請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77455
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁俞文(Yu-Wen Ting) | |
dc.contributor.author | Pei-Fen Chou | en |
dc.contributor.author | 周培芬 | zh_TW |
dc.date.accessioned | 2021-07-10T22:02:48Z | - |
dc.date.available | 2021-07-10T22:02:48Z | - |
dc.date.copyright | 2018-09-25 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-09-21 | |
dc.identifier.citation | 1. FAOSTAT, Food and Agriculture Organization of the United Nations (2018) Rice market monitor. (2018)
2. 李長沛。(2013) 。水稻野生種的多樣性與利用性。臺灣博物季 118 32 卷.第 2 期 3. 楊嘉凌, 李益榮, 鄭佳綺, & 許志聖。(2014) 。水稻品種機能性成分篩檢 與育種策略規劃 農業生技產業季刊, (39), 38-45. 4. Juliano, B.O., and Bechtel, D.O. (1985).The rice grain and its gross composition. Pages 17-57 in Rice Chemistry and Technology. 2nded. B.O. Juliano, ed. The American Association of Cereal Chemists: St.Paul, MN. 5. Bechtel, D. B., & Pomeranz, Y. (1977). Ultrastructure of the mature ungerminated rice (Oryza sativa) caryopsis. The caryopsis coat and the aleurone cells. American Journal of Botany, 64(8), 966-973. 6. Juliano, B. O. The rice caryopsis and its composition. Rice Chemistry and Techonology (1972): 16-74. 7. Juliano, B. O. (1993). Rice in human nutrition (No. 26). Int. Rice Res. Inst.. 8. Champagne, E. T., Wood, D. F., Juliano, B. O., & Bechtel, D. B. (2004). The rice grainand its gross composition. Rice chemistry and technology, 3, 77-107. 9. 中華民國國家標準 CNS 13446, N1126 稻米詞彙 (1994) 10. Champagne, E. T., Hron Sr, R. J., & Abraham, G. (1991). Stabilizing brown rice products by aqueous ethanol extraction. Cereal Chem, 68(3), 267-271. 11. Sowbhagya, C.M., and Bhattacharya, K.R.(1976). Lipid autoxidation in rice. J.Food Sci. 41:1018-1025. 12. Harland,B.F. and Morris, E.R.(1995).Phytate: a good or a bad food component? Nutr.Res. 15(5):733-754. 13. Juliano, B. O., & Hicks, P. A. (1996). Rice functional properties and rice food products. Food Reviews International, 12(1), 71-103. 14. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N., & Kimura, T. (2007). Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering, 78(2), 556-560.64 15.Ohtsubo, K. I., Suzuki, K., Yasui, Y., & Kasumi, T. (2005). Bio- functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of food composition and analysis, 18(4), 303-316. 16. Hirokawa, T., Oki, K., Kumagai, Y., & Sasaki, H. (1986). U.S. Patent No. 4,582,713. Washington, DC: U.S. Patent and Trademark Office. 17.Das, M., Gupta, S., Kapoor, V., Banerjee, R., & Bal, S. (2008). Enzymatic polishing of rice–A new processing technology. LWT-Food Science and Technology, 41(10), 2079-2084. 18. Patil, S. B., & Khan, M. K. (2011). Quality controlling of brown rice by ultrasound treatment and its effect on isolated starch 19. Germinated brown rice as a value added rice product: A review. Journal of food science and technology, 48(6), 661-667. 20. 高景輝 & 湯文通。(1977)。種子的生理. 21. 張雅琪,林素汝& 吳志文。(2013)。不同稻種發芽米 γ-胺基丁酸與 DPPH 自由 基清除能力之變異. 作物, 環境與生物資訊, 10(1), 44-59. 22. Lorenz, K., & D'Appolonia, B. (1980). Cereal sprouts: composition, nutritive value, food applications. Critical Reviews in Food Science & Nutrition, 13(4), 353-385. 23. 張正賢。(1988)。稻作學精要. 台北: 國立編譯館. 24. 汪呈因。(1974)。稻作學與米. 初版. 財團法人臺北徐氏基金會, 臺北. 25. Ahmad, R., Ahmad, S., and Baig, M. A. (1996) Enzymic studies of germinated cereal grains. Pak. J. Sci. Res. 48(3-4):71-73 26. 大海 淳。(2003)。21 世紀生機主食發芽米。培根文化出版社。台北。 27. 胡長達。(2003)。經不同方式發芽之糙米其化學組成成分, 理化特性與抗氧化活性之探討. 28. Maillard, M. N., Soum, M. H., Boivin, P., & Berset, C. (1996). Antioxidant activity of barley and malt: relationship with phenolic content. LWT-Food Science and Technology, 29(3), 238-244. 29. 朱礸英。(2002)。富含 γ-胺基丁酸發芽糙米之研製. 國立嘉義大學食品科學研 究所碩士論文,嘉義縣,台灣. 30.Kikunaga, S., Takahashi, M., & Katoh, Y. (1991). Biochemical changes in phosphorus compounds and in the activity of phytase and α‐amylase in the rice (Oryza sativa) grain during germination. Journal of the Science of Food and Agriculture, 56(3), 335-343. 31. Sharma, R. D., & Rukmini, C. (1986). Rice bran oil and hypocholesterolemia in rats. Lipids, 21(11), 715-717. 32. 何明桹。(1981)台灣發展米糠油工業可行性之研究. 經濟部工業局. 33. Kandaswami, C., & Middleton, E. (1994). Free radical scavenging and antioxidant activity of plant flavonoids. In Free radicals in diagnostic medicine (pp. 351-376). Springer, Boston, MA. 34. Chen, Q. (2004). Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography. Journal of agricultural and food chemistry, 52(15), 4604-4613. 35. Mamiya, T., Asanuma, T., Kise, M., Ito, Y., Mizukuchi, A., Aoto, H., & Ukai, M. (2004). Effects of pre-germinated brown rice on β-amyloid protein-induced learning and memory deficits in mice. Biological and Pharmaceutical Bulletin, 27(7), 1041-1045. 36. Mamiya, T., Kise, M., Morikawa, K., Aoto, H., Ukai, M., & Noda, Y. (2007). Effects of pre-germinated brown rice on depression-like behavior in mice. Pharmacology Biochemistry and Behavior, 86(1), 62-67. 37. Choi, H. D., Kim, Y. S., Choi, I. W., Park, Y. K., & Park, Y. D. (2006). Hypotensive effect of germinated brown rice on spontaneously hypertensive rats. Korean Journalof Food Science and Technology, 38(3), 448-451. 38. Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Saari, N., Mustafa, S., Mohd Yusof, R., Meor Hussin A., Hamid A., & Abd Manap, M. Y. (2010). Effect of pre‐ germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90(2), 245-251. 39.Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., Yamamoto, S., Yoshihara, R., & Yokoyama, J. (2005). Postprandial blood glucose and insulin responses to pre- germinated brown rice in healthy subjects. The Journal of Medical Investigation, 52(3, 4), 159-164. 40. Heaney, C. F., & Kinney, J. W. (2016). Role of GABAB receptors in learning and memory and neurological disorders. Neuroscience & Biobehavioral Reviews, 63, 1- 28. 41. Pokusaeva, K., Johnson, C., Luk, B., Uribe, G., Fu, Y., Oezguen, N., Matsunami, R. K., Lugo, M., Major, A., Mori-Akiyama, Y., Hollister, E. B., Dann, S. M., Shi, X. Z., Engler, D. A., Savidge, T., & Versalovic, J. (2017). GABA‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility, 29(1), e12904. 42. Moongngarm, A., & Saetung, N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food chemistry, 122(3), 782-788. 43. Lu, Z. H., Zhang, Y., Li, L. T., Curtis, R. B., Kong, X. L., Fulcher, R. G., Zhang, G., & Cao, W. (2010). Inhibition of microbial growth and enrichment of γ-aminobutyric acid during germination of brown rice by electrolyzed oxidizing water. Journal of food protection, 73(3), 483-487. 44. Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in plant science, 4(11), 446-452. 45. 山崎彬。(1997)。 高圧食品開発物語 その 2 炊飯性に優れた加工玄米 の製造方法. 高圧力の科学と技術, 6(3), 182-186. 46. Bowery, N. G. (1983). Classification of GABA receptors. The GABA receptors, 177- 213. 47. Crittenden, D. L., Chebib, M., & Jordan, M. J. (2004). Stabilization of zwitterions in solution: γ-Aminobutyric acid (GABA). The Journal of Physical Chemistry A, 108(1), 203-211. 48. Bown, A. W., & Shelp, B. J. (1997). The Metabolism and Functions of [gamma]- Aminobutyric Acid. Plant Physiology, 115(1), 1. 49. Roberts, E. (1976). GABA in nervous system function. Raven Press. 50. Erdö, S. L., Kiss, B., Riesz, M., & Szporny, L. (1986). Stimulus-evoked efflux of GABA from preloaded slices of the rabbit oviduct. European journal of pharmacology, 130(3), 295-303. 51. Bormann, J., & Feigenspan, A. (1995). GABAC receptors. Trends in neurosciences, 18(12), 515-519. 52.Bormann, J. (2000). The ‘ABC’of GABA receptors. Trends in pharmacological sciences, 21(1), 16-19. 53. Stratford, T. R., & Kelley, A. E. (1997). GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. Journal of Neuroscience, 17(11), 4434-4440. 54. Jasmin, L., Rabkin, S. D., Granato, A., Boudah, A., & Ohara, P. T. (2003). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 424(6946), 316. 55. Filip, M., Frankowska, M., Sadakierska-Chudy, A., Suder, A., Szumiec, Ł., Mierzejewski, P., Bienkowski, P., Przegalinski, E., & Cryan, J. F. (2015). GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology, 88, 36-47. 56. Sperk, G., Furtinger, S., Schwarzer, C., & Pirker, S. (2004). GABA and its receptors in epilepsy. In Recent advances in epilepsy research (pp. 92-103). Springer, Boston, MA. 57. Behar, T. N., Li, Y. X., Tran, H. T., Ma, W., Dunlap, V., Scott, C., & Barker, J. L. (1996). GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. Journal of Neuroscience, 16(5), 1808-1818. 58. Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. In International review of cytology (Vol. 213, pp. 1- 47). Academic Press. 59. Ong, J., & Kerr, D. I. (1990). GABA-receptors in peripheral tissues. Life sciences, 46(21), 1489-1501. 60. Ishikawa, K., & Saito, S. (1978). Effect of intraventricular γ - aminobutyric acid (GABA) on discrimination learning in rats. Psychopharmacology, 56(2), 127-132. 61. Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O.,Takahashi, R., & Takahashi, T. (2000). Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi= Journal of the Japanese Society for Food Science and Technology, 47(8), 596-603. 62. McCann, S. M., Vijayan, E., Negro-Vilar, A., Mizunuma, H., & Mangat, H. (1984). Gamma aminobutyric acid (GABA), a modulator of anterior pituitary hormone secretion by hypothalamic and pituitary action. Psychoneuroendocrinology, 9(2), 97-106. 63. Kimura, M., Hayakawa, K., & Sansawa, H. (2002). Involvement of γ- aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. The Japanese Journal of Pharmacology, 89(4), 388-394. 64.Hayakawa, H., Kimura, M., Matsumoto, K., & Sansawa, H. (2005). Development of novel fermented milk containing GAMMA- aminobutyric acid (GABA) with hypotensive effect. Annual Report of the Yakult Institute for Microbiological Research, 24, 1-22. 65. Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., & Sansawa, H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European journal of clinical nutrition, 57(3), 490. 66.Shimada, M., Hasegawa, T., Nishimura, C., Kan, H., Kanno, T., Nakamura, T., & Matsubayashi, T. (2009). Anti-hypertensive effect of γ-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study. Clinical and experimental hypertension, 31(4), 342-354. 67. Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of γ‐Aminobutyric acid (GABA) administration in humans. Biofactors, 26(3), 201-208. 68. Oh, S. H., Moon, Y. J., & Oh, C. H. (2003). γ-Aminobutyric acid (GABA) content of selected uncooked foods. Preventive Nutrition and Food Science, 8(1), 75-78. 69. Allan, R. D., Johnston, G. A. R., & Twitchin, B. (1981). Synthesis of analogues of GABA. VI. Stereoisomers of cis-3-Aminocyclohexanecarboxylic acid. Australian Journal of Chemistry, 34(10), 2231-2236. 70. Plokhov, A. Y., Gusyatiner, M. M., Yampolskaya, T. A., Kaluzhsky, V. E., Sukhareva, B. S., & Schulga, A. A. (2000). Preparation of γ- aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied biochemistry and biotechnology, 88(1-3), 257- 265.) 71. Juliano, B. O., Bautista, G. M., Lugay, J. C., & Reyes, A. C. (1964). Rice quality, studies on physicochemical properties of rice. Journal of agricultural and food chemistry, 12(2), 131-138. 72. Saikusa, T., Horino, T., & Mori, Y. (1994). Accumulation of γ - aminobutyric acid (GABA) in the rice germ during water soaking. Bioscience, biotechnology, and biochemistry, 58(12), 2291-2292. 73. Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479-509. 74.Bown, A. W., MacGregor, K. B., & Shelp, B. J. (2006). Gamma- aminobutyrate: defense against invertebrate pests?. Trends in plant science, 11(9), 424-427. 75.Snedden, W. A., Arazi, T., Fromm, H., & Shelp, B. J. (1995). Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiology, 108(2), 543-549. 76. Knight, H., Trewavas, A. J., & Knight, M. R. (1997). Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal, 12(5), 1067-1078. 77. Gong, M., van der Luit, A. H., Knight, M. R., & Trewavas, A. J. (1998). Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiology, 116(1), 429- 437. 78. Knight, H., Trewavas, A. J., & Knight, M. R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. The Plant Cell, 8(3), 489-503. 79. Subbaiah, C. C., Bush, D. S., & Sachs, M. M. (1994). Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. The Plant Cell, 6(12), 1747-1762. 80.Kinefuchi, M., Sekiya, M., Yamazaki, A., & Yamamoto, K. (1999). Accumulation of GABA in brown rice by high pressure treatment. NIPPON SHOKUHIN KOGYO GAKKAISHI, 46(5), 323-328. 81. Rhyu, M. R., Kim, E. Y., Kim, H. Y., Ahn, B. H., & Yang, C. B. (2000). Characteristics of the red rice fermented with fungus Monascus. Food Science and Biotechnology, 9(1), 21-26. 82. Oh, S. H. (2003). Stimulation of γ-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. BMB reports, 36(3), 319-325..) 83.Zhang, H., Yao, H. Y., & Chen, F. (2006). Accumulation of γ- aminobutyric acid in rice germ using protease. Bioscience, biotechnology, and biochemistry, 70(5), 1160-1165. 84.Nasser, E. (1971). Fundamentals of gaseous ionization and plasma electronics. Wiley-Interscience. 85. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10(1), 1-11. 86. Lu, P., Cullen, P. J., & Ostrikov, K. (2016). Atmospheric Pressure Nonthermal Plasma Sources. In Cold Plasma in Food and Agriculture (pp. 83-116). 87. Chu, P. K., & Lu, X. (Eds.). (2013). Low temperature plasma technology: methods and applications. CRC Press. 88. Ahmedou, S. O., Rouaud, O., & Havet, M. (2007, September). Electrohydrodynamic enhancement of heat and mass transfer in food processes. In CIGR Section VI International Symposium on food and agricultural products: processing and innovations (pp. 24-26). 89. Subedi, D. P., Joshi, U. M., & San Wong, C. (2017). Dielectric barrier discharge (DBD) plasmas and their applications. In Plasma Science and Technology for Emerging Economies (pp. 693-737). Springer, Singapore. 90. Lu, X., Laroussi, M., & Puech, V. (2012). On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Science and Technology, 21(3), 034005. 91. Puchkin, Y. N., Baydarovtsev, Y. P., Vasilets, V. N., & Ponomarev, A. N. (1983). The study of radical generation in polytetrafluoroethylene by the action of low pressure glow discharge plasma. High Energy Cheistry, 17(4), 368-71. 92. Vasilets, V. N., Tikchomirov, L. A., & Ponomarev, A. N. (1981). The study of continues HF low pressure discharge plasma action on the polyethylene surface. High Energy Chem, 15, 77-81. 93. Kravets, L. I., Dmitriev, S. N., & Gil’man, A. B. (2009). Modification of properties of polymer membranes by low-temperature plasma treatment. High Energy Chemistry, 43(3), 181-188. 94. Boehmer, E. W., & Hanlon, D. L. (1993). U.S. Patent No. 5,272,181. Washington, DC: U.S. Patent and Trademark Office. 95. 迟丽华。(2004)。等离子体对作物种子生物学效应的研究 [D] (Doctoral dissertation, 吉林农业大学). 96. Menashi, W. P. (1968). Sterilization with low temperature plasma. US Patent, 3(383), 163. 97. Misra, N. N., Schlüter, O., & Cullen, P. J. (2016). Plasma in food and agriculture. In Cold Plasma in Food and Agriculture (pp. 1-16). 98. Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of plant physiology, 167(2), 149-156. 99. Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2007, October). The effectiveness of ultrasound treatment on the germination stimulation of barley seed and its alpha-amylase activity. In Proceedings of World Academy of Science, Engineering and Technology (Vol. 23, pp. 489-492). 100.Sidaway, G. H. (1966). Influence of electrostatic fields on seed germination. Nature, 211(5046), 303. 101. Bormashenko, E., Grynyov, R., Bormashenko, Y., & Drori, E. (2012). Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific reports, 2, 741. 102. Sera, B., Spatenka, P., Sery, M., Vrchotová, N., & Hruskova, I. (2010). Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10), 2963-2968. 103. Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., & Yuanhua, D. (2014). Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific reports, 4, 5859. 104. Hayashi, Koga, K., Thapanut, S., Amano, T., Seo, H., Itagaki, N., Hayashi, N., & Shiratani, M. (2015). Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Applied Physics Express, 9(1), 016201. 105. Jannoey, P., Niamsup, H., Lumyong, S., Suzuki, T., Katayama, T., & Chairote, G. (2010). Comparison of gamma-aminobutyric acid production in Thai rice grains. World Journal of Microbiology and Biotechnology, 26(2), 257-263. 106. Chen, H. H., Chen, Y. K., & Chang, H. C. (2012). Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, 135(1), 74-79. 107.Bourne, M. C. 1982. Principles of objective texture measurement. Pages44-117 in: Food Texture and Viscosity: Concept and Measurement. M.C. Bourne, ed. Academic Press: New York 108.鄭光哲。(2016)。預煮處理對稻米理化特性與消化性之影響。國立台灣大學 食品科技研究所碩士論文。 109. 劉英德。(1988)。種子生理. 五洲出版社印行. P, 93-99. 110. 宋勳、許愛娜、洪梅珠。(1988)。台灣主要水稻推廣品種之品質與分 級。台 中區農業改良場研究報告,第 0169 號。 111. Chen, H. H., Chang, H. C., Chen, Y. K., Hung, C. L., Lin, S. Y., & Chen, Y. S. (2016). An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food chemistry, 191, 120-127. 112.Gujral, H. S., & Kumar, V. (2003). Effect of accelerated aging on the physicochemical and textural properties of brown and milled rice. Journal of Food Engineering, 59(2-3), 117-121. 113. Liu, Q., Zhu, S., Zhang, J., & Yu, Y. (2017). Effects of parboiling conditions on cooking properties, textural properties and quality characters of germinated brown rice. Transactions of the Chinese Society of Agricultural Engineering, 33(21), 289- 297. 114. Mohapatra, D., & Bal, S. (2007). Effect of degree of milling on specific energy consumption, optical measurements and cooking quality of rice. Journal of Food Engineering, 80(1), 119-125. 115. Ghasemi, E., Mosavian, M. H., & Khodaparast, M. H. (2009). Effect of stewing in cooking step on textural and morphological properties of cooked rice. Rice Science, 16(3), 243-246. 116.Ito, S. (2004). Marketing of value-added rice products in Japan: germinated brown rice and rice bread. In Proceeding of FAO Rice Conference, 2004. 117.Ramesh, M., Ali, S. Z., & Bhattacharya, K. R. (1999). Structure of rice starch and its relation to cooked-rice texture. Carbohydrate Polymers, 38(4), 337-347. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77455 | - |
dc.description.abstract | 發芽糙米,為僅除去稻米外殼的糙米在適當水分及溫度下培養,吸水澎潤 後,開始活化進行各種發芽所需之代謝作用,至胚芽突出而成。發芽糙米相較於 精白米有更高營養價值。但由於糙米質地堅硬,口感較差,且烹飪後外觀暗淡, 因此不如精白米受消費者歡迎。發芽糙米質地明顯較軟,且風味因風味分子在發 芽過程中分解釋放而增強,此外,其 γ-氨基丁酸 (gamma-aminobutyric acid, GABA) 及肌醇等生物活性成分含量亦增加。發芽糙米中 GABA 含量高於精白米 10 倍之多。GABA 是一種非蛋白氨基酸,在動物體內扮演一主要抑制性神經傳導 物質。有許多研究指出它具有一系列促進健康益處功能,如抗糖尿病和降血壓作 用、抑鬱和減少焦慮、抑制癌細胞增殖、改善大鼠記憶和學習能力等。電漿為物 質第四態,是對物質施加高溫或加速電子、離子等能量,產生大量如分子、原 子、電子、正負離子、受激態物質、自由基、UV 光等物質,在食品工業上主要 使用於改變受處理食物的表面性質及滅除表面微生物等。在本研究中,使用常壓 非熱式電漿 (atmospheric non-thermal plasma, ANP) 以較低的電漿能量 (7 W、8 W、14 W、15 W) 處理糙米,探討其是否可迅速磨損種子表面,進而促使提高糙 米吸水率、發芽率,同時是否有更軟化發芽糙米中的質地和增加 GABA 含量的結 果。在 14 W 及 15 W 處理下,24 小時的糙米發芽率皆達 95 %以上,較控制組的 89 %高,減少糙米發芽時間。此外,糙米經過 15 W 電漿處理後,吸水率在 48 小 時達到 39 %,較控制組 35 %高。在 SEM 的觀察下,也發現經電漿處理的糙米, 表面都有凹凸的現象。GABA 含量也在電漿 8W 處理緊接著培養 24 小時發芽後, 發現顯著高於控制組(22.64 mg / 100 g,33.87 mg / 100 g)。而在烹煮時間上 14 W 及 15 W 處理下,從控制組的 34 分 05 秒降顯著下降為 33 分 12 秒,及 32 分 11 秒。 | zh_TW |
dc.description.abstract | Compare to milled rice, brown rice with only the outer hull removed has higher nutritional value. Through further germination, the germinated brown rice (GBR) its nutritive value and texture could be enhanced. During germination, the texture of brown rice softened, more flavor developed, and the content of bioactive component including gamma-aminobutyric acid (GABA), oryzanol, and free polyphenolics significantly increased. That is, germination greatly benefits the promotion of brown rice since it not only modified its unappealing hard texture but also making it a potent functional food. GABA, a non-proteinogenic amino acid with numerous reported health benefits research showed that it has a series of functions, such as anti-diabetic and hypotensive effects, depression and anxiety reduction, inhibit cancer cell proliferation, and improve memory and learning abilities in rats. In GBR, the contents of GABA is many times more than that in the brown rice implying its responsiveness to the stress caused by the early stage of growth. Atmospheric non-thermal plasma (ANP) contains a large amount of reactive species that could rapidly abrade the seed surface, enhance moisture absorption and, hence, promote higher germination rate. In this work, innovative uses and processing parameters of ANP as the convenient means to simultaneous soften the texture and increase GABA content in GBR. Brown rice was treated by ANP for 2 minutes at the power of different group as (a) 20k Hz/6.5k V- 7 Watt (b) 20k Hz/7k V- 8 Watt (c) 24k Hz/5.5k V-14 Watt (d) 24k Hz/6k V-15 Watt. The optimum condition for the preparation of GBR was determined based on the resulting GABA content and cooked texture. According to the result, The concentration of GABA peaked at 7 Watt treatment with 48 hours soaked, and was 1.6 times higher than the untreated group.
Furthermore, the cooked texture of GBR after treated by plasma was softer in relatively shorter cooking time. In sum, ANP was successfully established as a novel application to rapidly modify the germination rate, bioactive content, and texture of brown rice. In future, this technology could be applied to many other crops with similar property. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:02:48Z (GMT). No. of bitstreams: 1 ntu-107-R05641034-1.pdf: 3459951 bytes, checksum: 3feb542b7c98680d992f62d079fb7a4a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
誌謝 ..................................................................................................................... i 摘要 ......................................................................................................................iii Abstract................................................................................................................ iv 圖目錄 ................................................................................................................. viii 表目錄 .................................................................................................................. ix 第一章、前言 ..................................................................................................... 1 第二章、文獻回顧 ............................................................................................... 2 第一節、稻米簡介.......................................................................................... 2 一、稻米分類........................................................................................................... 2 二、稻米的結構組成............................................................................................... 3 第二節、糙米簡介................................................................................................. 7 一、 糙米分類.......................................................................................................... 7 二、糙米對人體生理保健功能............................................................................... 8 三、糙米適口度改善開發....................................................................................... 9 第三節、發芽糙米簡介..................................................................................... 10 一、發芽定義......................................................................................................... 10 二、發芽條件......................................................................................................... 11 三、發芽時的物理化學變化................................................................................. 11 四、保健功效......................................................................................................... 14 第四節、γ-氨基丁酸(GABA)簡介 ........................................................................... 16 一、分子特性......................................................................................................... 16 二、生成與代謝路徑............................................................................................. 18 三、對人體之生理作用......................................................................................... 20 四、機能性研究..................................................................................................... 21 五、生產方式......................................................................................................... 22 六、促進植物 GABA 生成之因子與作用機制.................................................... 23 第五節、非熱式常壓電漿................................................................................. 26 一、電漿簡介......................................................................................................... 26 二、電漿分類......................................................................................................... 27 三、常壓非熱電漿來源......................................................................................... 27 四、非熱電漿的應用............................................................................................. 30 五、非熱電漿的對植物種子應用......................................................................... 32 第三章、研究目的與實驗架構 ........................................................................... 36 第一節、研究目的........................................................................................... 36 第二節、實驗架構..................................................................................... 37 第四章、材料與方法 ............................................................................................. 38 第一節、實驗材料.............................................................................................. 38 第二節、試藥與溶劑......................................................................................... 38 第三節、 儀器設備 ................................................................................................ 38 第四節、實驗方法.............................................................................................. 40 一、電漿處理糙米並培養發芽製備..................................................................... 40 二、發芽糙米外觀................................................................................................. 40 三、電漿處理後糙米發芽率................................................................................. 40 四、電漿處理後糙米吸水曲線............................................................................. 41 五、發芽糙米 GABA 含量測定............................................................................ 41 六、發芽糙米烹煮性質測定................................................................................. 44 七、發芽糙米飯質地分析..................................................................................... 45 八、統計分析......................................................................................................... 46 第五章、結果與討論 ............................................................................................. 47 一、發芽糙米之外觀............................................................................................. 47 二、電漿處理後糙米發芽率................................................................................. 51 三、電漿處理後吸水曲線圖................................................................................. 53 四、發芽糙米 GABA 含量測定分析.................................................................... 55 五、發芽糙米烹煮性質測定分析......................................................................... 57 六、發芽糙米飯之質地分析................................................................................. 60 第六章、結論 ....................................................................................................... 63 第七章、參考文獻 ............................................................................................... 64 | |
dc.language.iso | zh-TW | |
dc.title | 利用常壓低溫電漿處理縮短發芽梗糙米煮飯時間及提高γ-氨基丁酸(GABA)含量 | zh_TW |
dc.title | Atmospheric Plasma Treatment Shortened Cooking Time and Increased Gamma-aminobutyric Acid (GABA) Content for Germinated Brown Rice | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鄭光成(Kuan-Chen Cheng) | |
dc.contributor.oralexamcommittee | 吳瑞碧,沈賜川,劉志宏 | |
dc.subject.keyword | 發芽糙米,γ-氨基丁酸,常壓非熱式電漿, | zh_TW |
dc.subject.keyword | Germinated brown rice,Gamma-aminobutyric acid (GABA),Atmospheric non-thermal plasma, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201804090 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-09-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05641034-1.pdf 目前未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。