Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74442
Title: 結合兩階段網絡於影片精彩片段之擷取
Video Highlight Extraction with a Two-staged Network
Authors: Yu-Chen Huang
黃于真
Advisor: 陳建錦(Chien Chin Chen)
Keyword: 深度學習,循環神經網路,兩階段網絡,直播,精彩剪輯,群眾外包,
Deep Learning,Recurrent Neural Network,Two Staged Network,Live Streaming,Highlight Extraction,Crowd Sourcing,
Publication Year : 2019
Degree: 碩士
Abstract: 直播在網路中形成一股浪潮,帶給人們更臨場的觀看體驗,以及更即時的互動,吸引眾多的數位原住民。多數直播服務都有提供即時聊天室以增加即時互動性,而這些留言除了傳達出觀眾當下的情緒、想法,也提供了另一種和影片內容有關的豐富資訊來源,可用來挖掘觀眾對影片內容的意見。因此我們希望用這樣的概念來做精彩片段之擷取,以觀眾留言背後隱藏的意見來判別出影片中何處是精彩片段的開始與結束。並且結合當前主流的two-staged network的概念,透過兩階段的學習,先過濾出可能的片段,再進一步衡量這些片段屬於精彩片段的機率,減少訓練時間,且提升預測結果表現。最終本研究希望能夠設計出一套系統,可以有效率的透過留言去定位出人們喜愛的精彩片段。
Live streaming raises a burst of upsurge on the Internet. The reason is that it brings people a more on-the-spot viewing experience and more immediate interaction. Most live streaming services provide instant chat rooms to increase interaction. These messages convey the emotion of the audience and provide another rich source of information related to the video content, which can be used to mining the audience's opinions on the video content. Therefore, we hope to use this concept to extract highlight and use the information implicit in the audience message to locate highlight in the video. We also introduce the current mainstream two-staged network concept, through two-stage learning, the first filter out possible segments, further measure the probability that these segments belong to highlight, reduce training time, and improve the performance of prediction results. In the end, this study wants to design a system that can efficiently locate popular highlights through messages.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74442
DOI: 10.6342/NTU201902938
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
1.08 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved