Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73817
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂廷璋(Ting-Jang Lu)
dc.contributor.authorYu-Han Liuen
dc.contributor.author劉忬函zh_TW
dc.date.accessioned2021-06-17T08:10:59Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationArribas-Lorenzo, G.; Morales, F. J., Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-Induced Contaminants. J. Agric. Food Chem. 2010, 58, 2966-2972.
Assar, S. H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J. M., Determination of N (E >)-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 2009, 36, 317-326.
Birlouez-Aragon, I.; Saavedra, G.; Tessier, F. J.; Galinier, A.; Ait-Ameur, L.; Lacoste, F.;Niamba, C.-N.; Alt, N.; Somoza, V.; Lecerf, J.-M., A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American Journal of Clinical Nutrition 2010, 91, 1220-1226.
Cammerer, B.; Kroh, L. W., Investigation of the contribution of radicals to the mechanism of the early stage of the Maillard reaction. Food Chem. 1996, 57, 217-221.
Chaikin, S. W.; Brown, W. G., Reduction of aldehydes, ketones and acid chlorides by sodium borohydride. J. Am. Chem. Soc. 1949, 71, 122-125.
Chao, P. C.; Hsu, C. C.; Yin, M. C., Analysis of glycative products in sauces and sauce-treated foods. Food Chem. 2009, 113, 262-266.
Chaplen, F. W. R.; Fahl, W. E.; Cameron, D. C., Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture. Anal. Biochem. 1996, 238, 171-178.
Charissou, A.; Ait-Ameur, L.; Birlouez-Aragon, I., Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. J. Chromatogr. A 2007, 1140, 189-194.
Daglia, M.; Papetti, A.; Aceti, C.; Sordelli, B.; Spin, V.; Gazzani, G., Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J. Agric. Food Chem. 2007, 55, 8877-8882.
Degen, J.; Hellwig, M.; Henle, T., 1,2-Dicarbonyl compounds in commonly consumed Foods. J. Agric. Food Chem. 2012, 60, 7071-7079.
Dong, H.; Xiao, K. J., Modified QuEChERS combined with ultra high performance liquid chromatography tandem mass spectrometry to determine seven biogenic amines in Chinese traditional condiment soy sauce. Food Chem. 2017, 229, 502-508.
Drusch, S.; Faist, V.; Erbersdobler, H. F., Determination of N-epsilon-carboxymethyllysine in milk products by a modified reversed-phase HPLC method. Food Chem. 1999, 65, 547-553.
Erkekoglu, P.; Baydar, T., Acrylamide neurotoxicity. Nutritional Neuroscience 2014, 17, 49-57.
Feng, T. T.; Xu, X. B.; Du, M.; Tan, M. Q.; Qin, L.; Zhu, B. W., Simultaneous determination of glyoxal, methylglyoxal and diacetyl in beverages using vortex-assisted liquid-liquid microextraction coupled with HPLC-DAD. Anal. Methods 2017, 9, 2445-2451.
Frandsen, J. R.; Narayanasamy, P., Neuroprotection through flavonoid: enhancement of the glyoxalase pathway. Redox Biol. 2018, 14, 465-473.
Gupta, R. K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I. A.; Dwivedi, P. D., Maillard reaction in food allergy: Pros and cons. Crit. Rev. Food Sci. Nutr. 2018, 58, 208-226.
Hagmar, L.; Tornqvist, M.; Nordander, C.; Rosen, I.; Bruze, M.; Kautiainen, A.; Magnusson, A. L.; Malmberg, B.; Aprea, P.; Granath, F.; Axmon, A., Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand. J. Work Environ. Health 2001, 27, 219-226.
Hara, S.; Yamaguchi, M.; Takemori, Y.; Yoshitake, T.; Nakamura, M., 1,2-DIAMINO-4,5-methylenedioxybenzene as a highly sensitive fluorogenic reagent for alpha-dicarbonyl compounds. Anal. Chim. Acta 1988, 215, 267-276.
