請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76940
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳翰(Jia-Han Li) | |
dc.contributor.author | Li-Hsuan Chung | en |
dc.contributor.author | 鍾溧媗 | zh_TW |
dc.date.accessioned | 2021-07-10T21:41:05Z | - |
dc.date.available | 2021-07-10T21:41:05Z | - |
dc.date.copyright | 2020-08-14 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-06 | |
dc.identifier.citation | [1] M. Esashi, Wafer level packaging of MEMS, Journal of Micromechanics and Microengineering 18 (2008) 073001. [2] I. Radu, I. Szafraniak, R. Scholz, M. Alexe, U. Gösele, GaAs on Si heterostructures obtained by He and/or H implantation and direct wafer bonding, Journal of Applied Physics 94 (2003) 7820-7825. [3] S. Farrens, Wafer and die bonding technologies for 3D integration, Proc. Mater. Res. Soc. Symp., 2008, pp. 1112-E1101-1106. [4] B. Kim, T. Matthias, M. Wimplinger, P. Lindner, Advanced wafer bonding solutions for TSV integration with thin wafers, 2009 IEEE International Conference on 3D System Integration, IEEE, 2009, pp. 1-6. [5] S. Kawashima, M. Imada, K. Ishizaki, S. Noda, High-precision alignment and bonding system for the fabrication of 3-D nanostructures, Journal of microelectromechanical systems 16 (2007) 1140-1144. [6] C. Picciotto, J. Gao, E. Hoarau, W. Wu, Image displacement sensing (NDSE) for achieving overlay alignment, Applied Physics A 80 (2005) 1287-1299. [7] S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, Y. Yang, Fourier-based analysis of moiré fringe patterns of superposed gratings in alignment of nanolithography, Optics express 16 (2008) 7869-7880. [8] B. Sandler, E. Keren, A. Livnat, O. Kafri, Moiré patterns of skewed radial gratings, Applied optics 26 (1987) 772-773. [9] Y. Vladimirsky, H. Koops, Moire method and zone plate pattern inaccuracies, Journal of Vacuum Science Technology B: Microelectronics Processing and Phenomena 6 (1988) 2142-2146. [10] J.S. Song, Y.H. Lee, J.H. Jo, S. Chang, K.C. Yuk, Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements, Optics communications 154 (1998) 100-108. [11] C. Wang, T. Suga, A novel moiré fringe assisted method for nanoprecision alignment in wafer bonding, 2009 59th Electronic Components and Technology Conference, IEEE, 2009, pp. 872-878. [12] J. Zhu, S. Hu, J. Yu, S. Zhou, Y. Tang, M. Zhong, L. Zhao, M. Chen, L. Li, Y. He, Four-quadrant gratings moiré fringe alignment measurement in proximity lithography, Optics express 21 (2013) 3463-3473. [13] C. Wang, T. Suga, Moiré method for nanoprecision wafer-to-wafer alignment: Theory, simulation and application, 2009 International Conference on Electronic Packaging Technology High Density Packaging, IEEE, 2009, pp. 219-224. [14] B. Huang, C. Wang, H. Fang, S. Zhou, T. Suga, Moiré-Based Alignment Using Centrosymmetric Grating Marks for High-Precision Wafer Bonding, Micromachines 10 (2019) 339. [15] S. Zhou, S. Hu, Y. Fu, X. Xu, J. Yang, Moiré interferometry with high alignment resolution in proximity lithographic process, Applied optics 53 (2014) 951-959. [16] S. Zhou, C. Xie, Y. Yang, S. Hu, X. Xu, J. Yang, Moiré-based phase imaging for sensing and adjustment of in-plane twist angle, IEEE Photonics technology letters 25 (2013) 1847-1850. [17] I. Amidror, R.D. Hersch, Fourier-based analysis and synthesis of moirés in the superposition of geometrically transformed periodic structures, JOSA A 15 (1998) 1100-1113. [18] H.F. Talbot, LXXVI. Facts relating to optical science. No. IV, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 (1836) 401-407. [19] L. Rayleigh, XXV. On copying diffraction-gratings, and on some phenomena connected therewith, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11 (1881) 196-205. [20] J. Zhu, S. Hu, P. Zhou, J. Yu, Experimental study of Talbot imaging moiré-based lithography alignment method, Optics and Lasers in Engineering 58 (2014) 54-59. [21] J.W. Goodman, Introduction to Fourier optics, Roberts and Company Publishers2005. [22] Y. Liao, Practical electron microscopy and database, Global Sino, 2006. [23] Sigmakoki, Infrared (NIR) Objective Lenses. [24] Edmund, The Line Pair and Sensor Limitations. [25] N. INSTRUMENTS, Introduction to FPGA Vision Using the NI Vision Development Module, (2019). [26] J. Zhu, S. Hu, J. Yu, Effects of grating marks parameters on lithography alignment precision, Nanophotonics and Micro/Nano Optics, International Society for Optics and Photonics, 2012, pp. 85641K. [27] T. Harada, J. Kishimoto, T. Watanabe, H. Kinoshita, D.G. Lee, Mask observation results using a coherent extreme ultraviolet scattering microscope at NewSUBARU, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 27 (2009) 3203-3207. [28] T. Harada, M. Nakasuji, T. Kimura, Y. Nagata, T. Watanabe, H. Kinoshita, The coherent EUV scatterometry microscope for actinic mask inspection and metrology, Photomask and Next-Generation Lithography Mask Technology XVIII, International Society for Optics and Photonics, 2011, pp. 80810K. [29] T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, H. Kinoshita, Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope, Japanese Journal of Applied Physics 51 (2012) 06FB08. [30] J. Miao, R.L. Sandberg, C. Song, Coherent X-ray diffraction imaging, IEEE Journal of selected topics in quantum electronics 18 (2011) 399-410. [31] R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35 (1972) 237-246. [32] J.R. Fienup, Phase retrieval algorithms: a comparison, Applied optics 21 (1982) 2758-2769. [33] J.R. Fienup, Reconstruction of an object from the modulus of its Fourier transform, Optics letters 3 (1978) 27-29. [34] 楊淳復, 高輝度與高同調性之光罩缺陷繞射檢測系統應用於 13.5nm 極紫外光微影製程之研究, 工程科學與海洋工程學系, 國立臺灣大學 2014, pp. . [35] 吳政廣, 高同調性光罩缺陷檢測系統應用於極紫外光波段, 工程科學與海洋工程學系, 國立臺灣大學, 2016. [36] K.A. Goldberg, A. Barty, P. Seidel, K. Edinger, R. Fettig, P. Kearney, H. Han, O.R. Wood II, EUV and non-EUV inspection of reticle defect repair sites, Emerging Lithographic Technologies XI, International Society for Optics and Photonics, 2007, pp. 65170C. [37] K.A. Goldberg, I. Mochi, M. Benk, A.P. Allezy, M.R. Dickinson, C.W. Cork, D. Zehm, J.B. Macdougall, E. Anderson, F. Salmassi, Commissioning an EUV mask microscope for lithography generations reaching 8 nm, Extreme Ultraviolet (EUV) Lithography IV, International Society for Optics and Photonics, 2013, pp. 867919. [38] K.A. Goldberg, I. Mochi, P.P. Naulleau, H. Han, S. Huh, Benchmarking EUV mask inspection beyond 0.25 NA, Photomask Technology 2008, International Society for Optics and Photonics, 2008, pp. 71222E. [39] T. Harada, M. Nakasuji, T. Kimura, T. Watanabe, H. Kinoshita, Y. Nagata, Imaging of extreme-ultraviolet mask patterns using coherent extreme-ultraviolet scatterometry microscope based on coherent diffraction imaging, Journal of Vacuum Science Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29 (2011) 06F503. [40] S. Herbert, A. Maryasov, L. Juschkin, R. Lebert, K. Bergmann, Defect inspection with an EUV microscope, 26th European Mask and Lithography Conference, International Society for Optics and Photonics, 2010, pp. 75450O. [41] P.P. Naulleau, I. Mochi, K.A. Goldberg, Optical modeling of Fresnel zoneplate microscopes, Applied optics 50 (2011) 3678-3684. [42] G. Chartier, Introduction to optics, Springer Science Business Media2005. [43] D. Stearns, The scattering of x rays from nonideal multilayer structures, Journal of Applied Physics 65 (1989) 491-506. [44] M. Born, E. Wolf, Principles of Optics 6th ed., 808, Pergamon, Tarrytown, NY, 1980. [45] P.I.P. GmbH, M-110.xxx1 / M-111.xxx1 / M-112.xxx1 Microtranslation Stage, 2019. [46] P.I. (PI), C-863 Mercury Controller User Manual, (2013). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76940 | - |
dc.description.abstract | 在0.1μm的精準度之下,使用紅外光直接對準法所進行奈米級的光學檢測,光學系統可以通過條紋的放大特性直接檢測到莫瑞條紋。以直線型光柵分析x方向的偏移量、繞 z 軸的偏轉角,以方形中心對稱光柵分析 x、y 方向的偏移量,使用低通濾波器及快速傅立葉變換的方法來分析圖像的頻域項。在測量兩條紋的峰值的位置後,計算出兩個晶圓之間的偏移誤差量。 建構同調散射顯微鏡在 EUV 光罩檢測系統及雙軸平台的研發,以光點500μm之下量測到訊號光源及缺陷的繞射圖形,提供日後快速與高解析光罩之缺陷檢測。 | zh_TW |
dc.description.abstract | Under the accurate alignment of 0.1μm, The optical system is used to infrared light directly alignment method which can be used for nano-level detection. The optical system can directly detect the Moiré fringes through the amplification characteristics of the fringes. Linear grating is for analyzing deviation of x and z. The square center symmetric grating is for analyzing deviation of x and y. We apply a low-pass filter to take out the high-frequency terms with using approach of fast Fourier transform to analyze the frequency terms of the gray value. After measuring the positions of peaks and valleys, we can calculate the practical displacement of two wafers. The construction of a coherent scattering microscope was developed in the EUV mask inspection system and dual-axis platform. The diffraction pattern of the signal light source and the defect were measured under a light spot of 500μm, providing rapid and high-resolution mask defect detection in the future. The construction of a coherent scattering microscope was developed in the EUV mask inspection system and dual-axis platform. The diffraction pattern of the signal light source and the defect were measured under a light spot of 500μm, providing rapid and high-resolution mask defect detection in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:41:05Z (GMT). No. of bitstreams: 1 U0001-0508202015195700.pdf: 6483603 bytes, checksum: 8241d7c2b72a10f56963ffd01b124370 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝----------------------------------------I 摘要----------------------------------------II ABSTRACT-----------------------------------III 目錄----------------------------------------IV 圖目錄--------------------------------------VI 表目錄--------------------------------------X 第一章 緒論----------------------------------1 1.1研究背景----------------------------------1 1.2文獻回顧----------------------------------5 1.3研究目的----------------------------------11 第二章 基礎理論-------------------------------12 2.1光學繞射波理論-----------------------------12 1.基本原理-----------------------------------12 2.頻譜條紋-----------------------------------15 3.偏移所造成的相位差---------------------------16 4.傾斜所造成的條紋偏轉-------------------------17 5.光柵自成像效應------------------------------18 第三章 架構系統-------------------------------22 3.1光學系統架構-------------------------------22 3.2光學元件表---------------------------------24 1.光源系統-----------------------------------24 2.物鏡及感測器評估 ----------------------------24 3.平台控制系統軟體 ----------------------------26 4.訊號擷取及分析系統---------------------------27 3.3光柵週期評估-------------------------------29 1.繞射效應-----------------------------------30 2.最低要解析到0.1μm---------------------------30 3.繞射極限下的週期數---------------------------31 4.光柵大小的限制-------------------------------31 5.CCD的條紋數擷取-----------------------------31 6.Talbot自成像-------------------------------32 第四章 模擬結果與討論--------------------------34 4.1 x方向的偏移量-----------------------------35 4.2 兩平行光柵繞Z軸偏轉------------------------46 第五章 極紫外光光罩缺陷系統---------------------51 5.1文獻回顧----------------------------------51 5.2同調性散射式顯微鏡--------------------------53 5.3繞射光學理論-------------------------------56 5.4多層膜反射率與折射率理論---------------------57 第六章 控制軟體與其影像結果---------------------62 6.1.位移平台及控制器設備-----------------------62 6.2.傳輸協定---------------------------------63 6.3.控制平台之程式架構-------------------------65 1.程式架構-----------------------------------65 2.程式流程-----------------------------------66 6.4模擬與實驗結果-----------------------------69 1.實驗結果-----------------------------------69 2.缺陷繞射模擬結果-----------------------------72 第七章 結論與未來展望---------------------------73 7.1 結論-------------------------------------73 7.2 未來展望----------------------------------74 參考資料--------------------------------------76 | |
dc.language.iso | zh-TW | |
dc.title | 100nm精密對位之莫瑞條紋分析及13.5nm極紫外光光罩缺陷檢測 | zh_TW |
dc.title | Accurate alignment of Moiré fringe within 100 nm and photomask defect detection by 13.5 nm extreme ultraviolet | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡坤諭(Kuen-Yu Tsai),李坤彥(Kung-Yen Lee),李昭德(Chao-Te Lee),林俊宏(Chun-Hung Lin) | |
dc.subject.keyword | 莫瑞條紋,晶圓對位,傅立葉轉換,訊號處理,極紫外光光罩,同調繞射影像術,同調性散射顯微鏡, | zh_TW |
dc.subject.keyword | Moiré fringe,Wafer alignment,Fourier transform,Signal process,Extreme ultraviolet(EUV) mask,Coherent scattering microscopy, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202002471 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0508202015195700.pdf 目前未授權公開取用 | 6.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。