Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74431
Title: 基於多尺度集成增強樹的層級瞳孔中心定位系統
Cascaded Pupil Center Localization System Based on Multi-Scale Ensemble of Boosted Trees
Authors: Heng Wang
王珩
Advisor: 許永真(Yung-jen Hsu)
Keyword: 瞳孔定位,多頭部角度,自適應增強式學習,粗壯眼睛檢測,
pupil localization,large head poses,adaptive boosting,robust eye detection,
Publication Year : 2019
Degree: 碩士
Abstract: 在這篇論文中,作者提出了一個新的用於瞳孔中心定位的層級系統。首先, 作者提出了一個用於識別各種頭部姿勢下的眼睛位置的新眼睛定位框架。實驗結果顯示出,和當前主流的眼睛定位方法相比,這篇論文中提出的眼睛定位框架具有更高的穩健性。論文作者接著介紹了改進目前節點訓練方法速度的方法,以增加模型的訓練速度。接著,作者推導了目前的瞳孔定位增強式學習算法的變化版本,並進行了驗證。驗證顯示出變化後的版本在效能上超過了目前最先進的瞳孔定位方法。接著,作者調查了兩個之前提出的改進技巧,並展示了他們在瞳孔定位上的效用。到本論文的最後,一個新的穩健的能夠比目前最先進方法更精確地預測各種情況下的臉部照片中的瞳孔中心位置的瞳孔定位系統被提出了。
In this thesis, the author proposes a new cascaded system for pupil center localization. A new eye detection framework is proposed at first to detect eye locations in large head poses. Experiments demonstrate that the eye detection framework proposed in this thesis shows more robustness against different head poses when compared with the current mainstream method. The author then introduces an improved node training method to increase the training speed of pupil localization models. Next, the author develops new variations to the existing pupil localization boosting algorithms, which are then validated and show superior performance over the current state-of-the-art method. Additionally, the author investigates two previously reported improvement techniques and shows their effects on pupil localization. To the end of this thesis, a new robust pupil localization system, which can estimate the pupil centers from a variety of facial images more accurately than the current state-of-the-art method, is established.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74431
DOI: 10.6342/NTU201901138
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
5.81 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved