Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74750
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林致廷
dc.contributor.authorWei-En Hsuen
dc.contributor.author徐偉恩zh_TW
dc.date.accessioned2021-06-17T09:06:56Z-
dc.date.available2024-12-26
dc.date.copyright2019-12-26
dc.date.issued2019
dc.date.submitted2019-12-19
dc.identifier.citationReferences
[1] Srivastava, L., & Kelly, T. (2005). The internet of things. International Telecommunication Union, Tech. Rep, 7.
[2] Palmisano, S. J. (2008). A smarter planet: the next leadership agenda. IBM. November, 6, 1-8.
[3]https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
[4] http://www.nationalstrategies.com/smart-cities
[5] Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55-75). Springer, Cham.
[6] Bogue, R. (2013). Recent developments in MEMS sensors: A review of applications, markets and technologies. Sensor Review, 33(4), 300-304.
[7] Tanaka, M. (2007). An industrial and applied review of new MEMS devices features. Microelectronic Engineering, 84(5-8), 1341-1344.
[8] Ciuti, G., Ricotti, L., Menciassi, A., & Dario, P. (2015). MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy. Sensors, 15(3), 6441-6468.
[9] Sabato, A., Niezrecki, C., & Fortino, G. (2017). Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: a review. IEEE Sensors Journal, 17(2), 226-235.
[10] Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology, 32(7), 363-371.
[11] Ishida, H., Wada, Y., & Matsukura, H. (2012). Chemical sensing in robotic applications: A review. IEEE Sensors Journal, 12(11), 3163-3173.
[12] Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO 2 gas–sensor applications: a review. Nano-Micro Letters, 7(2), 97-120.
[13] Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., ... & Zhang, L. (2016). A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Letters, 8(2), 95-119.
[14] Guo, X. (2012). Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics, 5(7), 483-501.
[15] Llandro, J., Palfreyman, J. J., Ionescu, A., & Barnes, C. H. W. (2010). Magnetic biosensor technologies for medical applications: a review. Medical & Biological Engineering & Computing, 48(10), 977-998.
[16] Zhang, G. J., & Ning, Y. (2012). Silicon nanowire biosensor and its applications in disease diagnostics: a review. Analytica Chimica Acta, 749, 1-15.
[17] Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(10), 1027-1036.
[18] Syu, Y. C., Hsu, W. E., & Lin, C. T. (2018). Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS Journal of Solid State Science and Technology, 7(7), Q3196-Q3207.
[19] Mukhopadhyay, S. C. (2015). Wearable sensors for human activity monitoring: A review. IEEE Sensors Journal, 15(3), 1321-1330.
[20] Ding, D., Cooper, R. A., Pasquina, P. F., & Fici-Pasquina, L. (2011). Sensor technology for smart homes. Maturitas, 69(2), 131-136.
[21] Maraiya, K., Kant, K., & Gupta, N. (2011). Wireless sensor network: a review on data aggregation. International Journal of Scientific & Engineering Research, 2(4), 1-6.
[22] Jovanov, E., Lords, A. D., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology Magazine, 22(3), 49-55.
[23] Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11(6), 5561-5595.
[24] Gardner, J. W., Guha, P. K., Udrea, F., & Covington, J. A. (2010). CMOS interfacing for integrated gas sensors: A review. IEEE Sensors Journal, 10(12), 1833-1848.
[25] Shaeffer, D. K. (2013). MEMS inertial sensors: A tutorial overview. IEEE Communications Magazine, 51(4), 100-109.
[26] Zahorian, J., Hochman, M., Xu, T., Satir, S., Gurun, G., Karaman, M., & Degertekin, F. L. (2011). Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(12), 2659-2667.
[27] Gurun, G., Tekes, C., Zahorian, J., Xu, T., Satir, S., Karaman, M., ... & Degertekin, F. L. (2014). Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(2), 239-250.
[28] Li, H., Liu, X., Li, L., Mu, X., Genov, R., & Mason, A. (2017). CMOS electrochemical instrumentation for biosensor microsystems: A review. Sensors, 17(1), 74.
