請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳克強 | |
dc.contributor.author | Jia-Rou Chen | en |
dc.contributor.author | 陳家柔 | zh_TW |
dc.date.accessioned | 2021-06-17T08:24:22Z | - |
dc.date.available | 2021-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | Alinsug, M.V., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 9, 37.
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H., and Koornneef, M. (2003). Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics. 164, 711-729. Aufsatz, W., Stoiber, T., Rakic, B., and Naumann, K. (2007). Arabidopsis histone deacetylase 6: a green link to RNA silencing. Oncogene. 26, 5477-5488. Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381-395. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell. 129, 823-837. Beisel, C., Imhof, A., Greene, J., Kremmer, E., and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature. 419, 857-862. Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature. 447, 407-412. Berr, A., McCallum, E.J., Menard, R., Meyer, D., Fuchs, J., Dong, A., and Shen, W.H. (2010). Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell. 22, 3232-3248. Cartagena, J.A., Matsunaga, S., Seki, M., Kurihara, D., Yokoyama, M., Shinozaki, K., Fujimoto, S., Azumi, Y., Uchiyama, S., and Fukui, K. (2008). The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol. 315, 355-368. Castillo-Gonzalez, C., Liu, X., Huang, C., Zhao, C., Ma, Z., Hu, T., Sun, F., Zhou, Y., Zhou, X., Wang, X.J., and Zhang, X. (2015). Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. Elife. 4, e06671. Chen, L.T., and Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav. 5, 1318-1320. Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot. 61, 3345-3353. Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227. Ding, Y., Wang, X., Su, L., Zhai, J., Cao, S., Zhang, D., Liu, C., Bi, Y., Qian, Q., Cheng, Z., Chu, C., and Cao, X. (2007). SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell. 19, 9-22. Ebbs, M.L. (2006). Locus-Specific Control of DNA Methylation by the Arabidopsis SUVH5 Histone Methyltransferase. Plant Cell. 18, 1166-1176. Ebbs, M.L., Bartee, L., and Bender, J. (2005). H3 Lysine 9 Methylation Is Maintained on a Transcribed Inverted Repeat by Combined Action of SUVH6 and SUVH4 Methyltransferases. Mol Cell Biol. 25, 10507-10515. Galasinski, S.C., Resing, K.A., Goodrich, J.A., and Ahn, N.G. (2002). Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem. 277, 19618-19626. Gendrel, A.-V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods. 2, 213-218. Gouil, Q., & Baulcombe, D. C. (2016). DNA methylation signatures of the plant chromomethyltransferases. PLoS genet, 12, e1006526. Greer, E. L., & Shi, Y. (2012). Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343. Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature. 389, 349-352. Guo, L., Yu, Y., Law, J.A., and Zhang, X. (2010). SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc. Natl Acad. Sci. USA, 107, 18557-18562. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol. 50, 875-885. Hung FY, Chen FF, Li C, Chen C, Lai YC, Chen JH, Cui Y and Wu K (2018) The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Res. 46:10669-10681. Hung FY, Chen FF, Li C, Chen C, Lai YC, Chen JH, Cui Y and Wu K (2019) The LDL1/2-HDA6 histone modification complex interacts with TOC1 and regulates the core circadian clock components in Arabidopsis. Front. Plant Sci. 10:233. Hunter, T. (1995). Protein Kinases and Phosphatases:The Yin and Yang of Protein Phosphorylation and Signaling. Cell. 80,225-236. Jenuwein, T., Laible, G., Dorn, R., and Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell Mol Life Sci. 54, 80-93. Johnson, L.M., Law, J.A., Khattar, A., Henderson, I.R., and Jacobsen, S.E. (2008). SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 4, e1000280. Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol. 17, 379-384. Kouzarides, T. (2007). Chromatin modifications and their function. Cell. 128, 693-705. Kuhn, R.M., Karolchik, D., Zweig, A.S., Wang, T., Smith, K.E., Rosenbloom, K.R., Rhead, B., Raney, B.J., Pohl, A., Pheasant, M., Meyer, L., Hsu, F., Hinrichs, A.S., Harte, R.A., Giardine, B., Fujita, P., Diekhans, M., Dreszer, T., Clawson, H., Barber, G.P., Haussler, D., and Kent, W.J. (2009). The UCSC Genome Browser Database: update 2009. Nucleic Acids Res. 37, D755-761. Kurdistani, S. K., & Grunstein, M. (2003). Histone acetylation and deacetylation in yeast. Nature reviews Mol Cell Biol. 4, 276. Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., and Canaani, E. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 449, 689-694. Lawrence, R.J., Earley, K., Pontes, O., Silva, M., Chen, Z.J., Neves, N., Viegas, W., and Pikaard, C.S. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell. 13, 599-609. Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006). Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol. 26, 6395-6402. Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., & Zhu, J. K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl. Acad. Sci. USA, 112, 3553-3557. Lippman, Z., May, B., Yordan, C., Singer, T., and Martienssen, R. (2003). Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, e67. Liu, X., Yu, C.W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y., and Wu, K. (2012). HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol. 158, 119-129. Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M., & Richmond, T. J. (1997). Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301-311. Luo, M., Wang, Y.Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012a). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot. 63, 3297-3306. Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., and Wu, K. (2015). Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J. 82, 925-936. Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012b). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in arabidopsis. PLoS Genet. 8, e1003114. Lusser, A., Kölle, D., and Loidl, P. (2001). Histone acetylation: lessons from the plant kingdom. Trends Plant Sci. 6, 59-65. Müller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O'Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 111, 197-208. Mathieu, O., Probst, A.V., and Paszkowski, J. (2005). Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J. 24, 2783-2791. Motamedi, M.R., Hong, E.-J.E., Li, X., Gerber, S., Denison, C., Gygi, S., and Moazed, D. (2008). HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell. 32, 778-790. Murfett, J., Wang, X.-J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell. 13, 1047-1061. Naumann, K., Fischer, A., Hofmann, I., Krauss, V., Phalke, S., Irmler, K., Hause, G., Aurich, A.C., Dorn, R., and Jenuwein, T. (2005). Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J. 24, 1418-1429. Nightingale, K.P., Gendreizig, S., White, D.A., Bradbury, C., Hollfelder, F., and Turner, B.M. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem. 282, 4408-4416. Pandey, R., MuÈller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036-5055. Perrella, G., Lopez-Vernaza, M.A., Carr, C., Sani, E., Gossele, V., Verduyn, C., Kellermeier, F., Hannah, M.A., and Amtmann, A. (2013). Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell. 25, 3491-3505. Persson, K. (1976). Modification of the eye colour mutant zeste by suppressor, enhancer and minute genes in Drosophila melanogaster. Hereditas. 82, 111-119. Pflum, M.K.H., Tong, J.K., Lane, W.S., and Schreiber, S.L. (2001). Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem. 276, 47733-47741. Pien, S., Fleury, D., Mylne, J.S., Crevillen, P., Inze, D., Avramova, Z., Dean, C., and Grossniklaus, U. (2008). ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell. 20, 580-588. Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., Vaucheret, H., and Mittelsten Scheid, O. (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell. 16, 1021-1034. Rajakumara, E., Law, J.A., Simanshu, D.K., Voigt, P., Johnson, L.M., Reinberg, D., Patel, D.J., and Jacobsen, S.E. (2011). A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev. 25, 137-152. Schubert, H.L., Blumenthal, R.M., and Cheng, X. (2003). Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 28, 329-335. Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T., and Shi, Y. (2005). Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 19, 857-864. Sterner, D. E., & Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459. Suganuma, T., and Workman, J.L. (2008). Crosstalk among Histone Modifications. Cell. 135, 604-607. Sun, Y.W., Tee, C.S., Ma, Y.H., Wang, G., Yao, X.M., and Ye, J. (2015). Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus. Sci Rep. 5, 16476. Tamada, Y., Yun, J.Y., Woo, S.C., and Amasino, R.M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell. 21, 3257-3269. Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149-161. Tariq, M., and Paszkowski, J. (2004). DNA and histone methylation in plants. TRENDS Genet. 20, 244-251. Thorstensen, T., Grini, P. E., & Aalen, R. B. (2011). SET domain proteins in plant development. Biochim. Biophys. Acta. 1809, 407-420. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822. Tsuda, K., Qi, Y., Nguyen, L.V., Bethke, G., Tsuda, Y., Glazebrook, J., and Katagiri, F. (2012). An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J. 69, 713-719. Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays. 22, 836-845. Utley, R. T., Ikeda, K., Grant, P. A., Côté, J., Steger, D. J., Eberharter, A., .. & Workman, J. L. (1998). Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature, 394, 498. Vaute, O., Nicolas, E., Vandel, L., and Trouche, D. (2002). Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 30, 475-481. Vermeulen, M., Eberl, H.C., Matarese, F., Marks, H., Denissov, S., Butter, F., Lee, K.K., Olsen, J.V., Hyman, A.A., Stunnenberg, H.G., and Mann, M. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 142, 967-980. Walters, M.S., Erazo, A., Kinchington, P.R., and Silverstein, S. (2009). Histone deacetylases 1 and 2 are phosphorylated at novel sites during varicella-zoster virus infection. J Virol. 83, 11502-11513. Yang, X. J., & Seto, E. H. A. T. (2007). HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26, 5310. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156, 173-184. Yu CW, Tai R, Wang S, Yang P, Luo M, Yang S, Cheng K, Wang W, Cheng Y and Wu K (2017) HISTONE DEACETYLASE 6 acts in concert with histone methyltransferases SUVH4, SUVH5 and SUVH6 to regulate transposon silencing. Plant Cell. 29: 1970–1983. Zhang, X., Tamaru, H., Khan, S.I., Horton, J.R., Keefe, L.J., Selker, E.U., and Cheng, X. (2002). Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell. 111, 117-127. Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol. 7, 1256-1260. Zheng, J., Chen, F., Wang, Z., Cao, H., Li, X., Deng, X., Soppe, W.J., Li, Y., and Liu, Y. (2012). A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol. 193, 605-616. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74207 | - |
dc.description.abstract | 組蛋白去乙醯酶HDA6在基因調控與轉座子沉默扮演重要角色。SUVH4、SUVH5和SUVH6 (SUVH4/5/6)是組蛋白H3賴氨酸9(H3K9)甲基轉移酶,屬於SET結構域蛋白中SUV(R)亞群,也同樣是基因沉默的重要調控者。最近的研究發現SUVH4/5/6可以通過與HDA6互作改變轉座子的組蛋白甲基化和乙醯化狀態,調控轉座子沉默。然而,我們對於HDA6和SUVH4/5/6互作在植物生長發育和逆境調控的功能知之甚少。我們目前的研究發現 HDA6和SUVH4/5/6的四突變體hda6/suvh4/5/6植株有捲曲的葉形,也發現hda6/suvh4/5/6在高鹽濃度環境中發芽率明顯下降以及較短的根長度。由此,我們推斷HDA6和SUVH4/5/6可以共同調控葉片發育及非生物逆境反應。 | zh_TW |
dc.description.abstract | HISTONE DEACETYLASE6 (HDA6) plays an important role in the silencing of transgenes and transposable elements. SUVH4, SUVH5, and SUVH6 (SUVH4/5/6) are histone H3 lysine 9 methyltransferases belonging to the SUV(R) group of SET domain proteins, which are also important in gene silencing. Recent studies show that SUVH4/5/6 and HDA6 interact and co-regulate the silencing of transposable elements by histone H3 deacetylation and H3 lysine 9 methylation. However, little is known about the functions of HDA6 and SUVH4/5/6 interaction in plant development and stress response. In this study, we found that the hda6/suvh4/5/6 quadruple mutant has obviously wrinkled and curling leaves. Furthermore, it also displays low seed germination rate and short root lengths under high concentration of NaCl compared to wild type. Together, these results indicate that HDA6 and SUVH4/5/6 may act coordinately in the regulation of leaf development and response to abiotic stress. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:24:22Z (GMT). No. of bitstreams: 1 ntu-108-R05b42004-1.pdf: 2569233 bytes, checksum: 4b3f389de328c8cb3561ba2d61b8347e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Index IV List of Figures VI List of Tables VII List of Abbreviations VIII 1. Introduction 1 1.1 Histone modifications 1 1.2 SET domain proteins in Arabidopsis 2 1.3 Functions of SET domain proteins in Arabidopsis 3 1.4 Histone deacetylases in Arabidopsis 6 1.5 Developmental functions of HDA6 in Arabidopsis 8 1.6 The interaction of HDA6 with other transcription regulatory proteins 9 1.7 Interaction of HDA6 with SUVH4, SUVH5 and SUVH6 11 2. Materials and Methods 13 2.1 Plant materials 13 2.2 Quick DNA extraction 13 2.3 RNA isolation 14 2.4 DNase treatment 15 2.5 Quantitative RT-PCR analysis 15 2.6 Bimolecular Fluorescence Complementation (BiFC) assays 16 2.7 Transfection of tobacco or GVG leaves by Agrobacterium (For Co-Immunoprecipitation) 19 2.8 Paraffin embedded section 20 3. Results 23 3.1 Expression and localization of SUVH4, SUVH5 and SUVH6 23 3.2 The roles of HDA6 and SUVH4/5/6 in the regulation of flowering time 23 3.3 The roles of HDA6 and SUVH4/5/6 in leaf development 24 3.4 SUVH4/5/6 cannot interacted with AS1 and AS2 25 3.5 Expression of KNOX genes is upregulated in hda6 and hda6/suvh4/5/6 mutants 25 3.6 The roles of HDA6 and SUVH4/5/6 in ABA and salt stress response 26 4. Discussion 27 4.1 HDA6 regulates flowering independent of SUVH4/5/6 27 4.2 SUVH4/5/6 is one of the epigenetic components involved in the AS1–AS2–mediated KNOX repression 27 4.3 SUVH4/5/6 are involved in abiotic stress response 29 4.4 HDA6 and SUVH4/5/6 act coordinately to regulate development and stress response in Arabidopsis 30 Figures 31 References 48 Supplementary Tables 59 | |
dc.language.iso | zh-TW | |
dc.title | HDA6和SUVH4/5/6
參與阿拉伯芥發育及逆境反應之功能性研究 | zh_TW |
dc.title | Functions of HDA6 and SUVH4/5/6 in development and stress response in Arabidopsis | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝旭亮,鄭貽生,靳宗洛,涂世隆 | |
dc.subject.keyword | 阿拉伯芥,組蛋白甲基化轉移?,組蛋白去乙醯化?,葉片發育,非生物逆境, | zh_TW |
dc.subject.keyword | Arabidopsis,histone methyltransferases,histone deacetylases,leaf development,abiotic stress, | en |
dc.relation.page | 62 | |
dc.identifier.doi | 10.6342/NTU201903172 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。