請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77237
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 忻凌偉(Ling-Wei Hsin) | |
dc.contributor.author | Shih-Ching Wang | en |
dc.contributor.author | 王詩晴 | zh_TW |
dc.date.accessioned | 2021-07-10T21:52:12Z | - |
dc.date.available | 2021-07-10T21:52:12Z | - |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | 1. Roche J; Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem. 2016, 121, 451-483.
2. Marcotullio LD; Canettieri G; Infante P; Greco A; Gulino A. Protected from the inside: Endogenous histone deacetylase inhibitors and the road to cancer. Biochimica et Biophysica Acta. 2011, 1815, 241-252. 3. Haberland M; Montgomery RL; Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009, 10, 32-42. 4. Choudhary C; Kumar C;, Gnad F; Nielsen ML; Rehman M; Walther TC; Olsen JV; Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009, 325, 834-40. 5. Moraga A; Lao KH; Zeng L. Angiogenesis and Cardiovascular Diseases: The Emerging Role of HDACs. InTechOpen. 2017. 6. Manal M; Chandrasekar MJN; Priya JG; Nanjan MJ. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem. 2016, 67, 18-42. 7. Guan J.; Haggarty SJ; Giacometti E; Dannenberg JH; Joseph N; Gao J; Nieland TJ; Zhou Y; Wang X; Mazitschek R; Bradner JE; DePinho RA; Jaenisch R; Tsai LH. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009, 459, 55-60. 8. Graff J; Rei D; Guan JS; Wang WY; Seo J; Hennig KM; Nieland TJ; Fass DM; Kao PF; Kahn M; Su SC; Samiei A; Joseph N; Haggarty SJ; Delalle I; Tsai LH. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012, 483, 222-6. 9. Volmar CH; Wahlestedt C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics. 2015, 1, 20-27. 10. Chuang DM; Leng Y; Marinova Z; Kim HJ; Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009, 32, 591-601. 11. Haggarty SJ; Tsai LH. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem. 2011, 96, 41-52. 12. Tandon N; Ramakrishnan V; Kumar S. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol. 2016, 8, 35-44. 13. Fenichel MP. FDA approves new agent for multiple myeloma. J. Natl. Cancer Inst. 2015, 107, djv165. 14. Granov A; Tiutin L; Schward T. (2013). Positron Emission Tomography. Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer. 15. Wang C; Schroeder FA; Hooker JM. Visualizing Epigenetics: Current Advances and Advantages in HDAC PET Imaging Technique. Neuroscience. 2014, 264, 186-197. 16. Tago T; Toyohara J. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases. Molecules. 2018, 23, 300. 17. Nishii R; Mukhopadhyay U; Yeh H; Soghomonyan S; Volgin A; Alauddin M; Tong W; Gelovani J. Non-invasive imaging of histone deacetylase activity in human breast carcinoma xenografts in rats using positron emission tomography (PET) with [18F]-FAHA. J Nucl Med. 2007, 48, 113. 18. Kuo JW; Su KH; Wu CY; Ho CH; Wang HE; Gelovani J; Liu RS. A simplified kinetic model for rat glioma using 18F-FAHA. J Nucl Med. 2011, 52, 1182. 19. Tang W; Kuruvilla SA; Galitovskiy V; Pan ML; Grando SA; Mukherjee J. Targeting histone deacetylase in lung cancer for early diagnosis: 18F-FAHA PET/CT imaging of NNK-treated A/J mice model. Am J Nucl Med Mol Imaging. 2014, 4, 324-332. 20. Bonomi R; Mukhopadhyay U; Shavrin A; Yeh HH; Majhi A; Dewage SW; Najjar A; Lu X; Cisneros GA; Tong WP; Alauddin MM; Liu RS; Mangner TJ; Turkman N; Gelovani JG. Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain. PLoS ONE. 2015, 10, e0133512. 21. Wey HY; Gilbert TM; Zürcher NR; She A; Bhanot A; Taillon BD; Schroeder FA; Wang C; Haggarty SJ; Hooker JM. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci. Transl. Med. 2016, 8, 351. 22. Chi YT. Novel Histone Deacetylase Radiotracers for Brain PET Imaging. 國立臺灣大學醫學院藥學研究所碩士論文. 2017 23. Lyu HC; Li B. CN106543080 A, 2017, 6. 24. Gibson MS; Bradshaw RW. The Gabriel Synthesis of Primary Amines. Angew. Chem. Int. Ed. Engl. 1968, 7, 919. 25. Keller M; Tränkle C; She X; Pegoli A; Bernhardt G; Buschauer A; Read RW. M2 Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding. Bioorg. Med. Chem. 2015, 23, 3970-3990. 26. Seo YJ; Kang Y; Muench L; Reid A; Caesar S; Jean L; Wagner F; Holson E; Haggarty SJ; Weiss P; King P; Carter P; Volkow ND; Fowler JS; Hooker JM; Kim SW. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem Neurosci. 