[29] Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., ... & Lien, D. H. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509.
[30] Martín, A., Kim, J., Kurniawan, J. F., Sempionatto, J. R., Moreto, J. R., Tang, G., ... & Wang, J. (2017). Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS sensors, 2(12), 1860-1868.
[31] Choi, J., Kang, D., Han, S., Kim, S. B., & Rogers, J. A. (2017). Thin, Soft, Skin‐Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono‐Sampling of Sweat. Advanced healthcare materials, 6(5), 1601355.
[32] Martinelli, E., Magna, G., Polese, D., Vergara, A., Schild, D., & Di Natale, C. (2015). Stable odor recognition by a neuro-adaptive electronic nose. Scientific reports, 5, 10960.
[33] Chang, Y., Tang, N., Qu, H., Liu, J., Zhang, D., Zhang, H., ... & Duan, X. (2016). Detection of volatile organic compounds by self-assembled monolayer coated sensor array with concentration-independent fingerprints. Scientific reports, 6, 23970.
[34] Wilson, A. D. (2012). Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technology, 1, 453-463.
[35] Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207.
[36] Montuschi, P., Santonico, M., Mondino, C., Pennazza, G., Mantini, G., Martinelli, E., ... & Barnes, P. J. (2010). Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest, 137(4), 790-796.
[37] Aleixandre, M., Lozano, J., Gutiérrez, J., Sayago, I., Fernández, M. J., & Horrillo, M. C. (2008). Portable e-nose to classify different kinds of wine. Sensors and Actuators B: Chemical, 131(1), 71-76.
[38] Gardner, J. W., Shin, H. W., Hines, E. L., & Dow, C. S. (2000). An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B: Chemical, 69(3), 336-341.
[39] Haddi, Z., Mabrouk, S., Bougrini, M., Tahri, K., Sghaier, K., Barhoumi, H., ... & Bouchikhi, B. (2014). E-Nose and e-Tongue combination for improved recognition of fruit juice samples. Food Chemistry, 150, 246-253.
[40] Apetrei, C., Apetrei, I. M., Nevares, I., Del Alamo, M., Parra, V., Rodríguez-Méndez, M. L., & De Saja, J. A. (2007). Using an e-tongue based on voltammetric electrodes to discriminate among red wines aged in oak barrels or aged using alternative methods: correlation between electrochemical signals and analytical parameters. Electrochimica Acta, 52(7), 2588-2594.
[41] Apetrei, C., Apetrei, I. M., Villanueva, S., De Saja, J. A., Gutiérrez-Rosales, F., & Rodriguez-Mendez, M. L. (2010). Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. Analytica Chimica Acta, 663(1), 91-97.
[42] Güntner, A. T., Koren, V., Chikkadi, K., Righettoni, M., & Pratsinis, S. E. (2016). E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer?. ACS sensors, 1(5), 528-535.
[43] Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, (1), 70-71.
[44] Gonçalves, D., Prazeres, D. M. F., Chu, V., & Conde, J. P. (2008). Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosensors and Bioelectronics, 24(4), 545-551.
[45] Uslu, F., Ingebrandt, S., Mayer, D., Böcker-Meffert, S., Odenthal, M., & Offenhäusser, A. (2004). Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 19(12), 1723-1731.
[46] Duarte-Guevara, C., Swaminathan, V. V., Reddy, B., Huang, J. C., Liu, Y. S., & Bashir, R. (2016). On-chip electrical detection of parallel loop-mediated isothermal amplification with DG-BioFETs for the detection of foodborne bacterial pathogens. RSC Advances, 6(106), 103872-103887.
[47] Go, J., Nair, P. R., Reddy, B., Dorvel, B., Bashir, R., & Alam, M. A. (2010, December). Beating the Nernst limit of 59mV/pH with double-gated nano-scale field-effect transistors and its applications to ultra-sensitive DNA biosensors. In 2010 International Electron Devices Meeting (pp. 8-7). IEEE.
[48] Garner, D. M., Bai, H., Georgiou, P., Constandinou, T. G., Reed, S., Shepherd, L. M., ... & Toumazou, C. (2010, February). A multichannel DNA SoC for rapid point-of-care gene detection. In 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (pp. 492-493). IEEE.
[49] Lee, I. K., Jeun, M., Jang, H. J., Cho, W. J., & Lee, K. H. (2015). A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen. Nanoscale, 7(40), 16789-16797.
[50] Kamahori, M., Ishige, Y., & Shimoda, M. (2007). A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. Biosensors and Bioelectronics, 22(12), 3080-3085.
[51] Yano, M., Koike, K., Mukai, K., Onaka, T., Hirofuji, Y., Ogata, K. I., ... & Sasa, S. (2014). Zinc oxide ion‐sensitive field‐effect transistors and biosensors. Physica Status Solidi (a), 211(9), 2098-2104.
[52] Bhalla, N., Di Lorenzo, M., Estrela, P., & Pula, G. (2017). Semiconductor technology in protein kinase research and drug discovery: sensing a revolution. Drug Discovery Today, 22(2), 204-209.
[53] Adiguzel, Y., & Kulah, H. (2012). CMOS cell sensors for point-of-care diagnostics. Sensors, 12(8), 10042-10066.
[54] Starodub, N. F., & Ogorodnijchuk, J. O. (2012). Immune biosensor based on the ISFETs for express determination of Salmonella typhimurium. Electroanalysis, 24(3), 600-606.
[55] Nakata, S., Arie, T., Akita, S., & Takei, K. (2017). Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS sensors, 2(3), 443-448.
[56] Jimenez-Jorquera, C., Orozco, J., & Baldi, A. (2010). ISFET based microsensors for environmental monitoring. Sensors, 10(1), 61-83.
[57] Maruyama, Y., Terao, S., & Sawada, K. (2009). Label free CMOS DNA image sensor based on the charge transfer technique. Biosensors and Bioelectronics, 24(10), 3108-3112.
[58] Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., ... & Hoon, J. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356), 348.
[59] Shoorideh, K., & Chui, C. O. (2012). Optimization of the sensitivity of FET-based biosensors via biasing and surface charge engineering. IEEE Transactions on Electron Devices, 59(11), 3104-3110.
[60] Shoorideh, K., & Chui, C. O. (2014). On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proceedings of the National Academy of Sciences, 111(14), 5111-5116.
[61] Bard, A. J., & Faulkner, L. R. (2001). Fundamentals and applications. Electrochemical Methods, 2, 482.
[62] Uno, S., Iio, M., Ozawa, H., & Nakazato, K. (2010). Full three-dimensional simulation of ion-sensitive field-effect transistor flatband voltage shifts due to DNA immobilization and hybridization. Japanese Journal of Applied Physics, 49(1S), 01AG07.
[63] Kaisti, M. (2017). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics, 98, 437-448.
[64] Moser, N., Lande, T. S., Toumazou, C., & Georgiou, P. (2016). ISFETs in CMOS and emergent trends in instrumentation: A review. IEEE Sensors Journal, 16(17), 6496-6514.
[65] Chen, S., Bomer, J. G., Carlen, E. T., & van den Berg, A. (2011). Al2O3/silicon nanoISFET with near ideal Nernstian response. Nano letters, 11(6), 2334-2341.
[66] Knopfmacher, O., Tarasov, A., Fu, W., Wipf, M., Niesen, B., Calame, M., & Schonenberger, C. (2010). Nernst limit in dual-gated Si-nanowire FET sensors. Nano letters, 10(6), 2268-2274.
[67] Spijkman, M. J., Brondijk, J. J., Geuns, T. C., Smits, E. C., Cramer, T., Zerbetto, F., ... & de Leeuw, D. M. (2010). Dual‐gate organic field‐effect transistors as potentiometric sensors in aqueous solution. Advanced Functional Materials, 20(6), 898-905.
[68] Khamaisi, B., Vaknin, O., Shaya, O., & Ashkenasy, N. (2010). Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution. ACS nano, 4(8), 4601-4608.
[69] Duarte-Guevara, C., Lai, F. L., Cheng, C. W., Reddy Jr, B., Salm, E., Swaminathan, V., ... & Bashir, R. (2014). Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated ISFETs. Analytical chemistry, 86(16), 8359-8367.
[70] Go, J., Nair, P. R., & Alam, M. A. (2012). Theory of signal and noise in double-gated nanoscale electronic p H sensors. Journal of Applied Physics, 112(3), 034516.
[71] Huang, Y. J., Lin, C. C., Huang, J. C., Hsieh, C. H., Wen, C. H., Chen, T. T., ... & Liu, Y. S. (2015, December). High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. In 2015 IEEE International Electron Devices Meeting (IEDM) (pp. 29-2). IEEE.
[72] Chi, L. L., Chou, J. C., Chung, W. Y., Sun, T. P., & Hsiung, S. K. (2000). Study on extended gate field effect transistor with tin oxide sensing membrane. Materials Chemistry and Physics, 63(1), 19-23.
[73] Ito, Y. (2000). Stability of ISFET and its new measurement protocol. Sensors and Actuators B: Chemical, 66(1-3), 53-55.
[74] Khanna, V. K. (2013). Remedial and adaptive solutions of ISFET non-ideal behaviour. Sensor Review, 33(3), 228-237.
[75] Shin, P. K. (2003). The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD. Applied Surface Science, 214(1-4), 214-221.
[76] Van Der Wal, P. D., Briand, D., Mondin, G., Jenny, S., Jeanneret, S., Millon, C., ... & De Rooij, N. F. (2004, October). High-k dielectrics for use as ISFET gate oxides. In SENSORS, 2004 IEEE (pp. 677-680). IEEE.
[77] Lue, C. E., Yu, T. C., Yang, C. M., Pijanowska, D. G., & Lai, C. S. (2011). Optimization of urea-EnFET based on Ta2O5 layer with post annealing. Sensors, 11(5), 4562-4571.
[78] Wu, C. L., Chou, J. C., Chung, W. Y., Sun, T. P., & Hsiung, S. K. (2000). Study on SnO2/Al/SiO2/Si ISFET with a metal light shield. Materials Chemistry and Physics, 63(2), 153-156.
[79] Chiang, J. L., Chou, J. C., & Chen, Y. C. (2005). Study on light and temperature properties of aln ph-ion-sensitive field-effect transistor devices. Japanese Journal of Applied Physics, 44(7R), 4831.
[80] Chin, Y. L., Chou, J. C., Sun, T. P., Chung, W. Y., & Hsiung, S. K. (2001). A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process. Sensors and Actuators B: Chemical, 76(1-3), 582-593.
[81] Daniel, M., Janicki, M., & Napieralski, A. (2003, October). Simulation of ion sensitive transistors using a SPICE compatible model. In SENSORS, 2003 IEEE (Vol. 1, pp. 543-548). IEEE.
[82] Barabash, P. R., Cobbold, R. S., & Wlodarski, W. B. (1987). Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistors (EISFET's). IEEE Transactions on Electron Devices, 34(6), 1271-1282.
[83] Matsumoto, K., Nakamura, T., Yusa, A., & Nagai, S. (1985). A new MOS phototransistor operating in a non-destructive readout mode. Japanese Journal of Applied Physics, 24(5A), L323.
[84] Matsunaga, Y., Yamashita, H., Manabe, S., & Harada, N. (1991). A high-sensitivity MOS photo-transistor for area image sensor. IEEE Transactions on Electron Devices, 38(5), 1044-1047.
[85] Woo, J., Chien, P. Y., Yang, F., Song, S. C., Chidambaram, C., Wang, J., & Yeap, G. (2014). Improved device variability in scaled MOSFETs with deeply retrograde channel profile. Microelectronics Reliability, 54(6-7), 1090-1095.
[86] Khanna, V. K. (2017). Extreme-Temperature and Harsh-Environment Electronics; Physics, technology and applications. Extreme-Temperature and Harsh-Environment Electronics; Physics, technology and applications, by Khanna, Vinod Kumar. ISBN: 978-0-7503-1156-4. IOP ebooks. Bristol, UK: IOP Publishing, 2017.
[87] Bergveld, P. (2003). Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical, 88(1), 1-20.
[88] Zhao, W., Bhushan, A., Santamaria, A. D., Simon, M. G., & Davis, C. E. (2008). Machine learning: A crucial tool for sensor design. Algorithms, 1(2), 130-152.
[89] Hotel, O., Poli, J. P., Mer-Calfati, C., Scorsone, E., & Saada, S. (2018). A review of algorithms for SAW sensors e-nose based volatile compound identification. Sensors and Actuators B: Chemical, 255, 2472-2482.
[90] Acevedo, F. J., Maldonado, S., Dominguez, E., Narvaez, A., & Lopez, F. (2007). Probabilistic support vector machines for multi-class alcohol identification. Sensors and Actuators B: Chemical, 122(1), 227-235.
[91] Brudzewski, K., Osowski, S., & Markiewicz, T. (2004). Classification of milk by means of an electronic nose and SVM neural network. Sensors and Actuators B: Chemical, 98(2-3), 291-298.
[92] Liu, M., Wang, M., Wang, J., & Li, D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical, 177, 970-980.
[93] Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M., & Nychas, G. J. (2010). Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks. Sensors and Actuators B: Chemical, 145(1), 146-154.
[94] Diamond, A., Schmuker, M., Berna, A. Z., Trowell, S., & Nowotny, T. (2016). Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system. Bioinspiration & Biomimetics, 11(2), 026002.
[95] Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 315-323).
[96] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
[97] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[98] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1), 145-151.
[99] Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3), 462-466.
[100] Huang, X., Yu, H., Liu, X., Jiang, Y., Yan, M., & Wu, D. (2015). A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Transactions on Biomedical Engineering, 62(9), 2224-2233.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74750-
dc.description.abstract由於物聯網的發展,次世代的感測器研究正在發生典範轉移。如今,多模態感測器已經在物聯網及人工智慧應用中扮演不可或缺的角色。為了更進一步降低功率及感測器尺寸,多模態感測元件將是未來感測技術的重要趨勢。因此,在本論文中,我們利用雙閘極離子感測場效電晶體成功實現多模態感測元件,成功同時量化酸鹼度,光及溫度三種物理變量。並提出虛擬感測器空間的模型來解釋多模態感測原理。首先,本論文提出利用時序產生虛擬感測器的理論,並解釋虛擬感測器空間與多重感測效應的關聯性。隨後,我們成功實現並驗證酸鹼度/光度雙重感測器以及酸鹼度/光/及溫度三重感測器,並且利用感測器的量測數據驗證我們所提出之虛擬感測空間的模型。利用本論文提出的虛擬感測器空間與多模態感測原理,我們可以將多模態感測器實現於單一感測元件中,並應用於感測器融合,物聯網以及人工智慧辨識等應用。zh_TW
dc.description.abstractInternet-of-thing (IoT) has driven a paradigm shift to the next-generation sensor architecture. Nowadays, multi-modal sensors are essential for various IoT and AI applications. To achieve ultra-low power and size reduction, single-device-multi-sensor could be a promising direction of sensor technologies. Therefore, we have realized a machine learning-assisted multi-modal sensing device based on a dual-gate ion-sensitive field-effect transistor (DG-ISFET) and proposed a virtual sensor space model to effectively explain the fact of multi-sensing. In the first part, we propose a sequential method to generate virtual sensors and a virtual sensor space model to connect the physical sensing device and multi-sensing functionalities. Afterwards, we successfully realized and validated a pH/light dual-modal sensor and a pH/light/temperature 3-dimensional multi-modal sensor. In addition, the virtual sensor space model is also validated. With the proposed virtual sensor space model, multi-modalities sensing can be achieved on single device. It has great potential applying to sensor fusion and AI recognition technologies.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:56Z (GMT). No. of bitstreams: 1
ntu-108-D04943015-1.pdf: 4118855 bytes, checksum: 9918a5a8562e0ff263077bcc6d7cee08 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContent
誌謝 I
摘要 II
Abstract III
Content IV
List of Figures VIII
List of Tables XI
Chapter 1. Introduction 1
1-1 Background and Motivation of IoT Sensor Researches 1
1-2 Sensor Technology Review 3
1-3 The Structure of this Thesis 7
Chapter 2. Dual-gate ISFET Measurement and Characterization 9
2-1 Fundamental and Sensing Principle of ISFET Biochemical Sensors 10
2-2 ISFET Subtypes 14
2-2.1 Conventional ISFET 14
2-2.2 Dual-gate ISFET 15
2-3 Non-ideal Characteristics of ISFET 17
2-3.1 Photo-effect 17
2-3.2 Temperature Effect 18
2-4 DG-ISFET Design, Fabrication, and Measurement Setup 19
2-4.1 Design and Fabrication 19
2-4.2 Measurement Setup 22
2-4.3 pH and Light Measurement Sequences 23
2-4.4 Temperature Measurement Setup 24
2-5 Dual-gate ISFET Characterization 25
2-5.1 pH Sensing Discussion 25
2-5.2 Photo-response 30
2-5.3 Thermal Response 34
2-6 Chapter Conclusion 35
Chapter 3 The Concept of Virtual Sensor and Machine Learning Approaches 36
3-1 Introduction 36
3-2 Sequentially Generated Virtual Sensor 36
3-3 Virtual Sensor Space 39
3-4 Machine Learning Models and Settings 46
3-4.1 Support Vector Machine 47
3-4.2 Artificial Neural Network 48
Chapter 4 Dual-Modal Sensing ISFET Realization and Validation 50
4-1 Measured Data Analysis and Discussions 51
4-2 Visualized Data by Features 53
4-2.1 Data Pre-Processing 54
4-3 Modeling and Validation 56
4-3.1 Semi-Quantification Models 57
4-3.2 Quantification Models 60
4-3.3 Cross-Validation 63
4-3.4 Feature reduction 66
4-4 Chapter Conclusion 68
Chapter 5 Three-Dimensional Multi-Modal Sensing ISFET and Virtual Sensor Space Validation 70
5-1 Introduction 70
5-2 Sensor Measurement and Data Collection 71
5-2.1 Sensing Device Characteristics and Virtual Sensor Generation 73
5-3 Multi-Modal Sensing Model and Validation 75
5-3.1 Operational Orthogonality 77
5-3.2 Intrinsic Orthogonality 81
5-3.3 Effect of Neural Network Structure 84
5-4 Chapter Conclusion 86
Chapter 6 Conclusions and Future Works 88
References 91
dc.language.isoen
dc.subject多模態感測器zh_TW
dc.subject機器學習zh_TW
dc.subject離子感測場效電晶體zh_TW
dc.subject物聯網感測器zh_TW
dc.subject元件物理zh_TW
dc.subjectISFETen
dc.subjectmachine learningen
dc.subjectMulti-modal sensoren
dc.subjectdevice physicsen
dc.subjectIoT sensoren
dc.title利用機器學習於單一電晶體上實現多重模態感測效果zh_TW
dc.titleA Machine Learning-assisted Multi-modality Sensor Based on a Single Transistoren
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee林啟萬,吳安宇,鄭桂忠,劉怡劭,王玉麟
dc.subject.keyword多模態感測器,機器學習,離子感測場效電晶體,物聯網感測器,元件物理,zh_TW
dc.subject.keywordMulti-modal sensor,machine learning,ISFET,IoT sensor,device physics,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201904386
dc.rights.note有償授權
dc.date.accepted2019-12-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
4.02 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved