請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73729
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈立言 | |
dc.contributor.author | Chih-Ting Chang | en |
dc.contributor.author | 張芷婷 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:55Z | - |
dc.date.available | 2020-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | Albenberg, L.G., Wu, G.D., 2014. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146(6), 1564-1572.
Ananthakrishnan, A.N., 2015. Epidemiology and risk factors for IBD. Nature reviews Gastroenterology & Hepatology 12(4), 205. Aran, H., Prasertsan, P., Zimmermann, W., Seesuriyachan, P., Chaiyaso, T., 2012. Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus ME168. Applied biochemistry and Biotechnology 166(8), 1969-1982. Atuma, C., Strugala, V., Allen, A., Holm, L., 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology 280(5), G922-G929. Blaszyk, M., Holley, R.A., 1998. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. International Journal of food Microbiology 39(3), 175-183. Blaut, M., Clavel, T., 2007. Metabolic diversity of the intestinal microbiota: implications for health and disease. The Journal of Nutrition 137(3), 751S-755S. Cani, P.D., 2017. Gut microbiota - at the intersection of everything? Nat Rev Gastroenterol Hepatol 14(6), 321-322. Cani, P.D., 2018. Human gut microbiome: hopes, threats and promises. Gut 67(9), 1716-1725. Cashman, K.D., Shanahan, F., 2003. Is nutrition an aetiological factor for inflammatory bowel disease? European journal of Gastroenterology & Hepatology 15(6), 607-613. Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., Gewirtz, A.T., 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541), 92-96. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., Gewirtz, A.T., 2017. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66(8), 1414-1427. Chen, L., 2015. Emulsifiers as food texture modifiers, Modifying Food Texture. pp. 27-49. Chengelis, C.P., Kirkpatrick, J.B., Bruner, R.H., Freshwater, L., Morita, O., Tamaki, Y., Suzuki, H., 2006a. A 24-month dietary carcinogenicity study of DAG (diacylglycerol) in rats. Food Chem Toxicol 44(1), 98-121. Chengelis, C.P., Kirkpatrick, J.B., Bruner, R.H., Freshwater, L., Morita, O., Tamaki, Y., Suzuki, H., 2006b. A 24-month dietary carcinogenicity study of DAG in mice. Food Chem Toxicol 44(1), 122-137. Clemente, J.C., Ursell, L.K., Parfrey, L.W., Knight, R., 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148(6), 1258-1270. Conlon, M.A., Bird, A.R., 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1), 17-44. Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., Kayser, B.D., Levenez, F., Chilloux, J., Hoyles, L., 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3), 426-436. Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., Young, V.B., Henrissat, B., Wilmes, P., Stappenbeck, T.S., Nunez, G., Martens, E.C., 2016. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167(5), 1339-1353 e1321. Dewhirst, F.E., Chien, C.-C., Paster, B.J., Ericson, R.L., Orcutt, R.P., Schauer, D.B., Fox, J.G., 1999. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol. 65(8), 3287-3292. Dupont, A., Kaconis, Y., Yang, I., Albers, T., Woltemate, S., Heinbockel, L., Andersson, M., Suerbaum, S., Brandenburg, K., Hornef, M.W., 2015. Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut 64(2), 222-232. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences 110(22), 9066-9071. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., Nelson, K.E., 2006. Metagenomic analysis of the human distal gut microbiome. Science 312(5778), 1355-1359. Glade, M.J., Meguid, M.M., 2016. A glance at... dietary emulsifiers, the human intestinal mucus and microbiome, and dietary fiber. Nutrition 32(5), 609. Glade, M.J., Meguid, M.M., 2018. A glance at… antioxidant and antiinflammatory properties of dietary cobalt. Nutrition 46, 62. Hallfrisch, J., Lazar, F., Jorgensen, C., Reiser, S., 1979. Insulin and glucose responses in rats fed sucrose or starch. The American Journal of Clinical Nutrition 32(4), 787-793. Hasegawa, Y., Mark Welch, J.L., Rossetti, B.J., Borisy, G.G., 2017. Preservation of three-dimensional spatial structure in the gut microbiome. PLoS One 12(11), e0188257. Holder, M.K., Peters, N.V., Whylings, J., Fields, C.T., Gewirtz, A.T., Chassaing, B., de Vries, G.J., 2019. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Scientific Reports 9(1), 172. Jiang, Z., Zhao, M., Zhang, H., Li, Y., Liu, M., Feng, F., 2018. Antimicrobial Emulsifier-Glycerol Monolaurate Induces Metabolic Syndrome, Gut Microbiota Dysbiosis, and Systemic Low-Grade Inflammation in Low-Fat Diet Fed Mice. Mol Nutr Food Res 62(3). Johansson, M.E., Hansson, G.C., 2016. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 16(10), 639-649. Johansson, M.E., Larsson, J.M., Hansson, G.C., 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108 Suppl 1, 4659-4665. Johansson, M.E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., Hansson, G.C., 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105(39), 15064-15069. Kostic, A.D., Gevers, D., Siljander, H., Vatanen, T., Hyötyläinen, T., Hämäläinen, A.-M., Peet, A., Tillmann, V., Pöhö, P., Mattila, I., 2015. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell host & Microbe 17(2), 260-273. Lecomte, M., Couedelo, L., Meugnier, E., Plaisancie, P., Letisse, M., Benoit, B., Gabert, L., Penhoat, A., Durand, A., Pineau, G., Joffre, F., Geloen, A., Vaysse, C., Laugerette, F., Michalski, M.C., 2016. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol Nutr Food Res 60(3), 609-620. Li, Q., Estes, J.D., Schlievert, P.M., Duan, L., Brosnahan, A.J., Southern, P.J., Reilly, C.S., Peterson, M.L., Schultz-Darken, N., Brunner, K.G., 2009. Glycerol monolaurate prevents mucosal SIV transmission. Nature 458(7241), 1034. Lloyd-Price, J., Abu-Ali, G., Huttenhower, C., 2016. The healthy human microbiome. Genome Medicine 8(1), 51. Maag, H., 1984. Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. Journal of the American Oil Chemists' Society 61(2), 259-267. Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P., Marteau, P., 2006. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2), 205-211. Mårin, P., Andersson, B., Ottosson, M., Olbe, L., Chowdhury, B., Kvist, H., Holm, G., Sjöström, L., Björntorp, P., 1992. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism 41(11), 1242-1248. Nakamura, N., Tagawa, T., Kihara, K., Tobita, I., Kunieda, H., 1997. Phase transition between microemulsion and lamellar liquid crystal. Langmuir 13(7), 2001-2006. Parks, B.W., Nam, E., Org, E., Kostem, E., Norheim, F., Hui, S.T., Pan, C., Civelek, M., Rau, C.D., Bennett, B.J., 2013. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metabolism 17(1), 141-152. Persson, P.-G., Ahlbom, A., Hellers, G., 1992. Diet and inflammatory bowel disease: a case-control study. Epidemiology, 47-52. Projan, S.J., Brown-Skrobot, S., Schlievert, P.M., Vandenesch, F., Novick, R.P., 1994. Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. Journal of Bacteriology 176(14), 4204-4209. Reagan-Shaw, S., Nihal, M., Ahmad, N., 2008. Dose translation from animal to human studies revisited. The FASEB Journal 22(3), 659-661. Roberts, C.L., Rushworth, S.L., Richman, E., Rhodes, J.M., 2013. Hypothesis: Increased consumption of emulsifiers as an explanation for the rising incidence of Crohn's disease. J Crohns Colitis 7(4), 338-341. Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P.I., Godneva, A., Kalka, I.N., Bar, N., 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695), 210. Sackmann-Sala, L., Berryman, D.E., Munn, R.D., Lubbers, E.R., Kopchick, J.J., 2012. Heterogeneity among white adipose tissue depots in male C57BL/6J mice. Obesity (Silver Spring) 20(1), 101-111. Scher, J.U., Ubeda, C., Artacho, A., Attur, M., Isaac, S., Reddy, S.M., Marmon, S., Neimann, A., Brusca, S., Patel, T., 2015. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis & Rheumatology 67(1), 128-139. Schroeder, B.O., Birchenough, G.M.H., Stahlman, M., Arike, L., Johansson, M.E.V., Hansson, G.C., Backhed, F., 2018. Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host Microbe 23(1), 27-40 e27. Shah, R., Kolanos, R., DiNovi, M.J., Mattia, A., Kaneko, K.J., 2017. Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety. Food Additives & Contaminants: Part A 34(6), 905-917. Singh, R.K., Ishikawa, S., 2016. Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiology & Infectious diseases 4(1). Sohal, R.S., Weindruch, R., 1996. Oxidative stress, caloric restriction, and aging. Science 273(5271), 59-63. Swidsinski, A., Ung, V., Sydora, B.C., Loening-Baucke, V., Doerffel, Y., Verstraelen, H., Fedorak, R.N., 2008. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflammatory Bowel Diseases 15(3), 359-364. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L.P., Lochs, H., 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. Journal of Clinical Microbiology 43(7), 3380-3389. Thorburn, A.W., Storlien, L.H., Jenkins, A.B., Khouri, S., Kraegen, E., 1989. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. The American Journal of Clinical Nutrition 49(6), 1155-1163. Tran, T.T., Yamamoto, Y., Gesta, S., Kahn, C.R., 2008. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metabolism 7(5), 410-420. Vaishnava, S., 2016. The Intestinal Mucus Layer Comes of Age. Trends Immunol 37(1), 3-4. Viennois, E., Merlin, D., Gewirtz, A.T., Chassaing, B., 2017. Dietary Emulsifier-Induced Low-Grade Inflammation Promotes Colon Carcinogenesis. Cancer Res 77(1), 27-40. Vo, T.D., Lynch, B.S., Roberts, A., 2019. Dietary Exposures to Common Emulsifiers and Their Impact on the Gut Microbiota: Is There a Cause for Concern? Comprehensive Reviews in Food Science and Food Safety 18(1), 31-47. Wada, N., Pollock, F.J., Willis, B.L., Ainsworth, T., Mano, N., Bourne, D.G., 2016. In situ visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ 4, e2424. Yao, Y.-M., Redl, H., Bahrami, S., Schlag, G., 1998. The inflammatory basis of trauma/shock-associated multiple organ failure. Inflammation Research 47(5), 201-210. Yasmin, F., Tun, H.M., Konya, T.B., Guttman, D.S., Chari, R.S., Field, C.J., Becker, A.B., Mandhane, P.J., Turvey, S.E., Subbarao, P., 2017. Cesarean section, formula feeding, and infant antibiotic exposure: separate and combined impacts on gut microbial changes in later infancy. Frontiers in pediatrics 5, 200. Zhang, H., Taxipalati, M., Que, F., Feng, F., 2013. Microstructure characterization of a food-grade U-type microemulsion system by differential scanning calorimetry and electrical conductivity techniques. Food Chemistry 141(3), 3050-3055. Zhang, M.S., Sandouk, A., Houtman, J.C., 2016. Glycerol Monolaurate (GML) inhibits human T cell signaling and function by disrupting lipid dynamics. Scientific Reports 6, 30225. Zheng, Y., Zheng, M., Ma, Z., Xin, B., Guo, R., Xu, X., 2015. Sugar fatty acid esters, Polar Lipids. Elsevier, pp. 215-243. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73729 | - |
dc.description.abstract | 乳化劑是一類常見的食品添加劑,近年來有研究指出,乳化劑的食用可能與肥胖、代謝症候群的發生或其他慢性炎症疾病發展有關,而越來越多證據顯示,人體腸道菌與宿主之間的交互作用,是肥胖、代謝症候群和腸炎的重要因素。根據先前研究發現,給予小鼠兩種不同乳化劑 carboxymethylcellulose (CMC) 和 polysorbate 80 (P80),可能使腸道黏膜分泌的黏液乳化,導致黏液層(Mucus layer) 變薄,使腸道通透性增加,讓體循環中 lipopolysaccharide (LPS)水平升高,促使腸細胞發炎,可能是導致代謝症候群和慢性腸炎發展的原因之一。然而乳化劑平均曝露量高之脂肪酸甘油酯 (mono-and diglycerides, MDG)、卵磷脂 (lecithin)、脂肪酸蔗糖酯 (sucrose fatty acid esters) 是否對人體產生任何代謝影響,目前仍未清楚。因此,本研究之目的為深入了解乳化劑-MDG, lecithin, sucrose fatty acid esters 對腸道微生物的影響,探討腸道菌是否因為乳化劑的介入而造成失衡,並透過腸道黏液層對宿主造成影響。本實驗採用 C57BL/6 雄性小鼠進行實驗,由於受到乳化劑本身特質影響,本次實驗將會依據親水親油平衡值 (hydrophile-lipophile balance, HLB) 的高低將實驗分為兩個子實驗,子實驗一為透過飲用水介入卵磷脂 (7523 mg/kg bw/day),脂肪酸蔗糖酯 (1110 mg/kg bw/day) 和羧甲基纖維素 (1853 mg/kg bw/day),實驗為 12 週,子實驗二透過客製化飼料介入脂肪酸甘油酯 (40 mg/kg ),在 12 及 24 週後,分別進行犧牲取得血液、臟器及糞便等檢體。子實驗一結果顯示,以 lecithin、sucrose fatty acid esters 和 CMC 介入的小鼠體重略微增加但沒有達到顯著差異,並且與控制組相比實驗組在脂肪重量、腸道通透性、結腸長度及結腸病理切片皆沒有顯著差異,顯示個體並沒有誘發腸炎的表徵。觀察腸道菌與腸黏膜層相對定位及厚度測量,並未發現腸道菌入侵腸黏膜層以及黏膜層變薄之現象。代謝方面與控制組相比 sucrose fatty acid esters 組有胰島素抗性、空腹血糖值與 HOMA-IR 指標升高現象,顯示 sucrose fatty acid esters 有造成代謝功能異常之風險。而腸道菌相分析結果顯示,主座標分析 (PCoA analysis) 可以發現乳化劑實驗組與控制組相比,菌相組成結構相異,而在盲腸內腸道菌相多樣性 (alpha diversity) 和控制組相比並無顯著差異,表示乳化劑的介入並不會造成物種的豐富度與均勻度降低。進一步探究腸道菌相的組成發現在 sucrose fatty acid esters 組中 Akkermansia spp. 顯著增加。子實驗二以 MDG 介入的小鼠在體重與脂肪重量結果顯著低於控制組,在腸道通透性與結腸長度以及血糖代謝試驗與控制組相比皆無顯著差異,顯示個體並沒有誘發腸炎及代謝症候群之表徵。觀察腸道菌與腸黏膜層相對定位及厚度測量,並未發現腸道菌入侵腸黏膜層與黏膜層變薄之現象。腸道菌相分析結果顯示主座標分析 (PCoA analysis) 可以發現乳化劑實驗組與控制組相比,菌相組成結構相異,而在盲腸內腸道菌相多樣性 (alpha diversity) 並無與控制組有顯著差異,表示乳化劑的介入並不會造成物種的豐富度與均勻度降低。本研究之結論為,乳化劑的使用在曝露量 10 倍的條件下並不是造成腸炎與代謝症候群的必要性因子,並且不會透過調節腸道菌組成而利用腸道黏液層對宿主造成影響,但 sucrose fatty acid esters 與 CMC 有造成代謝異常之風險。 | zh_TW |
dc.description.abstract | Emulsifiers are common food additives used in various kinds of food product. Recent studies reported that two emulsifiers (carboxymethylcellulose, CMC; polysorbate 80, P80) could cause intestinal inflammation and metabolic syndrome by attenuation of intestinal mucus layer as well as increased the gut epithelial permeability to increase the lipopolysaccharide level. Once the high level of lipopolysaccharides in GI tract may induce the inflammation of intestinal cell. One of possible reasons progress the metabolic syndrome and colitis. However, we do not know if other commonly used emulsifiers such as mono- and diglycerides, lecithin and sucrose fatty acid esters could lead to similar health concerns. Thus, the current study is to investigate the effects of emulsifiers on gut microbiota and whether the intervention of the emulsifiers could cause the gut microbiota dysbiosis and via the mucus layer has the impact to host. Because of the property of emulsifiers, the study was divided into two parts. Based on the hydrophile-lipophile balance (HLB) value. In first part, mice experiment was conducted by using fifteen-week-old male C57BL/6 mice fed with chow diet and supplemented by lecithin (7523 mg/kg bw/day), sucrose fatty acid esters (1110 mg/kg bw/day), and carboxymethylcellulose (1853 mg/kg bw/day) in water for 12 weeks. The dosages of intervention are based on human daily exposure of these emulsifiers reported in the literature. The results of the first part showed the body weight of mice treated with emulsifiers were slightly increased without significant difference. There was no significant finding on fat mass, intestinal permeability, colon length and histopathology analysis as compared with the control group. It means no clue for inducing symptom of colitis. Observation the bacteria localization and measurement the mucus layer thickness, there is no microbiota encroachment and mucus layer thinning. However, emulsifier treatments (excluding lecithin) impaired glycemic control as assessed by fasting blood glucose concentration and serum insulin concentration. Our data suggest that sucrose fatty acid esters and CMC might induce metabolic disorder. In addition, 16S rRNA metagenomic analysis showed the gut microbiota compositions were altered by emulsifiers in cecum content. Significantly, we found that Akkermansia spp. Are much higher in sucrose fatty acid esters group. However, no significant differences were observed in alpha diversity. Another part of experiment was supplementation with mono- and diglycerides (40 mg/kg) in customized feeding. After intervention for 12 and 24 weeks, mice were sacrificed. Organs and blood were collected for subsequent analysis. In this part, the body weight and fat mass in the mono- and diglycerides group were significantly decreased. The results of gut permeability test, colon length and OGTT test which were no significant differences were observed between groups. Our data suggested there is no potential for colitis and metabolic syndrome. Analyzed bacteria localization at the surface of the intestinal mucosa and measured the thickness of mucus layer. The emulsifier-treated mice did not show microbiota encroachment and mucus layer thinning. The 16S rRNA metagenomics analysis revealed that mono- and diglycerides dramatically altered microbiota composition, which assessed by principal coordinate analysis. However, mono- and diglycerides administration did not reduced the alpha diversity. Our results suggest that common dietary emulsifiers can shape the microbiome composition, but did not cause mucus layer thinning, not necessarily cause metabolic disorder or intestinal inflammation in mouse model but exist potential risk for glucose metabolic disorder. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:55Z (GMT). No. of bitstreams: 1 ntu-108-R06641034-1.pdf: 17411206 bytes, checksum: b46baf0737082655e45787ce91c15ad0 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III 目錄 V 圖次 VIII 表次 I 縮寫表 I 第一章、前言 1 第二章、文獻回顧 2 第一節 腸道菌 2 一、 簡介 2 二、 飲食對於腸道菌與宿主之影響 3 三、 腸道菌與乳化劑之關係探討 4 第二節 乳化劑 5 ㄧ、 簡介 5 二、 目前已被研究之乳化劑與腸道菌之關聯性 5 三、 本次實驗所使用之乳化劑 7 第三節 腸道黏液層 8 ㄧ、 簡介 8 二、 功能 9 三、 腸道黏液層、腸道菌與飲食之關係探討 11 第三章、研究假說與目的 12 第一節 研究假說 12 第二節 研究目的 12 第四章、實驗架構 13 第一節 子實驗一 13 第二節 子實驗二 14 第五章、實驗材料與方法 15 第一節 實驗材料 15 一、 乳化劑 15 二、 實驗藥品 15 三、 實驗設備及儀器 16 四、 溶液配置 18 第二節 實驗方法 19 一、 乳化劑劑量設計 19 二、 乳化劑飼料 20 三、 動物實驗 21 第三節 統計分析 26 第六章、實驗結果 27 第一節 子實驗一 27 一、 小鼠體重、脂肪組織重量、瘦體組織重量 27 二、 結腸長度、腸通透性檢測與血清中 LPS 測定 27 三、 結腸組織病理切片檢測 28 四、 腸道菌與腸道黏液層共定位與距離觀測 28 五、 口服葡萄糖耐受性測驗結果 28 六、 空腹血糖、空腹胰島素濃度與 HOMA-IR 指標分析 28 七、 血清生化值分析 29 八、 菌相分析 29 第二節 子實驗二 30 ㄧ、 小鼠體重、脂肪組織重量、瘦體組織重量 30 二、 結腸長度、腸通透性檢測與血清中 LPS 測定 30 三、 結腸組織病理切片之檢測 31 四、 腸道菌與腸道黏液層共定位與厚度檢測 31 五、 口服葡萄糖耐受性測驗結果血清生化值分析 31 六、 空腹血糖、空腹胰島素濃度與 HOMA-IR 指標分析 31 七、 血清生化值分析 32 八、 菌相分析 32 第七章、討論 33 第一節 子實驗一 33 一、 小鼠體重變化 33 二、 誘導腸炎討論 33 三、 誘導代謝症候群討論 33 四、 菌相分析 34 五、 CMC組討論 35 第二節 子實驗二 37 一、 小鼠體重與脂肪組織變化 37 二、 誘導腸炎討論 37 三、 誘導代謝症候群討論 38 四、 血清生化值 38 第八章、結論 39 第九章、未來研究方向 41 第十章、實驗結果圖表 42 第一節 子實驗一 42 第二節 子實驗二 63 第三節 與先前文獻結果比較腸道菌分析 85 第十一章、參考文獻 90 第十二章、附錄 96 | |
dc.language.iso | zh-TW | |
dc.title | 探討常見食用乳化劑對於腸道菌相、腸道黏液層與代謝之影響 | zh_TW |
dc.title | Investigation into the effects of dietary emulsifiers on gut microbiota, mucus layer and metabolism | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳明賢,余佳慧,湯森林 | |
dc.subject.keyword | 乳化劑,腸道菌相,腸黏膜,代謝,食品添加物, | zh_TW |
dc.subject.keyword | emulsifiers,microbiota,mucus layer,metabolism,food additives, | en |
dc.relation.page | 119 | |
dc.identifier.doi | 10.6342/NTU201903876 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。