Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7556
Title: 利用遷移式學習與植物器官獨立模型進行植物影像辨識
Plant Image Recognition by Transfer Learning and Plant Organ Separated Model
Authors: Chih-Heng Hsiao
蕭至恆
Advisor: 張智星
Keyword: 植物影像辨識,卷積神經網路,遷移式學習,特徵向量抽取,起源神經網路,分散式模型,
Plant image recognition,Convolution neural network,Transfer learning,Feature extraction,Inceptin network,Separated model,
Publication Year : 2018
Degree: 碩士
Abstract: 本論文為植物影像的辨識與分類,利用深度神經網路 (deep neural network, DNN) 中的卷積神經網路去訓練出能對植物影像進行分類的模 型,論文裡將會使用起源網路 (InceptionV3)、起源殘差網路 (Inception- Resnet) 與極端起源網路 (Xception) 作為基礎模型進行訓練,訓練過程 將會使用資料增強 (data augmentation) 與遷移式學習 (transfer learning) 進行模型訓練,找出有最佳辨識率的模型進行下一階段器官獨立模型 的訓練。
第二階段為這篇論文提出的器官獨立模型的植物辨識方法,首先把 資料集依照器官標籤分成多個子資料集,利用上一階段訓練辨識正確 率最高的卷積神經網路模型,作為各自器官的分類模型,依照對應的 子資料集訓練出專精於各自植物器官的子分類模型,並再訓練一個器 官分類器,與多個子分類模型組合成器官獨立模型,嘗試使整體的辨 識率能夠再次上升,並對分類錯誤的資料進行分析。
This paper focus on plant image recognition and classification. Briefly, we use extended deep neural network - convolution neural network(CNN) to train models for classifying plant images. For CNN model selection, Incep- tionV3, Inception-Resnet and Xception are very powerful condidates. These models can achieve state-of-the-art accuracy. First stage, we train these models via data augmentation and transfer learning. After experiment, model with the highest accuracy will be selected to the next stage.
In the next stage, trying to reduce error rate, we propose a new method called ”Organ Attribute Separated Model”. First of all, we divide the original dataset to organ separated datasets by organ labels. After plant subdataset generated, we will train multiple CNN models for every subdatasets and an organ classifier. Combining all these models to complete organ separated model. Last but not least, we will do error analysis by extracting features from CNN models.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7556
DOI: 10.6342/NTU201801651
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2023-07-19
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf14.19 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved