請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-Che Tsai) | |
| dc.contributor.author | Yu-Hsin Wu | en |
| dc.contributor.author | 吳祐炘 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:08Z | - |
| dc.date.available | 2021-07-10T21:40:08Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | [1] Maxwell, James Clerk, “A dynamical theory of the electromagnetic field.” Philosophical Transactions of the Royal Society of London. 1865, 155: 459–512. [2] Koertge, Noretta, “Dictionary of Scientific Biography”, Vol. 6, p. 340, 2007 [3] Marconi, “Wireless Telegraphic Communication: Nobel Lecture, 11 December 1909.”Nobel Lectures. Physics 1901–1921,” Elsevier Publishing Company, 196–222, p. 198, 1967 [4] New York Herald,'Wireless Telegraphy That Sends No Messages Except By Wire', page 4, October 28, 1901 [5] Merriam-Webster, “Encyclopædia Britannica. n.d.” ,6 August, 2015. [6] T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights.” IEEE Transactions on Consumer Electronics 50(1), pp. 100-107, 2004. [7] H. Haas, “Wireless data from every light bulb.” TEDGlobal 2011, Edinburgh, Scotland, July 11-15, 2011. [8] Islim, Mohamed Sufyan, Hass Herald, “Modulation Techniques for Li-Fi. ZTE COMMUNICATIONS.” 14, 29-40, 2016 [9] G. Kopp, J. L. Lean, “A new, lower value of total solar irradiance: evidence and climate significance.” Geophysical Research Letters 38, L01706, 2011. [10] Nathan S. Lewis, “Toward Cost-Effective Solar Energy Use”, Science, Vol 315, Issue 5813, 2007 [11] T. Yabea, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium”, Applied Physics Letters, Vol 90, Issue 26, 2020 [12] W. J. Liu, T. T. Chow, “Experimental and numerical analysis of solar-absorbing metallic facade panel with embedded heat-pipe-array”, Applied Energy, Volume 265, 2020 [13] L. Janik, M. Novak, A. Dobesch, L. Hudcova, “Retroreflective optical communication.” 2017 Conference on Microwave Techniques (COMITE), Brno, Czech Republic, April 20-21, 2017. [14] L. Zhou, J. M. Kahn, K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication.” Journal of Microelectromechanical Systems 12(3), pp. 233-242, 2003. [15] 陳昱帆,三葉草型微機電可調變Corner Cube Retro-reflector (CCR)光學回射器,國立臺灣大學光電工程學研究所,碩士論文,2011。 [16] D. H. Lee, J. Y. Park, “Piezo-electrically actuated micro corner cube retroreflector (CCR) for free-space optical communication applications.” Journal of Electrical Engineering Technology 5(2), pp. 337-341, 2010. [17] D. J. Vasquez, J. W. Judy, “Optically-interrogated zero-power MEMS magneto- meter.” Journal of Microelectromechanical Systems 16(2), pp. 336-343, 2007. [18] 張智傑,應用於光學辨識系統之可獨立調變貓眼回射器陣列,國立臺灣大學光電工程學研究所,碩士論文,2012。 [19] C. C. Chang, K. H. Chao, B. J. Yang, M. C. Su, J. C. Tsai, “Independently-addressed tunable cat’s eye retro-reflector array for an optical identification system.” 2012 International Conference on Optical MEMS and Nanophotonics, pp. 166-167, Banff, AB, Canada, August 6-9, 2012. [20] The Free Beginner's Guide - 3D Printing Industry. https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide [21] H. Kodama, “Automatic method for fabricating a threedimensional plastic model with photohardening polymer.” Rev. of Sci. Instrum. 52(11), pp.1770-1773, 1981. [22] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography.” U.S. Patent 4575330, March 11, 1986. [23] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, P. Fino, “Overview on additive manufacturing technologie.” Proceedings of the IEEE 105(4), pp. 593-612, 2017. [24] W. J. Otter, S. Lucyszyn, “Hybrid 3-D-printing technology for tunable THz applications,” Proceedings of the IEEE 105(4), pp. 756-767, 2017. [25] 3D printing lab:3D打印材料比較- ABS和PLA。http://www.3dprintinglab.com.hk/blog/abs-pla-3d-printing-material-comparison [26] 王彥閎,一體成型平面轉摺三維Corner Cube Retroreflector設計及其製作與特性量測,國立臺灣大學光電工程學研究所,碩士論文,2017。 [27] Y. F. Chen, Y. H. Wang, J. C. Tsai, “Enhancement of surface reflectivity of fused deposition modeling parts by post-processing.” Optics Communications 430, pp. 479-485, 2019. [28] INPLUS:更簡單容易的ABS丙酮拋光。https://inplus.tw/archives/3135 [29] Pinshape Blog: Post Processing PLA and ABS Prints! https://pinshape.com/blog/post-processing-your-pla-and-abs-prints [30] Y. F. Chen, Y. H. Wang, J. C. Tsai, “Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam.” Optical Engineering 57(3), 035104, 2018. [31] 賴楷穎,以3D列印製作用於太陽光通訊的可調變反射元件,國立臺灣大學光電工程學研究所,碩士論文,2019。 [32] B. Agrawal, J. Kubby, “Applications of MEMS in segmented mirror space telescopes.” Proc. SPIE 7931, 793102, 2011. [33] 宏穎真空鍍金股份有限公司:http://www.he0229661556.vcom.tw [34] A. D. Remenyuk, E. V. Astrova, R. F. Vitman, T. S. Perova, V. A. Tolmachev, “Alignment of liquid crystal E7 in composite photonic crystals based on single crystal silicon.” Proc. of SPIE 5825, pp. 400-407, 2005. [35] I. Dierking, Polymer-modified Liquid Crystals, Royal Society of Chemistry, 2019, Ch. 4, pp. 45-60. [36] Norland Products: Norland Optical Adhesive 65. https://www.norlandprod.com/adhesives/NOA%2065.html [37] 古政鴻,利用PDLC之固體步階調控光圈的設計與製作,國立臺灣大學光電工程學研究所,碩士論文,2018。 [38] THORLABS: S120B - Standard Power Sensor, Si, 400 - 1100 nm, 50 mW https://www.thorlabs.com/thorproduct.cfm?partnumber=S120B [39] 鴻宇光學:ZWO ASI 178MC CMOS天文相機 – 彩色版 https://www.galuxe.com.tw/products/zwo-asi-178mc-cmos [40] 個人圖書館:第七講 CCD/CMOS尺寸大小與說明 http://www.360doc.com/content/09/0518/11/55615_3549407.shtml [41] Z3D Filament:3D列印故障排除:34種常見的3D列印問題 https://z3dfilament.blogspot.com/2019/01/3dproblem.html [42] 迎輝科技股份有限公司:ITO透明導電膜 http://www.efun.com.tw/prod_detail_6.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76907 | - |
| dc.description.abstract | 本論文嘗試利用3D列印技術製作用於太陽光通訊之可調變元件,利用前人之演算法設計摺紙拋物面鏡,並以TracePro進行光追跡的驗證,確認其可行性後以熔融沉積成型(Fused Deposition Modeling, FDM)機台列印聚乳酸 (Poly Lactic Acid, PLA)基板,再送至廠商鍍製金屬做為導電兼反射層,並用兩種製程結合高分子分散型液晶(Polymer-Dispersed Liquid Crystal, PDLC)所製作之調變層,最後將元件固定於類拋物面支架再加以量測。 以輻射狀摺紙結構製作出的拋物面鏡其直徑為8.8公分、焦距為30公分,在量測方面,以驅動電壓、對比度、聚焦能力衡量元件表現,定義元件之光強度-電壓曲線級距90%處為驅動電壓,對比度則為光強度最高處與最低處之比值,而聚焦能力為通過元件之焦點直徑與原光點直徑之比值;以鋁為反射層之蒸鍍金屬元件具有驅動電壓為180V、對比度107.43%、聚焦能力66.1%,而以銅為反射兼導電層之黏合金屬元件則具有驅動電壓105V、對比度195.51%、聚焦能力70.3%。 本論文完成之元件有幾點創新之處:第一,利用3D列印技術製作元件基板,為研究及自開發場域帶來更多的彈性;第二,使用PDLC做為調變機制,以簡便的方式達成訊號調變,為便攜性加分許多;第三,調變層與反射層分離之製程,使得調變層不需遵循元件之表面型態(deformation)也能達到訊號調變。 | zh_TW |
| dc.description.abstract | In this thesis, we attempted to use 3D printing to fabricate tuneable devices for sunlight communication. This research utlized the posted algorithm to design origami paraboloid reflector, and verified the ray tracing in TracePro. After confirming its feasibility, substrates were made from Poly Lactic Acid (PLA) by fused deposition modeling(FDM) machine. We delegated the manufacturer to deposit the metal as reflective and conductive layer, and used two different processes to combine polymer-dispersed liquid crystal (PDLC). Finally, we fixed the devices to the parabolic support and measured its optical performance. The paraboloid reflector made of radial origami structure has a diameter of 8.8 cm and a focal length of 30 cm. In terms of measurement, the performance of the devices were assessed by driving voltage, contrast value, and focusing ability. The driving voltage is defined at the 90% of the I-V curve, the contrast value is the ratio of the highest to the lowest light intensity, and the focusing ability is the ratio of the diameter at the focal point to the diameter of the original light spot. The device made of evaporated aluminum has a driving voltage of 180V, the contrast ratio of 107.43%,and focusing ability of 66.1%. The device made of adhesive copper has a driving voltage of 105V, the contrast ratio of 195.51%,and focusing ability of 70.3%. In this thesis, there are several innovations about the devices. First, it brings the flexibility by fabricating the devices with 3D printing. Second, signal modulation is easily achieved by using PDLC as a modulation mechanism. Third, the method of separating the modulation layer from the reflective layer allows the modulation layer need not to follow the surface deformation of the device. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:08Z (GMT). No. of bitstreams: 1 U0001-1008202014494700.pdf: 4671284 bytes, checksum: d9429ac62f6a18ffffe0515d664446c6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix Chapter 1. 緒論 1 1.1 前言 1 1.2 可見光通訊 1 1.3 太陽光源 2 1.4 反射元件與光訊號調變 3 1.5 3D列印種類 5 1.5.1 熔融沉積成型(fused deposition modeling, FDM)[23] 5 1.5.2 聚合物噴印(polymer-jetting, Polyjet)[23] 6 1.5.3 立體光固化成型(stereolithography, SL)[20] 6 1.5.4 3D列印之光學應用 7 Chapter 2. 設計理念與製程 8 2.1 3D列印材料選擇 8 2.1.1 物理性質[25] 8 2.1.2 列印品質 9 2.1.3 導電層製作 9 2.2 材料平整性 10 2.2.1 物理性後處理:熱熔融表面處理法[27] 10 2.2.2 化學性處理:蒸氣拋光處理法[28,29] 11 2.2.3本節總結 12 2.3 摺紙結構 12 2.4 摺紙拋物面演算法[31] 15 2.4.1 徑向分析 15 2.4.2 周向分析 16 2.4.3 本節總結 17 2.5 導電層鍍製 18 2.6 PDLC調變層 18 2.6.1 調變機制 19 2.6.2 材料挑選 19 2.6.3 PDLC調製 20 2.6.4 過去PDLC調變層於光圈之製程 21 Chapter 3. 拋物面的設計、製作 23 3.1 幾何與尺寸設計 23 3.1.1 拋物面鏡模擬 23 3.1.2 角度修正及矩形孔徑分析 24 3.2 列印參數調整 26 3.3 製作策略 27 3.4 PDLC調變層製作 28 3.4.1 黏合金屬之調變層製作 29 3.4.2 蒸鍍金屬之調變層製作 32 3.4.3 本節總結 34 3.5 拋物面支架 35 3.6 本章總結 36 Chapter 4. 元件量測 38 4.1 光源選擇:雷射(He-Ne Laser)與白光(FO-150H 鹵素燈) 38 4.2 量測架構 38 4.3 量測結果分析 41 4.3.1 驅動電壓 41 4.3.2 對比度 41 4.3.3 聚焦能力 42 4.3.4 本節總結 43 Chapter 5. 結論與未來展望 45 5.1 結論 45 5.2 未來展望 45 5.2.1 表面處理 45 5.2.2 多電極調變 46 5.2.3 其他調變方式 46 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高分子分散型液晶(PDLC) | zh_TW |
| dc.subject | 拋物面鏡 | zh_TW |
| dc.subject | 太陽光通訊 | zh_TW |
| dc.subject | 摺紙結構 | zh_TW |
| dc.subject | 可見光通訊 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | origami | en |
| dc.subject | sunlight communication | en |
| dc.subject | 3D printing | en |
| dc.subject | PDLC | en |
| dc.subject | paraboloid reflector | en |
| dc.title | 結合3D列印與高分子分散型液晶製作應用於太陽光通訊之拋物面鏡 | zh_TW |
| dc.title | 3D-Printed PDLC-Based Paraboloid Reflectors for Sunlight Communication | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),鍾仁傑(Ren-Jei Chung) | |
| dc.subject.keyword | 3D列印,可見光通訊,摺紙結構,高分子分散型液晶(PDLC),太陽光通訊,拋物面鏡, | zh_TW |
| dc.subject.keyword | 3D printing,origami,PDLC,sunlight communication,paraboloid reflector, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202002807 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202014494700.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
