請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 牟中原(Chung-Yuan Mou) | |
| dc.contributor.author | Yi-Ting Chen | en |
| dc.contributor.author | 陳怡婷 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:36:31Z | - |
| dc.date.available | 2021-07-10T21:36:31Z | - |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-13 | |
| dc.identifier.citation | 1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, and J. L. Schlenkert, J. Am. Chem. Soc., 1992, 114(27), 10834.
2. C.T. Kresge, M.E. Leonowiz, W. J. Roth, J.C. Vartuli, and J. S. Beck, Nature, 1992, 359(6397), 710. 3. J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, and S. E. Schrammt, Chem. Mater., 1994, 6, 1816. 4. D. Zhao, J. Feng, Q. Huo, N. Melosh, Gl. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 1998, 279, 23. 5. D.Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024. 6. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. Ed., 2006, 45(20), 3216. 7. A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, Janicke M., and B. F. Chmelka, Science, 1993, 261, 1299. 8. A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, and B. F. Chmelka, Science, 1995, 267, 1138. 9. B. C. Chen, H. P. Lin, M. C. Chao, C. Y. Mou, and C. Y. Tang, Adv. Mater., 2004, 16(18), 1657. 10. Y. Q. Yeh, H. P. Lin, C. Y. Tang, and C. Y. Mou, J. Colloid Interface Sci., 2011, 362(2), 354. 11. W. Stober, A. Fink, and E. Bohn, J. Colloid. Interf. Sci., 1968, 26, 62. 12. K. C. Kao and C. Y. Mou, Microporous Mesoporous Mater., 2013, 169, 7. 13. E. R. Kenawy, S. D. Worley, and R. Broughton, Biomacromolecules, 2007, 8(5), 1359. 14. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, Nat. Mater., 2008, 7(3), 236. 15. M. J. Saif, J. Anwar, and M. A. Munawar, Langmuir, 2009, 25, 377. 16. J. Song, H. Kong, and J. Jang, Chem. Commun. , 2009(36), 5418. 17. F. Siedenbiedel and J. C. Tiller, Polymers, 2012, 4(4), 46. 18. L. Timofeeva and N. Kleshcheva, Appl. Microbiol. Biotechnol., 2011, 89(3), 475. 19. H. Kong, J. Song, and J. Jang, Environ. Sci. Technol., 2010, 44, 5672. 20. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, Nanomedicine, 2007, 3(1), 95. 21. X. Chen and H. J. Schluesener, Toxicol. Lett., 2008, 176(1), 1. 22. M. A. Fischbach and C. T. Walsh, Science, 2009, 325, 1089. 23. D. I. Andersson and D. Hughes, Nat. Rev. Microbiol., 2010, 8(4), 260. 24. A. J. Huh and Y. J. Kwon, J. Controlled Release, 2011, 156(2), 128. 25. S. Q. Liu, C. Yang, Y. Huang, X. Ding, Y. Li, W. M. Fan, J. L. Hedrick, and Y. Y. Yang, Adv. Mater., 2012, 24(48), 6484. 26. M. M. Zetterberg, K. Reijmar, M. Pranting, A. Engstrom, D. I. Andersson, and K. Edwards, J. Controlled Release, 2011, 156(3), 323-8. 27. D. M. Eby, N. M. Schaeublin, K. E. Farrington, S. M. Hussain, and G. R. Johnson, ACS Nano, 2009, 3(4), 984. 28. R. Bhattacharya and P. Mukherjee, Adv. Drug. Deliv. Rev., 2008, 60(11), 1289. 29. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U. L. Štangar, M. Bergant, and D. Mahne, Nanotechnology, 2007, 18(37), 375709. 30. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, Acta. Biomater., 2008, 4(3), 707. 31. T. Jin and Y. He, J. Nanopart. Res., 2011, 13(12), 6877. 32. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J. Nanopart. Res., 2006, 9(3), 479. 33. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez, Nano Lett., 2012, 12(8), 4271. 34. P. Dallas, V. K. Sharma, and R. Zboril, Adv. Colloid. Interface. Sci., 2011, 166(1-2), 119. 35. M. L. W. Knetsch and L. H. Koole, Polymers, 2011, 3(4), 340. 36. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship, and H. J. Reid, J. Antimicrob. Chemother., 2004, 54(6), 1019. 37. I. M. Hamouda, J. Biomed. Res., 2012, 26(3), 143. 38. S. George, S. Lin, Z. Ji, C. R. Thomas, L. Li, M. Mecklenburg, H. Meng, X. Wang, H. Zhang, T. Xia, J. N. Hohman, S. Lin, J. I. Zink, P. S. Weiss, and A. E. Nel, ACS Nano, 2012, 6, 3745. 39. Y. Tian, J. Qi, W. Zhang, Q. Cai, and X. Jiang, ACS Appl. Mater. Interfaces., 2014, 6(15), 12038. 40. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. H. Tam, J. F. Chiu, and C. M. Che, J. Biol. Inorg. Chem., 2007, 12(4), 527. 41. V. Sambhy, M. M. Macbride, B. R. Peterson, and A. Sen, J. Am. Chem. Soc., 2006, 128(30), 9798. 42. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology, 2005, 16(10), 2346. 43. M. Raffi, F. Hussain, T. M. Bhatti, J.. I. .Akhter, A. Hameed, and M. M. Hasan, J. Mater. Sci. Technol., 2008, 24(2), 192. 44. I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 2004, 275(1), 177. 45. J. B. Ricco and O. Assadian, Semin. Vasc. Surg., 2011, 24(4), 234. 46. G. A. Martínez-Castañón, N. Niño-Martínez, F. Martínez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz, J. Nanopart. Res., 2008, 10(8), 1343. 47. S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 2007, 73(6), 1712. 48. H. Wang, X. Qiao, J. Chen, X. Wang, and S. Ding, Mater. Chem. Phys., 2005, 94(2), 449. 49. Y. Cai, F. Tan, X. Qiao, W. Wang, J. Chen, and X. Qiu, RSC Adv., 2016, 6(22), 18407. 50. Y. Sun and Y. Xia, Science, 2002, 298, 2176. 51. C. Tang, W. Sun, and W. Yan, RSC Adv., 2014, 4(2), 523. 52. D. Chudobova, L. Nejdl, J. Gumulec, O. Krystofova, M. A. Rodrigo, J. Kynicky, B. Ruttkay-Nedecky, P. Kopel, P. Babula, V. Adam, and R. Kizek, Int. J. Mol. Sci., 2013, 14(7), 13592. 53. B. Masschalck and C. W. Michiels, Crit. Rev. Microbiol., 2003, 29(3), 191. 54. G. D. Raphael, E. V. Jeney, J. N. Baraniuk, I. Kim, S. D. Meredith, and M. A. Kaliner, J. Clin. Invest., 1989, 84(5), 1528. 55. D. M. Chipman and N. Sharon, Science, 1969, 165, 454. 56. M. Kiristi, V. V. Singh, B. E. Avila, M. Uygun, F. Soto, D. A. Uygun, and J. Wang, ACS Nano, 2015, 9(9), 9252. 57. L. Gapin, Y. B. Alba, A. Casrouge, J. P. Cabaniols, P. Kourilsky, and J. Kanellopoulos, J. Immunol., 1998, 160, 1555. 58. L. L. Li and H. Wang, Adv. Healthc. Mater., 2013, 2(10), 1351. 59. A. Tirelli and I. D. Noni, Food Chem., 2007, 105(4), 1564. 60. K. C. Kao, T. S. Lin, and C. Y. Mou, J. Phys. Chem. C., 2014, 118(13), 6734. 61. P. Hiwale, S. Lampis, G. Conti, C. Caddeo, S. Murgia, A. M. Fadda, and M. Monduzzi, Biomacromolecules, 2011, 12(9), 3186. 62. B. Zhou, Y. Li, H. Deng, Y. Hu, and B. Li, Colloids Surf., B, 2014, 116, 432. 63. Y. Wang, Y. A. Nor, H. Song, Y. Yang, C. Xu, M. Yu, and C. Yu, J. Mater. Chem. B, 2016, 4, 2646. 64. J. Liu, A. Stace-Naughton, X. Jiang, and C. J. Brinker, J. Am. Chem. Soc., 2009, 131(4), 1354. 65. Y. Wang, A. S. Angelatos, and F. Caruso, Chem. Mater., 2008, 20, 848. 66. Y. Zhao, X. Sun, G. Zhang, B. G. Trewyn, I. I. Slowing, and V. S.-Y. Lin, ACS Nano, 2011, 5, 1366. 67. T. Yu, A. Malugin, and H. Ghandehari, ACS Nano, 2011, 5, 5717. 68. N. Y. Mahmoodi, S. Khorramfar, and F. Najafi, Desalination, 2011, 279(1-3), 61. 69. M. Moritz and M. Geszke-Moritz, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 41, 42. 70. G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L. Pfefferle, and G. Haller, J. Catal., 2008, 253(1), 74. 71. H. Zhang, Y. Wang, L. Zhang, G. Gerritsen, H. Abbenhuis, R. Vansanten, and C. Li, J. Catal., 2008, 256(2), 226. 72. H. Ikemoto, Q. Chi, and J. Ulstrup, J. Phys. Chem. C, 2010, 114, 16174 73. M. J. Sailor and J. H. Park, Adv. Mater., 2012, 24(28), 3779. 74. H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, X. Ma, K. T. Nguyen, V. Korzh, and Y. Zhao, Angew. Chem. Int. Ed., 2012, 51, 8373. 75. I. Wiegand, K. Hilpert, and R. E. W. Hancock, Nat. Protoc., 2008, 3(2), 163. 76. B. Yan and Y. Li, Dalton Trans., 2010, 39, 1480. 77. S. Agnihotri, S. Mukherjiabc, and S. Mukherji, RSC Adv., 2014, 4, 3974. 78. Z. Lu, K. Rong, J. Li, H. Yang, and R. Chen, J. Mater. Sci.: Mater. Med., 2013, 24, 1465. 79. A. B. Fuertes, P. Valle-Vigon, and M. Sevilla, J. Colloid Interface Sci., 2010, 349(1), 173. 80. D. Steri, M. Monduzzi, and A. Sali, Microporous Mesoporous Mater., 2013, 170, 164. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76765 | - |
| dc.description.abstract | 細菌感染一直是全球關注的議題,不管是在貧瘠地區面臨水質汙染而細菌滋生的問題,手術醫學或是一般使用醫護材料時須注意的接觸防護,甚至是每個人生活中無時無刻都相關的衛生處理,這些都是對於抗菌材料應用的需求。隨著科學發展的進步和現代生活水準的提升,抗菌能力高而安全性佳的抗菌材料更是當代開發的趨勢。
在本論文中,利用中孔洞二氧化矽材料作為支持以附載兩種不同殺菌機制的抗菌物質,一是具有廣泛且殺菌性強的奈米銀粒子(AgNPs),另一則是擁有高生物相容性和溶菌能力的溶菌酶(Lysozyme),並利用不同的方式分別裝載這兩種抗菌物質,得到優化後的抗菌性複合材料而接續做抑制細菌的測試實驗。 在本研究的第一部分,我們以具有垂直中孔道的二氧化矽薄膜(SBA-15 thin film)來裝載奈米銀,利用後修飾的方法將矽材表面修飾上具有氨基的官能基,使矽材表面富有吸附奈米銀的能力,再藉由調整硝酸銀和硼氫化鈉之間的比例得到還原後尺寸小(約8.5 nm)的奈米銀。此銀-矽複合材料(SBA-15_NH¬2_Ag)對於臨床細菌的抑菌測試有相當低的抑菌濃度(MIC),且其低銀離子的釋放濃度(約0.47 ppm)有利於長效的使用,除了將材料分散在溶液中做殺菌實驗,我們更進一步將此抗菌薄膜以旋轉塗布和浸漬塗布的方式將樣品製備於玻璃片和紗布上,並做ISO國際標準組織的抑菌測試得到初步的抗菌能力值。 而在第二部分的研究,,我們使用三種顆粒大小和孔洞尺寸不同的中孔洞二氧化矽作為基材,簡單地藉由矽材和溶菌酶之間的靜電吸引力來附載酵素,並調整緩衝液的酸鹼值和離子強度以得到最佳的酵素吸附環境。為了獲得高的酵素附載量且不會有更進一步的漏出情形(leaching),因而對三種不同的二氧化矽材料進行酵素吸附後的定量分析和吸附行為的探討,並更進一步地做吸附及清洗後酵素測漏的實驗,而選擇最佳的樣品(SBA-15_Hy_Lyz)作為後續實驗的測試。此生物性複合材料以旋轉塗佈的方式製備於玻璃片做抑菌能力的測試,並利用掃描式電子顯微鏡和細菌染色的方式觀測溶菌的現象。 | zh_TW |
| dc.description.abstract | Here, we introduce methods for antimicrobial coatings using ordered mesoporous silica materials as supports to incorporate either biocidal silver nanoparticles (AgNPs) or biocompatible lysozyme with lytic ability.
For silver-immobilized mesoporous silicas, SBA-15 thin films exhibited high surface areas (ca. 500 m2/g), large pore volumes (ca. 0.9 cm3/g), and short perpendicular nanochannels (ca. 100 nm) were utilized as support. The thin films were post-modified with (3-aminopropyl) trimethoxysilane (APTMS), which would assist the formation and dispersion of 8.5 nm-AgNPs. The materials were suspended in solutions or coated on glass slides or gauze swabs for antimicrobial inhibition tests, showing fairly low minimum inhibition concentrations (MICs). On the other hand, lysozymes were immobilized in SBA-15 thin films and mesoporous silica nanoparticles (MSNs) through electrostatic force as antibacterial biocomposites. The enzyme capacity of the materials with various dimensions and pore sizes were evaluated, while a lysozyme leaching test was carried out as well. Due to a biocidal mechanism different from that of AgNPs, the biocomposites require direct contact with microorganisms for the lysozyme to attack peptidoglycans in the cell walls of bacteria. Accordingly, the lysozyme-incorporated mesoporous silicas were spin-coated on glass slides to assess the lytic activities, presenting well antimicrobial inhibition capability. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:36:31Z (GMT). No. of bitstreams: 1 ntu-105-R03223184-1.pdf: 3067548 bytes, checksum: c51cabd109d82f53a45f4d8d5d69b1be (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II Abstract IV Table of Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Mesoporous Silica Materials 1 1.1.1 Background 1 1.1.2 Mechanism 1 1.1.2.1 Formation Mechanism of SBA-15(⊥) Thin Film 2 1.1.2.2 Formation Mechanism of Pore-expanded MSNs 3 1.2 Antibacterial Agents 5 1.2.1 Silver Nanoparticles 5 1.2.2 Lysozyme 7 1.3 Motivation 8 Chapter 2 Incorporation of Silver Nanoparticles in SBA-15(⊥) Thin Film for Antimicrobial Applications 10 2.1 Experimental Sections 10 2.1.1 Materials 10 2.1.2 Synthetic Procedures 11 2.1.2.1 Synthesis of SBA-15(⊥) Thin Film 11 2.1.2.2 Functionalization of SBA-15(⊥) Thin Film 11 2.1.2.3 Preparation of Silver Nanoparticles 13 2.1.2.4 Preparation of Composites Coated on Substrates 14 2.1.3 Charaterizations 15 2.1.3.1 Instruments 15 2.1.3.2 Tests 17 2.2 Results and Discussion 21 2.2.1 Characterization of SBA-15(⊥) Thin Film 21 2.2.2 Size Regulation of Silver Nanoparticles 23 (1) Different Amount of Silver Precursor 23 (2) Different Amount of Reductant 25 2.2.3 Distribution of Silver Nanoparticles on Supports 26 2.2.4 Characterization of Silver-Silica Composites 30 (1) Identification of Functioalization of Silica―FTIR 30 (2) Identification of Silver Nanoparticles―XRD and UV-vis 32 2.2.5 MIC and MBC Tests 33 2.2.6 Antimicrobial Applications 36 (1) ISO 22196:Measurement of Antibacterial Activity for Hard Substrates 37 (2) ISO 20743:Measurement of Antibacterial Activity for Soft Substrates 38 2.2.7 Silver-releasing Tests 39 2.2.8 Antibacterial Activities against Clinical Microorganisms 40 Chapter 3 Immobilization of Lysozyme in Mesoporous Silica Materials for Antibacterial Coating 43 3.1 Experimental Sections 43 3.1.1 Materials 43 3.1.2 Synthetic Procedures 44 3.1.2.1 Synthesis of Silica Materials 44 3.1.2.2 Optimizations of Lysozyme Adsorption 45 3.1.2.3 Lysozyme Capacities of Mesoporous Silica Materials 46 3.1.2.4 Preparation of Biocomposites Coated on Glass Substrates 47 3.1.3 Charaterizations 47 3.1.3.1 Instruments 47 3.1.3.2 Antibacterial Tests 49 3.2 Results and Discussion 51 3.2.1 Characterization of Mesoporous Silica Materials 51 (1) Morphology 51 (2) Pore Structures and Surface Textures 52 3.2.2 Optimizations of Lysozyme Adsorption 53 (1) Different pH conditions 54 (2) Different Ionic Strength 55 3.2.3 Lysozyme Capacities of Mesoporous Silica Materials 56 (1) Adsorption Curves 56 (2) Lysozyme Capacities of Silica 58 (3) Desorption Curves 61 3.2.4 Antibacterial Coating of Biocomposites 62 Chapter 4 Conclusions 66 References 69 | |
| dc.language.iso | en | |
| dc.subject | 溶菌? | zh_TW |
| dc.subject | 抗菌材料 | zh_TW |
| dc.subject | 中孔洞二氧化矽 | zh_TW |
| dc.subject | 後修飾法 | zh_TW |
| dc.subject | 表面塗佈 | zh_TW |
| dc.subject | 奈米銀 | zh_TW |
| dc.subject | antimicrobial | en |
| dc.subject | coating | en |
| dc.subject | post-modification | en |
| dc.subject | lysozyme | en |
| dc.subject | silver nanoparticles | en |
| dc.subject | mesoporous silica | en |
| dc.title | 抗菌劑裝載於中孔洞二氧化矽材料的製備作為抑制細菌的應用 | zh_TW |
| dc.title | Preparation of Antimicrobial Agents-immobilized Mesoporous Silica Materials for Inhibition of Bacteria | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王宗興(Tsung-Shing Wang),黃姿雯(Tzu-Wen Huang) | |
| dc.subject.keyword | 中孔洞二氧化矽,抗菌材料,奈米銀,溶菌?,後修飾法,表面塗佈, | zh_TW |
| dc.subject.keyword | mesoporous silica,antimicrobial,silver nanoparticles,lysozyme,post-modification,coating, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201600666 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-R03223184-1.pdf 未授權公開取用 | 3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