2014, 5, 588-96. 27. Berk SC; Close J; Hamblett C; Heidebrecht RW; Kattar SD; Kliman LT; Mampreian DM; Methot JL; Miller T; Sloman DL. Spirocyclic compounds as hdac inhibitors. WO2007061978A1, 2007. 28. Wagner FF.; Weïwer M; Steinbacher S; Schomburg A; Reinemer P; Gale JP; Campbell AJ; Zhang YL; Holson EB. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg. Med. Chem. 2016, 24, 4008-4015. 29. Bressi JC; Jennings AJ; Skene R; Wu Y; Melkus R; Jong RD; O'Connell S; Grimshaw CE; Navre M; Gangloff AR. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett. 2010, 20, 3142-3145. 30. Seo YJ; Kang Y; Muench L; Reid A; Caesar S; Jean L; Wagner F; Hooker JM; Kim SW. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem Neurosci. 2014, 5, 588-596. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77237 | - |
dc.description.abstract | 組蛋白去乙醯酶 (histone deacetylase, HDAC) 催化組蛋白上離胺酸 (lysine) 側鏈的去乙醯基,與組蛋白乙醯轉移酶 (histone acetyltransferase, HAT) 相互拮抗調節染色質組蛋白的乙醯化程度,是參與表觀遺傳調控的重要因子。近年來許多研究發現,組蛋白去乙醯酶表現活性異常造成之蛋白質乙醯化程度失衡與許多疾病具有關聯性,如癌症、心血管疾病、神經退化性疾病、認知障礙、藥物成癮等。然而,現今對於這些人類疾病中正常組蛋白去乙醯酶的密度及活性的轉變過程仍不完全明確,因此正子斷層掃描造影技術之應用,提供了更為適切的直接、非侵入性醫學影像研究工具,用以即時監測染色質調控酵素在動物或人體內之分布、代謝情形。
本研究的目標為設計與合成一系列具新穎性之氟代烷基取代苯甲醯胺類結構之組蛋白去乙醯酶探針,並從中篩選出具有高活性及優良選擇性之最佳候選化合物,作為未來發展正子斷層掃描造影技術應用之分子探針。延續本實驗室過去之研究成果,經合成路徑及反應條件優化後,成功合成出具拉電子基修飾之苯環或芳香性雜環取代之化合物8、18系列衍生物,及不具N-甲基取代之化合物24系列衍生物,並建立了一條能夠快速、大量製備共同中間體並平行合成多個衍生物之合成路徑,可做為未來此系列化合物開發與合成之模板。 | zh_TW |
dc.description.abstract | Histone deacetylase (HDAC) is responsible for removing acetyl groups from lysine side chain on histones and antagonizingly control acetylation of histone protein against histone acetyltransferase (HAT) which plays a critical role in chromatin modulation. Recently, an increasing number of researches have indicated that HDAC misexpression is related to a variety of diseases such as cancer, cardiovascular diseases, neurodegenerative diseases, cognitive impairment, and drug addiction. However, the knowledge of normal HDACs density and alterations in HDACs with human disease remains limited. Therefore, the non-invasive imaging technique, positron emission tomography (PET), is a valuable tool to visualize the real-time distribution and metabolism of chromatin-modifying enzymes in animals and human.
The goal of this study is design and synthesis of a series of novel fluoroalkyl-substituted benzamide HDAC probes, and screening out the promising candidates for the development of HDAC molecular probes through pharmacological and physicochemical evaluation. As continuous efforts, a series of electron-deficient phenyl-substituted or heteroaromatic-substituted derivatives, compound 8, and 18 series, and a series of nor-derivatives, compound 24 series, were synthesized successfully with optimized yields. In addition, the modified synthesis pathway can be used for further studies of scale-up and parallel synthesis. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:12Z (GMT). No. of bitstreams: 1 ntu-108-R06423007-1.pdf: 6430121 bytes, checksum: 28d3ea7d595d5ce15929e0929aea43ce (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 英文縮寫列表 IV 目錄 VI 圖目錄 VIII 表目錄 VIII 路徑目錄 VIII 一、緒論 1 1.1 組蛋白去乙醯酶之研究 1 1.2 組蛋白去乙醯酶抑制劑之研究 2 1.3 正子斷層掃描於HDAC之應用 3 1.4 化合物結構設計 5 二、結果與討論 6 2.1 C4-苯環或芳香性雜環取代之苯甲醯胺類HDAC抑制劑之合成 6 2.1.1 已知之合成路徑分析 6 2.1.2 逆合成分析 7 2.1.3 共同中間體12之合成 7 2.1.4 NO2還原反應之探討 8 2.1.5 目標化合物8、18系列之合成 10 2.2 不含N-甲基取代之苯甲醯胺類HDAC抑制劑之合成 11 2.2.1 蓋布瑞爾伯胺合成反應 (Gabriel synthesis) 之引入 11 2.2.2 化合物20之N-烷基化反應探討 11 2.2.3 目標化合物24系列之合成 14 三、結論 15 四、實驗部分 16 4.1 實驗藥品及溶劑來源 16 4.1.1 市售之試劑及溶劑 16 4.1.2 自製無水溶劑、試劑 18 4.2 一般儀器與方法 19 4.3 合成步驟與分析 20 參考文獻 51 附表目錄 55 附圖目錄 55 附表 59 附圖 60 | |
dc.language.iso | zh-TW | |
dc.title | 新穎組蛋白去乙醯酶分子探針之設計與合成 | zh_TW |
dc.title | Design and synthesis of novel histone deacetylase molecular probes | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李水盛,林美香 | |
dc.subject.keyword | 組蛋白去乙醯?,組蛋白去乙醯?抑制劑,正子斷層掃描,分子探針,苯甲醯胺類, | zh_TW |
dc.subject.keyword | histone deacetylase,histone deacetylase inhibitor,positron emission tomography,molecular probe,benzamide, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201903558 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06423007-1.pdf 目前未授權公開取用 | 6.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。