Hartkopf, J.; Pahlke, C.; Ludemann, G.; Erbersdobler, H. F., Determintion of N-epsilon-carbonymethyllysine by a reversed-phase high-performance liquid-chromatography method. J. Chromatogr. A 1994, 672, 242-246.
Hashimoto, C.; Iwaihara, Y.; Chen, S. J.; Tanaka, M.; Watanabe, T.; Matsui, T., Highly-sensitive detection of free advanced glycation end-products by liquid chromatography-electrospray ionization-tandem mass spectrometry with 2,4,6-trinitrobenzene sulfonate derivatization. Anal. Chem. 2013, 85, 4289-4295.
He, J. L.; Zeng, M. M.; Zheng, Z. P.; He, Z. Y.; Chen, J., Simultaneous determination of N (epsilon)-(carboxymethyl) lysine and N (epsilon)-(carboxyethyl) lysine in cereal foods by LC-MS/MS. Eur. Food Res. Technol. 2014, 238, 367-374.
Henle, T., AGEs in foods: Do they play a role in uremia? Kidney Int. 2003, 63, S145-S147.
Jeong, J. H.; Cha, J.; Lee, K. G., Validation of analytical method for α-dicarbonyl compounds using gas chromatography-nitrogen phosphorous detector and their levels in alcoholic beverages. Int. J. Food Sci. Technol. 2017, 52, 1491-1497.
Lin, J. A.; Wu, C. H.; Yen, G. C., Perspective of advanced glycation end products on human health. J. Agric. Food Chem. 2018, 66, 2065-2070.
Lv, L. S.; Shao, X.; Chen, H. D.; Ho, C. T.; Sang, S. M., Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 2011, 24, 579-586.
Ma, X. J.; Gao, J. Y.; Tong, P.; Li, X.; Chen, H. B., Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure. J. Sci. Food Agric. 2017, 97, 5168-5175.
Maessen, D. E. M.; Ferreira, I.; van Greevenbroek, M. M. J.; van der Kallen, C. J. H.; Scheijen, J. L. J.; Gaens, K. H.; Stehouwer, C. D. A.; Schalkwijk, C. G., Plasma concentrations of the methylglyoxal metabolite D-lactate are independently associated with insulin resistance: the CODAM study. Diabetologia 2013, 56, S255-S255.
Masania, J.; Malczewska-Malec, M.; Razny, U.; Goralska, J.; Zdzienicka, A.; Kiec-Wilk, B.; Gruca, A.; Stancel-Mozwillo, J.; Dembinska-Kiec, A.; Rabbani, N.; Thornalley, P. J., Dicarbonyl stress in clinical obesity. Glycoconjugate J. 2016, 33, 581-589.
Negrean, M.; Stirban, A.; Stratmann, B.; Gawlowski, T.; Horstmann, T.; Gotting, C.; Kleesiek, K.; Mueller-Roesel, M.; Koschinsky, T.; Uribarri, J.; Vlassara, H.; Tschoepe, D., Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2007, 85, 1236-1243.
Nomi, Y.; Annaka, H.; Sato, S.; Ueta, E.; Ohkura, T.; Yamamoto, K.; Homma, S.; Suzuki, E.; Otsuka, Y., Simultaneous quantitation of advanced glycation end products in soy sauce and beer by liquid chromatography-tandem mass spectrometry without ion-pair reagents and derivatization. J. Agric. Food Chem. 2016, 64, 8397-8405.
Odani, H.; Shinzato, T.; Matsumoto, Y.; Usami, J.; Maeda, K., Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: Specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 1999, 256, 89-93.
Ogasawara, Y.; Tanaka, R.; Koike, S.; Horiuchi, Y.; Miyashita, M.; Arai, M., Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene. J. Chromatogr. B 2016, 1029, 102-105.
Olesen, P. T.; Olsen, A.; Frandsen, H.; Frederiksen, K.; Overvad, K.; Tjonneland, A., Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health study. Int. J. Cancer 2008, 122, 2094-2100.
Peters, M. A.; Hudson, P. M.; Jurgelske, W., The acute toxicity of methylglyoxal in rats: The influence of age, sex, and pregnancy. Ecotoxicology and Environmental Safety 1978, 2, 369-374.
Pomeranz, Y., Food analysis: theory and practice. Springer Science & Business Media: 2013.
Poulsen, M. W.; Hedegaard, R. V.; Andersen, J. M.; de Courten, B.; Bugel, S.; Nielsen, J.; Skibsted, L. H.; Dragsted, L. O., Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10-37.
Rabbani, N.; Thornalley, P. J., Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat. Protoc. 2014, 9, 1969-1979.
Randell, E. W.; Vasdev, S.; Gill, V., Measurement of methylglyoxal in rat tissues by electrospray ionization mass spectrometry and liquid chromatography. Journal of Pharmacological and Toxicological Methods 2005, 51, 153-157.
Scheijen, J.; Clevers, E.; Engelen, L.; Dagnelie, P. C.; Brouns, F.; Stehouwer, C. D. A.; Schalkwijk, C. G., Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145-1150.
Shao, X.; Bai, N. S.; He, K.; Ho, C. T.; Yang, C. S.; Sang, S. M., Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem. Res. Toxicol. 2008, 21, 2042-2050.
Sheoran, I. S.; Ross, A. R. S.; Olson, D. J. H.; Sawhney, V. K., Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci. 2009, 176, 99-104.
Smuda, M.; Henning, C.; Raghavan, C. T.; Johar, K.; Vasavada, A. R.; Nagaraj, R. H.; Glomb, M. A., Comprehensive Analysis of Maillard Protein Modifications in Human Lenses: Effect of Age and Cataract. Biochemistry 2015, 54, 2500-2507.
Smyth Jr, H. F.; Seaton, J.; Fischer, L., The single dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 1941, 23, 259-268.
Soboleva, A.; Vikhnina, M.; Grishina, T.; Frolov, A., Probing Protein Glycation by Chromatography and Mass Spectrometry: Analysis of Glycation Adducts. Int. J. Mol. Sci. 2017, 18, 32.
Sterling, H. J.; Batchelor, J. D.; Wemmer, D. E.; Williams, E. R., Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts. J. Am. Soc. Mass Spectrom. 2010, 21, 1045-1049.
Thornalley, P. J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawney, A., Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003, 375, 581-592.
Thornalley, P. J.; Rabbani, N., Detection of oxidized and glycated proteins in clinical samples using mass spectrometry - A user's perspective. Biochim. Biophys. Acta-Gen. Subj. 2014, 1840, 818-829.
Uribarri, J.; Cai, W. J.; Sandu, O.; Peppa, M.; Goldberg, T.; Vlassara, H., Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects. In Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, and Disease, Baynes, J. W.; Monnier, V. M.; Ames, J. M.; Thorpe, S. R., Eds. New York Acad Sciences: New York, 2005; Vol. 1043, pp 461-466.
Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W. J.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G. E.; Vlassara, H., Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110, 911-916.
Usui, T.; Yanagisawa, S.; Ohguchi, M.; Yoshino, M.; Kawabata, R.; Kishimoto, J.; Arai, Y.; Aida, K.; Watanabe, H.; Hayase, F., Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars. Biosci. Biotechnol. Biochem. 2007, 71, 2465-2472.
Wolff, S. P.; Crabbe, M. J. C.; Thornalley, P. J., The autoxidation of glyceraldehyde and other simple monosaccharides. Experientia 1984, 40, 244-246.
Yuan, Y.; Zhao, G. H.; Hu, X. S.; Wu, J. H.; Liu, J.; Chen, F., High correlation of methylglyoxal with acrylamide formation in glucose/asparagine Maillard reaction model. Eur. Food Res. Technol. 2008, 226, 1301-1307.
Zhang, G.; Huang, G. W.; Xiao, L.; Mitchell, A. E., Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis). J. Agric. Food Chem. 2011, 59, 12037-12046.
Zheng, F.; He, C. J.; Cai, W. J.; Hattori, M.; Steffes, M.; Vlassara, H., Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes-Metab. Res. Rev. 2002, 18, 224-237.
Zhu, Y. D.; Zhao, Y. T.; Wang, P.; Ahmedna, M.; Ho, C. T.; Sang, S. M., Tea flavanols block advanced glycation of lens crystallins induced by dehydroascorbic acid. Chem. Res. Toxicol. 2015, 28, 135-143.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73817-
dc.description.abstract食品在加工過程中會產生梅納反應 (Maillard reaction),進而導致活性雙羰基物質 (reactive dicarbonyl species, RDS) 以及糖化終產物 (advanced glycation end products, AGEs) 的形成。研究顯示RDS會增加罹患神經退化性疾病的風險,而AGEs會對代謝症候群造成不利的影響。為瞭解市場販售之加工肉製品的RDS及AGEs含量,因此本研究以高效能液相層析串聯軌道阱質譜儀建立RDS以及自由態與結合態AGEs的分析方法,目前可以檢測的3種RDS包含glyoxal、methylglyoxal及diacetyl,與8種AGEs則包含Nε-carboxymethyllysine (CML)、Nε-carboxyethyllysine (CEL)、argpyrimidine、pyrraine、glyoxal-lysine dimer (GOLD)、methylglyoxal-lysine dimer (MOLD)、Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (glyoxal derived hydroimidazolone; G-H1)、Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (methylglyoxal derived hydroimidazolone; MG-H1)。研究結果顯示市售加工肉製品中總RDS含量介於244-3092 ng/g間;而AGEs則可在不須衍生的情況下以Intrada amino acid管柱進行液相層析來分離,在檢測的樣品中自由態的AGEs只存在CML及CEL這兩種且含量很低,而總AGEs含量則介於63-1833 μg/g。本研究發展的分析方法可以協助瞭解RDS及AGEs在加工肉品中的含量與分布,也是食品產業監控與管理產品中RDS及AGEs含量的必要利器,以及未來評估RDS及AGEs攝食量與尋找降低含量加工方法的有效工具。zh_TW
dc.description.abstractMaillard reaction always occurs during food processing, and produces reactive dicarbonyl species (RDS) and advanced glycation end products (AGEs). According to the research, RDS will increase risk of neurodegenerative disease. The adverse effects of AGEs and their correlation with metabolism syndromes have been obtained much of attention on health researches. To measure the content of RDS and AGEs in commercial processed meat products, the analyses were conducted using liquid chromatography- high resolution mass spectrometry (LC-HRMS). Three RDS and eight AGEs were identified in selected samples from Taiwanese market including glyoxal, methylglyoxal, diacetyl, Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL), argpyrimidine, pyrraine, glyoxal-lysine dimer (GOLD), methylglyoxal-lysine dimer (MOLD), Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (glyoxal derived hydroimidazolone; G-H1), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (methylglyoxal derived hydroimidazolone; MG-H1). Our research shows that the content of total RDS in commercial processed meat products are in the range of 244 to 3092 ng/g. The AGEs were separated on an Intrada amino acid liquid chromatographic column without derivatization. Only the free forms of CML and CEL were found in the examined samples with much lower content levels. The content of total AGEs in testing products was in the range of 63 to 1833 μg/g. The established analytical platform can be an effective tool for monitoring the distribution of RDS and AGEs in processed meat products as well as in our diet and also a tool for quality control of the food industry.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:10:59Z (GMT). No. of bitstreams: 1
ntu-108-R06641013-1.pdf: 4201414 bytes, checksum: 4e866d87426405f64fa54671d296c93a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
壹、前言 1
貳、文獻回顧 2
第一節、糖化終產物 2
一、梅納反應 2
二、活性雙羰基物質 4
三、糖化終產物 5
第二節、加工過程中影響糖化終產物含量之因子 6
一、溫度 6
二、pH值 7
三、壓力 8
四、調味料 8
第三節、糖化終產物的生理活性 9
一、活性雙羰基物質 9
二、糖化終產物 11
第四節、糖化終產物抑制劑 13
第五節、活性雙羰基物質及糖化終產物分析方法 14
一、活性雙羰基物質 14
二、糖化終產物 16
參、研究目的與實驗架構 22
肆、材料與方法 23
第一節、實驗材料 23
第二節、藥劑與試劑 23
一、標準品 23
二、化學藥品 24
第三節、儀器設備 25
一、電子天平 (兩位數天平) 25
二、電子天平 (五位數天平) 25
三、乾浴槽 25
四、粉碎機 25
五、漩渦混合器 25
六、pH meter 25
七、廣用試紙 25
八、桌上型離心機 26
九、桌上型小容量離心機 26
十、針筒過濾器 26
十一、超音波震盪器 26
十二、吹氮裝置 26
十三、手持式色差儀 26
十四、高效液相層析串聯質譜儀 26
第四節、實驗方法 27
一、樣品前處理 27
二、高效液相層析串聯質譜儀參數條件 28
三、顏色指標測定 34
伍、結果與討論 35
第一節、高效液相層析串聯質譜儀檢測活性雙羰基物質 35
一、活性雙羰基物質於高效液相層析中的層析條件 35
二、活性雙羰基物質衍生物於高解析質譜儀上的檢測模式 38
三、活性雙羰基物質之檢量線、方法偵測極限、定量極限、衍生率、RDS衍生物之淨化回收率、方法回收率 41
四、市售加工肉製品中活性雙羰基物質含量 46
第二節、高效液相層析串聯質譜儀檢測糖化終產物 50
一、糖化終產物之樣品前處理 50
二、糖化終產物於高效液相層析中的層析條件 52
三、糖化終產物於高解析質譜儀上的檢測模式 53
四、糖化終產物之偵測極限、定量極限及回收率 57
五、市售加工肉製品中糖化終產物含量 59
第三節、探討活性雙羰基物質及糖化終產物間關係 67
第四節、探討食品中之活性雙羰基物質及糖化終產物與丙烯醯胺之關係 69
第五節、探討市售肉鬆的顏色對於活性雙羰基物質及糖化終產物關係 70
陸、結論 75
柒、參考文獻 76
捌、附錄 81
第一節、活性雙羰基物質及糖化終產物分析數據品管 81
第二節、補充 90
dc.language.isozh-TW
dc.subject液相層析串聯高解析質譜zh_TW
dc.subject梅納反應zh_TW
dc.subject加工肉製品zh_TW
dc.subject糖化終產物zh_TW
dc.subject活性雙羰基物質zh_TW
dc.subjectMaillard reactionen
dc.subjectprocessed meat productsen
dc.subjectAGEsen
dc.subjectRDSen
dc.subjectLC-HRMSen
dc.title加工肉產品之活性雙羰基物質與糖化終產物分析zh_TW
dc.titleAnalysis of reactive dicarbonyl species and advanced glycation end products in processed meat productsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏國晉(Guor-Jien Wei),謝淑貞(Shu-Chen Hsieh),駱錫能(Shyi-Neng Lou),張永和(Yung-Ho Chang)
dc.subject.keyword活性雙羰基物質,糖化終產物,加工肉製品,液相層析串聯高解析質譜,梅納反應,zh_TW
dc.subject.keywordRDS,AGEs,processed meat products,LC-HRMS,Maillard reaction,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201903725
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
Appears in Collections:食品科技研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
4.1 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved