Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73457
Title: 以基於縱橫式可變電阻記憶體之類神經網路加速器的自適應資料表示法降低類比計算誤差
Adaptive Data Representation to Decrease Analog Variation Error of ReRAM Crossbar Accelerator for Neural Networks
Authors: Yao-Wen Kang
康耀文
Advisor: 郭大維(Tei-Wei Kuo)
Co-Advisor: 張原豪(Yuan-Hao Chang)
Keyword: 類神經網路,可變電阻記憶體,記憶體運算,縱橫式,
Neural Network,Resistive Random-Access Memory (ReRAM),Processing-In-Memory (PIM),Crossbar,
Publication Year : 2019
Degree: 碩士
Abstract: 龐大的深度類神經網路運算導致密集的記憶體存取而因此限制了馮諾伊曼架構之效能。為了彌平這樣的效能落差,
以記憶體作為運算主體的架構被廣泛的提倡,在這些研究之中以縱橫式可變電阻記憶體加速器為一大主要解決方案。然而由於可變電阻記憶體之寫入偏差會導致此類加速器有著嚴重的準確度問題。為了改善此確度問題,我們提出了自適應資料表示法用以降低因為可變電阻記憶體之寫入偏差所導致的錯誤。我們基於真實的可變電阻記憶體晶片數據做了一系列實驗模擬。結果顯示出根據我們提出之方法可讓MNIST之辨識準確率提升20%及CIFAR10之辨識準確率提升40%
Current deep neural network computations incur intensive memory accesses and thus limit the performance of current Von-Neumann architecture. To bridge the performance gap, Processing-In-Memory (PIM) architecture is widely advocated and crossbar accelerators with Resistive Random-Access Memory (ReRAM) are one of the intensively-studied solutions. However, due to the programming variation of ReRAM, crossbar accelerators suffer from the serious accuracy issue. To improve the accuracy, we propose an adaptive data representation strategy to minimize the analog variation errors caused by the programming variation of ReRAM. The proposed strategy was evaluated by a series of intensive experiments based on the data collected from real ReRAM chips, and the results show that the proposed strategy can improve the accuracy for around 20% for MNIST which is close to the ideal case and 40% for CIFAR10.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73457
DOI: 10.6342/NTU201900719
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
7.21 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved