mouse model. Oncogene 2004, 23, 3308-16. 64. Saidi, A.; Hagedorn, M.; Allain, N.; Verpelli, C.; Sala, C.; Bello, L.; Bikfalvi, A.; Javerzat, S. Combined targeting of interleukin-6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer 2009, 125, 1054-64. 65. Hadrup, S.; Donia, M.; Thor Straten, P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron 2013, 6, 123-33. 66. Van der Jeught, K.; Bialkowski, L.; Daszkiewicz, L.; Broos, K.; Goyvaerts, C.; Renmans, D.; Van Lint, S.; Heirman, C.; Thielemans, K.; Breckpot, K. Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget 2015, 6, 1359-81. 67. Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015, 125, 3384-91. 68. Ribas, A.; Hamid, O.; Daud, A.; Hodi, F. S.; Wolchok, J. D.; Kefford, R.; Joshua, A. M.; Patnaik, A.; Hwu, W. J.; Weber, J. S.; Gangadhar, T. C.; Hersey, P.; Dronca, R.; Joseph, R. W.; Zarour, H.; Chmielowski, B.; Lawrence, D. P.; Algazi, A.; Rizvi, N. A.; Hoffner, B.; Mateus, C.; Gergich, K.; Lindia, J. A.; Giannotti, M.; Li, X. N.; Ebbinghaus, S.; Kang, S. P.; Robert, C. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA 2016, 315, 1600-9. 69. Postow, M. A.; Chesney, J.; Pavlick, A. C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G. P.; Meyer, N.; Giguere, J. K.; Agarwala, S. S.; Shaheen, M.; Ernstoff, M. S.; Minor, D.; Salama, A. K.; Taylor, M.; Ott, P. A.; Rollin, L. M.; Horak, C.; Gagnier, P.; Wolchok, J. D.; Hodi, F. S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015, 372, 2006-17. 70. Winter, G. E.; Buckley, D. L.; Paulk, J.; Roberts, J. M.; Souza, A.; Dhe-Paganon, S.; Bradner, J. E. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015, 348, 1376-81. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77656 | - |
dc.description.abstract | 膠質母細胞瘤是惡性腦癌中最致命、也是復發性最高的癌症。目前對膠質母細胞瘤的治療主要有手術切除,放射線治療及合併使用化療藥物治療等方式。但這些治療只能延緩病患平均存活率約六個月,無法有效治癒。因此,開發更有效的抗腦癌藥物及治療策略有其迫切的需求。研究指出,第六亞型組蛋白去乙醯酶(HDAC6)在膠質母細胞瘤中有異常地過度表達,而且若藉由siRNA誘導的HDAC6 基因敲除來減少HDAC6的蛋白量可以有效抑制膠質母細胞瘤的增殖。在本論文中,我們證實在實驗室中新合成出來的高選擇性HDAC6抑制劑,J22352,它可以促使在膠質母細胞瘤細胞中異常過度表達的HDAC6蛋白水解,顯著減少HDAC6蛋白的表現量,進而減少癌細胞轉移,抑制癌細胞的自噬能力,達到顯著的腫瘤生長抑制。在動物實驗中,有90%腫瘤生長抑制率。值得注意的是,J22352更降低了PD-L1的免疫抑制活性,增加抗癌免疫反應的T細胞活性。總而言之,這些實驗結果表明J22352可以有效促進HDAC6蛋白降解,同時藉由抑制細胞自噬效果並增加T細胞的抗癌免疫反應來達到抗癌作用。 | zh_TW |
dc.description.abstract | Glioblastoma is the most fatal type of primary brain cancer, and current treatments for glioblastoma are insufficient. HDAC6 is overexpressed in glioblastoma, and siRNA-mediated knockdown of HDAC6 inhibits glioma cell proliferation. Herein, we report a high-selective HDAC6 inhibitor, J22352, which decreased the abundance of overexpressed HDAC6 in glioblastoma. The consequences of decreased HDAC6 expression in response to J22352 inhibited cell migration, increased autophagic cancer cell death and significant tumor growth inhibition in xenograft mouse model. Notably, J22352 reduced the immunosuppressive activity of PD-L1, leading to the restoration of host anti-tumor activity such as increased levels of CD8+ T cells, interferon-gamma (IFN-γ) and tumor-associated inflammatory cytokines IL-2 as well as reduced levels of IL-6. Taken together, these results demonstrate that J22352 can significantly target glioblastoma by not only inhibiting autophagy associated with enhanced anticancer immunity but also evoking PROTAC-like proteolytic degradation of HDAC6. Therefore, this highly selective HDAC6 inhibitor can be considered a potential therapeutic for the treatment of glioblastoma and provide an insight into the mechanisms of this therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:14:05Z (GMT). No. of bitstreams: 1 ntu-107-D01423201-1.pdf: 4194678 bytes, checksum: 5c75c29b284e6eccfa1862d5cdd0267c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii List of Tables iv List of Figures v List of Abbreviations vi Chapter 1 Introduction 1 Chapter 2 Materials and methods 6 2.1 Chemical synthesis of the compounds 6 2.2 Enzymatic assay 7 2.3 Cell Lines and culture conditions 8 2.4 Cell proliferation assay 8 2.5 In vitro scratch assay 9 2.6 Immunoblot analysis 9 2.7 Apoptosis-Caspase assay 11 2.8 Immunofluorescence autophagy flux assay 11 2.9 Characterization of T cell subsets 12 2.10 Cytokine measurements 13 2.11 Animal studies 13 Chapter 3 Results 15 3.1 J22352 is an effective HDAC6 inhibitor 15 3.3 HDAC6: overexpression, proliferation and degradation 24 3.4 J22352 inhibits autophagosome-lysosome fusion 32 3.5 In vivo anticancer activity of J22352 40 3.6 J22352 enhances the immune response 42 Chapter 4 Discussion and perspectives 52 References 63 Supplementary Figures 70 | - |
dc.language.iso | en | - |
dc.title | 新穎性第六亞型組蛋白去乙醯酶抑制劑在膠質母細胞瘤之抗癌作用機轉探討 | zh_TW |
dc.title | Investigation of the anticancer mechanisms of a novel HDAC6 inhibitor in glioblastoma | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 顧記華;忻凌偉;梁碧惠;陳香惠 | zh_TW |
dc.contributor.oralexamcommittee | Jih-Hwa Guh;Ling-Wei Hsin;Pi-Hui Liang;Shiang-Huei Chen | en |
dc.subject.keyword | 膠質母細胞瘤,第六亞型組蛋白去乙醯?,細胞自噬,抗癌免疫力,蛋白水解, | zh_TW |
dc.subject.keyword | glioblastoma,HDAC6,autophagy,anticancer immunity,proteolysis, | en |
dc.relation.page | 87 | - |
dc.identifier.doi | 10.6342/NTU201800889 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-06-04 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 藥學研究所 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。