Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74555
Title: 學習針對即將發佈的影像資料之隱私保護嵌入
Learning Privacy-preserving Embeddings for Image Data to Be
Published
Authors: Chu-Chen Li
李筑真
Advisor: 林守德(Shou-De Lin)
Co-Advisor: 葉彌妍(Mi-Yen Yeh)
Keyword: 醫學影像,深度學習,隱私保護,差分隱私,
Medical Images,Deep Learning,Privacy Preserving,Differential Privacy,
Publication Year : 2019
Degree: 碩士
Abstract: 在現今的研究中,深度學習已成為一種強而有力的技術,並且在許多問題上取得重大的進展。卷積神經網路與大量的影像資料使得影像處理領域的研究快速而蓬勃地發展。然而,當人們使用深度學習的技術來解決問題時,不可避免得會遇到隱私洩露的問題。而隱私全為基本人權之一,故隱私洩漏的問題也成為我們需要攻克的議題。由於使用大規模的影像資料,使得對於原始資料與隱藏於影像中的敏感訊息的隱私洩漏問題成為必須關注的議題。因此,特別是對肉眼不好辨識的影像,例如:隱藏有性別資訊的X光圖片,我們提倡釋放出隱私保護的嵌入以取代釋出原始影像。除了避免使用者直接接觸原始影像,使用嵌入還可以用以避免用原始影像導致的特定敏感資訊的隱私洩漏風險。
為了達成這樣的目的,在採用不同方法進行實驗後,「 混合」模型最終被我們採用。「 混合」是多目標學習模型,它採用分解特徵的概念作為核心技術,加上以特定方法先訓練出初始權重,並且以對抗示例圖作為訓練輸入。多目標網路以底層的分享層作為特徵擷取器和兩個分別解決主任務與輔助任務的辨別器組合而成。特徵擷取器和輔助任務辨別器進行對抗過程來優化輔助任務。我們在MAFL人臉資料集和NIH提供的胸腔X光圖資料集進行實驗。
其結果展露出由混合模型擷取器生成的嵌入可以成功地預測主要任務且可以將指定的敏感資訊去除。更甚之,我們發現將混合模型得來的嵌入加上叉分隱私技術可以得到更好的表現。
Deep learning is a powerful technique which make a great process in solving different problems. The usage of convolutional neural network and massive image data let researches about image processing develop rapidly. However, when deep learning is utilized, the problems about privacy leakage need to be concerned simultaneously. Due to large-scale image data, privacy preserving for original data and sensitive information hidden on it is essential. Therefore, we purpose releasing privacy-preserving embeddings, especially for images which sensitive information is
invisible to the naked eye, e.g., X-ray images with gender information hidden behind, replacing to original image data. The embeddings are able to avoid privacy leakage of original image data and specific sensitive information.
To reach our goal, after conducting several methods, hybrid model is purposed finally. Hybrid is a multitask-learning model for disentangling features with good initial weights by iterative training and adversarial examples as inputs. The multitask
network composes of some shared layers on the bottom as a feature extractor and two discriminators respectively for a main task and a sensitive task. The feature extractor and the sensitive discriminator conduct an adversarial process to optimize
sensitive loss. The experiments on fatial database MAFL and medical image database NIH Chest X-ray demonstrate that embeddings generated by the hybrid extractor can predict the main task with designated sensitive information being wiped out. Moreover, it is discovered that hybrid model with differential privacy leads to a better performance.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74555
DOI: 10.6342/NTU201902724
Fulltext Rights: 有償授權
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
5.27 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved