Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌zh_TW
dc.contributor.author黃宇宏zh_TW
dc.contributor.authorYu-Hung Huangen
dc.date.accessioned2021-07-10T21:50:51Z-
dc.date.available2024-08-16-
dc.date.copyright2019-08-22-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation顏瑾。發芽及發酵對台灣藜主要機能性成分之影響。2018。碩士論文。國立台灣大學。
Abdel-Aal el, S. M.,& Rabalski, I., Composition of Lutein Ester Regioisomers in Marigold Flower, Dietary Supplement, and Herbal Tea. Journal of Agricultural and Food Chemistry, 2015, 63(44), 9740-9746.
Abolfaz, A., Rogaie, R.-S., Davaran, S., Sang, W. J., Nosratollah, Z., Younes, H.,& Mohammad, S.. Liposome: Classification, Preparation, and Applications. Nanoscale Research Letters, 2013, 8(1), 102-111.
Algvere, P. V., Marshall, J.,& Seregard, S., Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmologica Scandinavica, 2006, 84(1), 4-15.
Angelis, I. D.,& Turco, L., Caco-2 cells as a model for intestinal absorption. Current Protocols in Toxicology, 2011, 47(1), 20.6.1-20.6.15.
Berg, J.,& Lin, D., Lutein and Zeaxanthin: An Overview of Metabolism and Eye Health. Journal of Human Nutrition & Food Science, 2014, 2(4), 1048-1049.
Boonnoun, P., Opaskonkun, T., Prasitchoke, P., Goto, M.,& Shotipruk, A., Purification of Free Lutein from Marigold Flowers by Liquid Chromatography. Engineering Journal, 2012, 16(5), 145-156.
Briuglia, M. L., Rotella, C., McFarlane, A.,& Lamprou, D. A. (2015). Influence of Cholesterol on Liposome Stability and on In Vitro Drug Release. Drug Delivery and Translational Research, 2015, 5(3), 231-242.
Chkhikvishvili, I., Sanikidze, T., Gogia, N., Enukidze, M.,Machavariani, M., Kipiani, N.,& Rodov, V., Constituents of French Marigold (Tagetes patula L.) Flowers Protect Jurkat T-Cells against Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016.
Cornish, K. M., Williamson, G.,& Sanderson, J., Quercetin Metabolism in the Lens: Role in Inhibition of Hydrogen Peroxide Induced Cataract. Free Radical Biology and Medicine, 2002, 33(1), 63-70.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A.,& Mozafari, M. R., Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 2018, 10(2).
Degim, Z., Unal, N., Essiz, D.,& Abbasoglu, U., The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer. Life Sciences, 2004, 75(23), 2819-2827.
Devkar, S. T., Kandhare, A. D., Sloley, B. D., Jagtap, S. D., Lin, J., Tam, Y. K.,& Hegde, M. V., Evaluation of The Bioavailability of Major Withanolides of Withania somnifera Using an In vitro Absorption Model System. Journal of Advanced Pharmaceutical Technology, 2015, 6(4), 159-164.
Dunn, K. C., Aotaki-Keen, A. E., Putkey, F. R.,& Hjelmeland, L. M., ARPE-19, A Human Retinal Pigment Epithelial Cell Line with Differentiated Properties. Experimental Eye Research, 1996, 62(2), 155-169.
Eisenhauer, B., Natoli, S., Liew, G.,& Flood, V. M., Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients, 2017, 9(2).
Engle, M. J., Goetz, G. S.,& Alpers, D. H., Caco-2 Cells Express a Combination of Colonocyte and Enterocyte Phenotypes. Journal of Cellular Physiology, 1998, 174(3), 362-369.
Gorgels, & Norren, v., Ultraviolet and Green Light Cause Different Types of Damage in Rat Retina. Investigative Ophthalmology & Visual Science, 1995, 36(5), 851-863.
Gupta, V., Doshi, N.,& Mitragotri, S., Permeation of Insulin, Permeation of Insulin, Calcitonin and Exenatide Across Caco-2 Monolayers: Measurement Using a Rapid, 3-day System. PLoS One, 2013, 8(2), e57136.
Huang, Y. M., Dou, H. L., Huang, F. F., Xu, X. R., Zou, Z. Y.,& Lin, X. M., Effect of Supplemental Lutein and Zeaxanthin on Serum, Macular Pigmentation, and Visual Performance in Patients with Early Age-related Macular Degeneration. BioMed Research International, 2015, 564738.
ISO 10993-5:2009, Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.
Jager, R. D., Mieler, W. F.,& Miller, J. W., Age-Related Macular Degeneration. The New England Journal of Medicine, 2008, 358, 2606-2617.
Jain, A.,& Jain, S. K., In vitro and Cell Uptakes Sudies for Targeting of Ligand Anchored Nanoparticles for Colon Tumors. European Journal of Pharmaceutical Sciences, 2008, 35(5), 404-416.
Jin, H., Xia, F., Jiang, C., Zhao, Y.,& He, L., Nanoencapsulation of Lutein with Hydroxypropylmethyl Cellulose Phthalate by Supercritical Antisolvent. Chinese Journal of Chemical Engineering, 2009, 17(4), 672-677.
Joshi, S., Hussain, M. T., Roces, C. B., Anderluzzi, G., Kastner, E., Salmaso, S.,& Perrie, Y., Microfluidics Based Manufacture of Liposomes Simultaneously Entrapping Hydrophilic and Lipophilic Drugs. International Journal of Pharmaceutics, 2016, 514(1), 160-168.
Kijlstra, A., Tian, Y., Kelly, E. R.,& Berendschot, T., Lutein: More Than Just a Filter for Blue Light. Progress in Retinal and Eye Research, 2012, 31(4), 303-315.
Kim, H., Kim, Y.,& Lee, J., Liposomal Formulations for Enhanced Lymphatic Drug Delivery. Asian Journal of Pharmaceutical Sciences, 2013, 8(2), 96-103.
Kumar, B., Gupta, S. K., Nag, T. C., Srivastava, S., Saxena, R.,Jha, K. A.,& Srinivasan, B. P., Retinal Neuroprotective Effects of Quercetin in Streptozotocin-Induced Diabetic Rats. Experimental Eye Research, 2014, 125, 193-202.
Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X.,& Deng, Y., A Review on Phospholipids and Their Main Applications in Drug Delivery Systems. Asian Journal of Pharmaceutical Sciences, 2015, 10(2), 81-98.
Liu, H., Liu, W., Zhou, X., Long, C., Kuang, X., Hu, J.,& Shen, H., Protective Effect of Lutein on ARPE-19 Cells upon H2O2-Induced G2/M Arrest. Molecular Medicine Reports, 2017, 16(2), 2069-2074.
Madaan, T., Choudhary, A. N., Gyenwalee, S., Thomas, S., Mishra, H., Tariq, M.,& Talegaonkar, S., Lutein, a Versatile Phyto-nutraceutical: An Insight on Pharmacology, Therapeutic Indications, Challenges and Recent Advances in Drug Delivery. PharmaNutrition, 2017, 5(2), 64-75.
Moghassemi, S.,& Hadjizadeh, A., Nano-Niosomes as Nanoscale Drug Delivery Systems: An Illustrated Review. Journal of Controlled Release, 2014, 185, 22-36.
Muqbil, I., Masood, A., Sarkar, F. H., Mohammad, R. M.,& Azmi, A. S., Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents. Cancers (Basel), 2011, 3(1), 428-445.
Nallamuthu, I., Parthasarathi, A.,& Khanum, F., Thymoquinone-loaded PLGA Nanoparticles: Antioxidant and Anti-microbial. International Current Pharmaceutical Journal, 2013, 2(12), 202-207.
Nisini, R., Poerio, N., Mariotti, S., De Santis, F.,& Fraziano, M., The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Frontiers in Immunology, 2018, 9, 155.
Park, M., Ahn, Y. J., Kim, S. J., You, J., Park, K. E.,& Kim, S. R., Changes in Accommodative Function of Young Adults in their Twenties following Smartphone Use. Journal of Korean Ophthalmic Optics Society, 2014, 19(2), 253-260.
Patil, Y. P.,& Jadhav, S., Novel Methods for Liposome Preparation. Chemistry and Physics of Lipids, 2014, 177, 8-18.
Piccaglia, R., Marotti, M.,& Grandi, S., Lutein and Lutein Ester Content in Different Types of Tagetes patula and Tagetes erecta. Industrial Crops and Products, 1997, 8, 45-51.
Qv, X.-Y., Zeng, Z.-P.,& Jiang, J.-G., Preparation of Lutein Microencapsulation by Complex Coacervation Method and Its Physicochemical Properties and Stability. Food Hydrocolloids, 2011, 25(6), 1596-1603.
Rangaswamy, L., Marisiddaiah, R., Thirumalai, P. K.,& Vallikannan, B., Determination of Major Carotenoids in a Few Indian Leafy Vegetables by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2005, 53(8), 2838-2842.
Saini, R. K., & Keum, Y. S., Carotenoid Extraction Methods: A Review of Recent Developments. Food Chemistry, 2018, 240, 90–103.
Seddon, J. M., U.A., A., Sperduto, R. D., Hiller, R., Blair, N., Burton, T. C.,& Miller, D. T., Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration. Eye Disease Case-Control Study Group. The Journal of the American Medical Association, 1994, 272(18), 1413-1420.
Shaban, H.,& Richter, C., A2E and Blue Light in the Retina: The Paradigm of Age-Related Macular Degeneration. Biological Chemistry, 2005, 383(3-4), 537-545.
Shade, C. W., Liposomes as Advanced Delivery Systems for Nutraceuticals. Integrative Medicine, 2016, 15(1), 33-36.
Shang, Y. M., Wang, G. S., Sliney, D., Yang, C. H.,& Lee, L. L., White Light-emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model. Environmental Health Perspectives, 2014, 122(3), 269-276.
Shanmugam, S., Baskaran, R., Balakrishnan, P., Thapa, P., Yong, C. S.,& Yoo, B. K., Solid Self-nanoemulsifying Drug Delivery System (S-SNEDDS) Containing Phosphatidylcholine for Enhanced Bioavailability of Highly Lipophilic Bioactive Carotenoid Lutein. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79(2), 250-257.
Šivel, M., Kráčmar, S., Fišera, M., Klejdus, B.,& Kubáň, V., Lutein Content in Marigold Flower (Tagetes erecta L.) Concentrates used for Production of Food Supplements. Czech Journal of Food Sciences, 2014, 32(6), 521-525.
Smith, T.,& Lee, L., Age Related Macular Degeneration - New Developments in Treatment. Australian Family Physician, 2014, 36(5), 359-361.
Sparrow, J. R.,& Cai, B., Blue Light–Induced Apoptosis of A2E-Containing RPE: Involvement of Caspase-3 and Protection by Bcl-2. Investigative Ophthalmology & Visual Science, 2001, 42(6), 1356-1362.
Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L.,& Hickman, J. J.. TEER Measurement Techniques for In vitro Barrier Model Systems. Journal of Laboratory Automation, 2015, 20(2), 107-126.
Sun, J., Kim, D.-H., Guo, Y., Teng, Z., Li, Y., Zheng, L.,& Lu, G., A c(RGDfE) Conjugated Multi-Functional Nanomedicine Delivery System for Targeted Pancreatic Cancer Therapy. Journal of Materials Chemistry B, 2015, 3(6), 1049-1058.
Tan, C., Xia, S., Xue, J., Xie, J., Feng, B.,& Zhang, X.. Liposomes as Vehicles for Lutein: Preparation, Stability, Liposomal Membrane Dynamics, and Structure. Journal of Agricultural and Food Chemistry, 2013, 61(34), 8175-8184.
Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B.,& Xia, S., Liposomes as Delivery Systems for Carotenoids: Comparative Studies of Loading Ability, Storage Stability and In vitro Release. Food Function, 2014, 5(6), 1232-1240.
Van Itallie, C. M., Holmes, J., Bridges, A., Gookin, J. L., Coccaro, M. R., Proctor, W.,& Anderson, J. M., The Density of Small Tight Junction Pores Varies Among Cell Types and Is Increased by Expression of Claudin-2. Journal of Cell Science, 2008, 121(Pt 3), 298-305.
Vechpanich, J.,& Shotipruk, A., Recovery of Free Lutein From Tagetes erecta: Determination of Suitable Saponification and Crystallization Conditions. Separation Science and Technology, 2010, 46(2), 265-271.
Wang, Y., Ye, H., Zhou, C., Lv, F., Bie, X.,& Lu, Z., Study on the Spray-drying Encapsulation of Lutein in the Porous Starch and Gelatin Mixture. European Food Research and Technology, 2011, 234(1), 157-163.
Wu, W., Lu, Y.,& Qi, J., Oral Delivery of Liposomes. Therapeutic Delivery, 2015, 6(11), 1239-1241.
Xia, S., Tan, C., Zhang, Y., Abbas, S., Feng, B., Zhang, X.,& Qin, F., Modulating Effect of Lipid Bilayer-carotenoid Interactions on the Property of Liposome Encapsulation. Colloids and Surfaces B: Biointerfaces, 2015, 128, 172-180.
Yoshizako, H., Hara, K., Takai, Y., Kaidzu, S., Obana, A.,& Ohira, A., Comparison of Macular Pigment and Serum Lutein Concentration Changes between Free Lutein and Lutein Esters Supplements in Japanese Subjects. Acta Ophthalmologica, 2016, 94(6), 411-416.
Zhang, L.-H., Xu, X.-D., Shao, B., Shen, Q., Zhou, H., Hong, Y.-M.,& Yu, L.-M., Physicochemical Properties and Bioavailability of Lutein Microencapsulation (LM). Food Science and Technology Research, 2015, 21(4), 503-507.
Zhao, C., Cheng, H., Jiang, P., Yao, Y.,& Han, J., Preparation of Lutein-Loaded Particles for Improving Solubility and Stability by Polyvinylpyrrolidone (PVP) as an Emulsion-stabilizer. Food Chemistry, 2014, 156, 123-128.
Zhao, T., Liu, F., Duan, X., Xiao, C.,& Liu, X., Physicochemical Properties of Lutein-Loaded Microcapsules and Their Uptake via Caco-2 Monolayers. Molecules, 2018, 23(7).
Zununi Vahed, S., Salehi, R., Davaran, S.,& Sharifi, S., Liposome-based Drug Co-delivery Systems in Cancer Cells. Materials Science & Engineering C-Materials for Biological Applications, 2017, 71, 1327-1341.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77206-
dc.description.abstract隨著科技日漸發達,3C 產品的長期使用,導致眼睛負擔越來越大,對眼部保健的需求越來越高。根據研究指出,攝取葉黃素可補充黃斑部中的色素含量,有助於預防眼疾例如黃斑部病變的產生,因此,適量補充葉黃素至關重要。金盞花 (Marigold flower) Tagetes erecta中含有豐富的葉黃素,為商業上葉黃素保健食品最大的來源,然而在萃取出葉黃素後,剩餘殘渣往往直接丟棄,其中仍含有高量酚類等水溶性植化素,對眼睛健康亦有助益,直接丟棄造成浪費。微脂體係由磷脂雙層組成的球型囊泡,可做為載體;相較於其他奈米化技術,其具備生物相容、可生物分解、低成本及低毒性等特性,且可同時包埋親水及疏水性成分。本實驗之目的即為以微脂體同時包埋金盞花中脂溶性葉黃素及水溶性活性物質,提升金盞花之護眼價值,同時克服葉黃素穩定性不佳且生物利用率低的限制。
研究結果顯示,當微脂體配方組成為卵磷脂及膽固醇莫耳比例 1:1、葉黃素及卵磷脂莫耳比例 1:10、水溶液中總酚類濃度為 400 µg GAE/mL時,可建構出結構穩定的金盞花萃出物微脂體,且葉黃素的包埋率可達 82%,多酚類物質之包埋率則為 31.7%;微脂體之粒徑大小約 1030.8 nm,界達電位為 -38.28 mV。此外,金盞花萃取物經微脂體包埋後成功提升了葉黃素的儲存穩定性;金盞花萃取物微脂體經 1 小時模擬胃液作用後,葉黃素釋出率僅 3.7 %,顯示微脂體可保護葉黃素經過胃酸的侵蝕。而在人類結腸癌細胞 Caco-2 體外吸收平台中,結果表明經包埋後萃取物之葉黃素相較於未包埋者吸收率提升了 43.7%,顯示以微脂體包埋是提升吸收率的有效加工方式。最後,於人類視網膜色素上皮細胞 ARPE-19 細胞平台中,金盞花萃取物微脂體可以提升 ARPE-19 細胞於 H2O2 誘導氧化傷害下的存活率,證明其對視網膜細胞具有保護的功能。綜合上述,本研究成功建構出具促進視網膜健康功效之金盞花萃出物微脂體,提升了金盞花之價值,並解決了葉黃素低穩定性及低吸收率的限制。
zh_TW
dc.description.abstractWith new technological advances, the long-term use of 3C products has led to an increasing burden on the eyes. According to the previous researches, lutein can specifically accumulate in the macular and reduce the risk of macular degeneration. As a result, sufficient lutein supplementation is of critical importance. Marigold flower (Tagetes erecta) contains high amount of lutein, which is the largest source of commercial lutein supplement. However, after lutein extraction, the remaining residue is often discarded, which still contains high amounts of water-soluble phytochemicals, such as phenols, they are also effective compounds for eye health and could be wasted if abandoned. Liposome is a sphere vesicle composed of phospholipid bilayer. Compared to other nanotechnology, liposome possess several advantages including biocompatible, biodegradable, low cost, low toxicity, and able to co-encapsulate both hydrophilic and hydrophobic compounds. The purpose of this study was to co-encapsulate both hydrophilic and hydrophobic compounds extracted from marigold flower in liposomes, expand the value of marigold flower, and overcome the low stability and bioavailability of lutein.
Results of this study indicated that stable marigold extract liposomes could be constructed at the molar ratio of lecithin to cholesterol 1 : 1, the molar ratio of lutein to lecithin 1 : 10, and the concentration of total phenol content in the hydration solution was 400 μg GAE/mL. The encapsulation efficiency of lutein could reach 82%, while phenolic compound was 31.7%. The particle size of the marigold extract liposome was approximately 1030.8 nm, and the zeta potential was -38.28 mV. The storage stability of lutein encapsulated in liposome was improved as compared with free lutein. In addition, the marigold extract liposome only released 3.7% lutein in simulated gastric fluid for 1 h, indicating that liposomes could protect lutein from gastric acid. Furthermore, In vitro Caco-2 intestinal permeability assay showed that the encapsulation increased 43.7% absorption rate of lutein, revealing that liposome encapsulation is a feasible way to improve lutein absorption. The protective effect of retinal epithelial cells by marigold extract liposome was also demonstrated using the ARPE-19 cell model. The viability of the cells under H2O2 induce oxidative damage was significantly increased. In conclusion, the functional marigold extract liposome was successfully constructed in this experiment, which not only increased the eye protection value of marigold flower, but also ameliorated the storage stability and absorption of lutein.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:50:51Z (GMT). No. of bitstreams: 1
ntu-108-R06641028-1.pdf: 3895751 bytes, checksum: 21a40d940fa38d67fe9fcca04f259cf3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
壹、前言 1
貳、文獻整理 2
第一節、眼部保健 2
1-1 現況 2
1-2 光線對眼部的傷害 2
1-3 黃斑部病變 5
第二節、葉黃素 (Lutein) 6
2-1 物化特性與結構 6
2-2 酯化型 vs. 游離型葉黃素 9
2-3 眼部保健功效 11
2-4 來源 12
2-5 缺點及限制 16
第三節、微脂體 (Liposome) 17
3-1 特性與結構 17
3-2 微脂體的形成原理 22
3-3 製備方式 24
3-4 微脂體於葉黃素的應用 27
第四節、體外腸道吸收模型 (Caco-2 cell model) 29
4-1 簡介 29
4-2 原理 30
第五節、體外視網膜功效評估平台 (ARPE-19 cell model) 31
5-1 簡介 31
5-2 ARPE-19應用於葉黃素功效性評估 32
參、研究目的與實驗架構 33
第一節、研究目的 33
第二節、實驗架構 34
2-1 萃取金盞花中葉黃素及酚類成分 34
2-2 金盞花萃出物微脂體之建構 35
2-3 細胞平台之功能性評估 36
肆、材料與方法 37
第一節、實驗材料 37
第二節、細胞株來源 37
第三節、實驗藥品 37
第四節、實驗儀器 39
第五節、實驗方法 40
5-1 萃取金盞花中葉黃素及水溶性成分 40
5-1-1 第一階段萃取 40
5-1-2 第二階段萃取 41
5-2 皂化葉黃素酯 41
5-3 葉黃素 (Lutein) 含量分析 42
5-4 總酚類含量 (Total phenolic content, TPC) 分析 44
5-5 金盞花萃出物微脂體製備 45
5-5-1 包埋率 (Encapsulation efficiency, EE%) 及包埋量 (Loading content, LC)分析 45
5-5-2 不同卵磷脂及膽固醇比例對葉黃素包埋率的影響 46
5-5-3 不同葉黃素及卵磷脂比例對葉黃素包埋率的影響 46
5-5-4 總酚類含量對包埋率的影響 46
5-6 金盞花萃出物微脂體物化特性分析 47
5-6-1 粒徑及界達電位分析 47
5-6-2 載體型態觀察 47
5-7 金盞花萃出物微脂體穩定性分析 47
5-8 體外消化釋放試驗 48
5-8-1 模擬胃腸液的配製 48
5-8-2 實驗流程 49
5-9 細胞培養 49
5-9-1 細胞活化 49
5-9-2 細胞繼代培養 49
5-9-3 細胞凍管保存 50
5-10 Caco-2 cell體外吸收試驗 50
5-10-1 Caco-2 cell細胞培養條件 50
5-10-2 Caco-2 cell細胞存活率測試 (MTT assay) 50
5-10-3 Caco-2 cell細胞分化評估 51
5-10-4 金盞花萃出物微脂體吸收率評估 52
5-11 體外視網膜功效性評估 52
5-11-1 ARPE-19 cell細胞存活率測試 52
5-11-2 ARPE-19 cell細胞培養條件 53
5-11-3 視網膜功效性評估 53
5-12 數據分析 54
伍、結果與討論 55
第一節、萃取金盞花中葉黃素及水溶性成分 55
第二節、金盞花萃出物微脂體之建構 61
2-1 建立最適合之金盞花萃出物微脂體配方組成 61
2-1-1 不同卵磷脂及膽固醇比例對葉黃素包埋效率的影響 61
2-1-2 不同葉黃素及卵磷脂比例對葉黃素包埋率的影響 63
2-1-3 總酚類含量對葉黃素包埋率的影響 65
2-2 金盞花萃出物微脂體物化特性分析 69
2-2-1 粒徑及界達電位分析 69
2-2-2 載體型態觀察 71
2-3 金盞花萃出物微脂體穩定性分析 72
2-4 體外消化釋放試驗 74
第三節、細胞平台之功能性評估 76
3-1 Caco-2 cell體外吸收試驗 76
3-1-1 Caco-2 cell 細胞存活率測試 77
3-1-2 Caco-2 cell體外吸收試驗 79
3-2 ARPE-19 cell 體外視網膜功效性評估 82
3-2-1 ARPE-19 cell細胞存活率測試 82
3-2-2 金盞花萃出物微脂體於 H2O2 誘導氧化傷害下對 ARPE-19 cell 之保護作用 84
陸、總結論 87
柒、參考文獻 89
-
dc.language.isozh_TW-
dc.subject黃斑部病變zh_TW
dc.subject人類結腸癌細胞zh_TW
dc.subject人類視網膜色素上皮細胞zh_TW
dc.subject金盞花zh_TW
dc.subject葉黃素zh_TW
dc.subject微脂體zh_TW
dc.subjectMacular degenerationen
dc.subjectLuteinen
dc.subjectLiposomeen
dc.subjectMarigold floweren
dc.subjectCaco-2en
dc.subjectARPE-19en
dc.title製備具促進視網膜健康功效之金盞花萃出物微脂體zh_TW
dc.titlePreparation of Marigold Extract Liposome with Retinal Health Promoting Effecten
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳政雄;蔡國珍;陳錦樹zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword黃斑部病變,葉黃素,金盞花,微脂體,人類結腸癌細胞,人類視網膜色素上皮細胞,zh_TW
dc.subject.keywordMacular degeneration,Lutein,Liposome,Marigold flower,Caco-2,ARPE-19,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU201903763-
dc.rights.note未授權-
dc.date.accepted2019-08-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved