Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76907
標題: 結合3D列印與高分子分散型液晶製作應用於太陽光通訊之拋物面鏡

3D-Printed PDLC-Based Paraboloid Reflectors for Sunlight Communication
作者: Yu-Hsin Wu
吳祐炘
指導教授: 蔡睿哲(Jui-Che Tsai)
關鍵字: 3D列印,可見光通訊,摺紙結構,高分子分散型液晶(PDLC),太陽光通訊,拋物面鏡,
3D printing,origami,PDLC,sunlight communication,paraboloid reflector,
出版年 : 2020
學位: 碩士
摘要: 本論文嘗試利用3D列印技術製作用於太陽光通訊之可調變元件,利用前人之演算法設計摺紙拋物面鏡,並以TracePro進行光追跡的驗證,確認其可行性後以熔融沉積成型(Fused Deposition Modeling, FDM)機台列印聚乳酸 (Poly Lactic Acid, PLA)基板,再送至廠商鍍製金屬做為導電兼反射層,並用兩種製程結合高分子分散型液晶(Polymer-Dispersed Liquid Crystal, PDLC)所製作之調變層,最後將元件固定於類拋物面支架再加以量測。
以輻射狀摺紙結構製作出的拋物面鏡其直徑為8.8公分、焦距為30公分,在量測方面,以驅動電壓、對比度、聚焦能力衡量元件表現,定義元件之光強度-電壓曲線級距90%處為驅動電壓,對比度則為光強度最高處與最低處之比值,而聚焦能力為通過元件之焦點直徑與原光點直徑之比值;以鋁為反射層之蒸鍍金屬元件具有驅動電壓為180V、對比度107.43%、聚焦能力66.1%,而以銅為反射兼導電層之黏合金屬元件則具有驅動電壓105V、對比度195.51%、聚焦能力70.3%。
本論文完成之元件有幾點創新之處:第一,利用3D列印技術製作元件基板,為研究及自開發場域帶來更多的彈性;第二,使用PDLC做為調變機制,以簡便的方式達成訊號調變,為便攜性加分許多;第三,調變層與反射層分離之製程,使得調變層不需遵循元件之表面型態(deformation)也能達到訊號調變。
In this thesis, we attempted to use 3D printing to fabricate tuneable devices for sunlight communication. This research utlized the posted algorithm to design origami paraboloid reflector, and verified the ray tracing in TracePro. After confirming its feasibility, substrates were made from Poly Lactic Acid (PLA) by fused deposition modeling(FDM) machine. We delegated the manufacturer to deposit the metal as reflective and conductive layer, and used two different processes to combine polymer-dispersed liquid crystal (PDLC). Finally, we fixed the devices to the parabolic support and measured its optical performance.
The paraboloid reflector made of radial origami structure has a diameter of 8.8 cm and a focal length of 30 cm. In terms of measurement, the performance of the devices were assessed by driving voltage, contrast value, and focusing ability. The driving voltage is defined at the 90% of the I-V curve, the contrast value is the ratio of the highest to the lowest light intensity, and the focusing ability is the ratio of the diameter at the focal point to the diameter of the original light spot. The device made of evaporated aluminum has a driving voltage of 180V, the contrast ratio of 107.43%,and focusing ability of 66.1%. The device made of adhesive copper has a driving voltage of 105V, the contrast ratio of 195.51%,and focusing ability of 70.3%.
In this thesis, there are several innovations about the devices. First, it brings the flexibility by fabricating the devices with 3D printing. Second, signal modulation is easily achieved by using PDLC as a modulation mechanism. Third, the method of separating the modulation layer from the reflective layer allows the modulation layer need not to follow the surface deformation of the device.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76907
DOI: 10.6342/NTU202002807
全文授權: 未授權
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202014494700.pdf
  未授權公開取用
4.56 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved