Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorChia-Wen Wuen
dc.contributor.author陳妤欣zh_TW
dc.contributor.authorYu-Hsin Chenen
dc.date.accessioned2021-05-19T17:41:44Z-
dc.date.available2024-06-01-
dc.date.copyright2019-07-05-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Dimitriou, R.,Jones, E.,McGonagle, D.,Giannoudis, P. V., Bone regeneration: current concepts and future directions. Bmc Medicine 2011, 9, 10.
2. Einhorn, T. A., The cell and molecular biology of fracture healing. Clinical Orthopaedics and Related Research 1998, 355, S7-S21.
3. O'Brien, F. J., Biomaterials & scaffolds for tissue engineering. Materials Today 2011, 14 (3), 88-95.
4. Atala, A., Tissue engineering and regenerative medicine: Concepts for clinical application. Rejuvenation Research 2004, 7 (1), 15-31.
5. Stevens, M. M., Biomaterials for bone tissue engineering. Materials Today 2008, 11 (5), 18-25.
6. Burg, K. J. L.,Porter, S.,Kellam, J. F., Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21 (23), 2347-2359.
7. Rezwan, K.,Chen, Q. Z.,Blaker, J. J.,Boccaccini, A. R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27 (18), 3413-3431.
8. Sadat-Shojai, M.,Khorasani, M.-T.,Dinpanah-Khoshdargi, E.,Jamshidi, A., Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia 2013, 9 (8), 7591-7621.
9. Berzina-Cimdina, L.,Borodajenko, N., Research of calcium phosphates using Fourier transform infrared spectroscopy. In Infrared Spectroscopy-Materials Science, Engineering and Technology, IntechOpen: 2012.
10. Hannink, G.,Arts, J. C., Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 2011, 42, S22-S25.
11. Galia, C. R.,Lourenço, A. L.,Rosito, R.,Souza Macedo, C. A.,Camargo, L. M. A. Q., PHYSICOCHEMICAL CHARACTERIZATION OF LYOPHILIZED BOVINE BONE GRAFTS. Revista Brasileira de Ortopedia (English Edition) 2011, 46 (4), 444-451.
12. Gozalian, A.,Behnamghader, A.,Daliri, M.,Moshkforoush, A., Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method. Scientia Iranica 2011, 18 (6), 1614-1622.
13. Zilm, M.,Chen, L.,Sharma, V.,McDannald, A.,Jain, M.,Ramprasad, R.,Wei, M., Hydroxyapatite substituted by transition metals: experiment and theory. Physical Chemistry Chemical Physics 2016, 18 (24), 16457-16465.
14. Liangzhi, G.,Weibin, Z.,Yuhui, S., Magnesium substituted hydroxyapatite whiskers: synthesis, characterization and bioactivity evaluation. RSC Advances 2016, 6 (115), 114707-114713.
15. Zhang, Y. F.,Xu, J. K.,Ruan, Y. C.,Yu, M. K.,O'Laughlin, M.,Wise, H.,Chen, D.,Tian, L.,Shi, D. F.,Wang, J. L.,Chen, S. H.,Feng, J. Q.,Chow, D. H. K.,Xie, X. H.,Zheng, L. Z.,Huang, L.,Huang, S.,Leung, K.,Lu, N.,Zhao, L.,Li, H. F.,Zhao, D. W.,Guo, X.,Chan, K. M.,Witte, F.,Chan, H. C.,Zheng, Y. F.,Qin, L., Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nature Medicine 2016, 22 (10), 1160-1169.
16. Willumeit, R.,Fischer, J.,Feyerabend, F.,Hort, N.,Bismayer, U.,Heidrich, S.,Mihailova, B., Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomaterialia 2011, 7 (6), 2704-2715.
17. Landi, E.,Logroscino, G.,Proietti, L.,Tampieri, A.,Sandri, M.,Sprio, S., Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. Journal of Materials Science: Materials in Medicine 2008, 19 (1), 239-247.
18. Myers, H., Calcium phosphates in oral biology and medicine. Monographs in oral science 1991, 15.
19. Jahnen-Dechent, W.,Ketteler, M., Magnesium basics. Clinical kidney journal 2012, 5 (Suppl_1), i3-i14.
20. Chaudhry, A. A.,Goodall, J.,Vickers, M.,Cockcroft, J. K.,Rehman, I.,Knowles, J. C.,Darr, J. A., Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. Journal of Materials Chemistry 2008, 18 (48), 5900-5908.
21. Lenders, J. J. M.,Dey, A.,Bomans, P. H. H.,Spielmann, J.,Hendrix, M.,de With, G.,Meldrum, F. C.,Harder, S.,Sommerdijk, N., High-Magnesian Calcite Mesocrystals: A Coordination Chemistry Approach. Journal of the American Chemical Society 2012, 134 (2), 1367-1373.
22. Bertoni, E.,Bigi, A.,Cojazzi, G.,Gandolfi, M.,Panzavolta, S.,Roveri, N., Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Journal of Inorganic Biochemistry 1998, 72 (1-2), 29-35.
23. Xu, J.,Yan, C.,Zhang, F.,Konishi, H.,Xu, H.,Teng, H. H., Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (44), 17750-17755.
24. Suchanek, W. L.,Byrappa, K.,Shuk, P.,Riman, R. E.,Janas, V. F.,TenHuisen, K. S., Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 2004, 25 (19), 4647-4657.
25. Laurencin, D.,Almora-Barrios, N.,de Leeuw, N. H.,Gervais, C.,Bonhomme, C.,Mauri, F.,Chrzanowski, W.,Knowles, J. C.,Newport, R. J.,Wong, A.,Gan, Z.,Smith, M. E., Magnesium incorporation into hydroxyapatite. Biomaterials 2011, 32 (7), 1826-1837.
26. Ren, F.,Leng, Y.,Xin, R.,Ge, X., Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomaterialia 2010, 6 (7), 2787-2796.
27. Cacciotti, I.,Bianco, A.,Lombardi, M.,Montanaro, L., Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. Journal of the European Ceramic Society 2009, 29 (14), 2969-2978.
28. Fahy, E.,Subramaniam, S.,Brown, H. A.,Glass, C. K.,Merrill Jr, A. H.,Murphy, R. C.,Raetz, C. R.,Russell, D. W.,Seyama, Y.,Shaw, W., A comprehensive classification system for lipids. European Journal of Lipid Science and Technology 2005, 107 (5), 337-364.
29. Srour, B. Emerging roles for natural and artificial lipids in shaping the catalytic function, stability and oligomeric state of membrane proteins. Strasbourg, 2015.
30. Huang, J.-S.,Liu, K.-M.,Chen, C.-C.,Ho, K.-Y.,Wu, Y.-M.,Wang, C.-C.,Cheng, Y.-M.,Ko, W.-L.,Liu, C.-S.,Ho, Y.-P., Liposomes-coated hydroxyapatite and tricalcium phosphate implanted in the mandibular bony defect of miniature swine. The Kaohsiung Journal of Medical Sciences 1997, 13 (4), 213-228.
31. Feng, Q.,Chen, Q.,Wang, H.,Cui, F., Influence of concentration of calcium ion on controlled precipitation of calcium phosphate within unilamellar lipid vesicles. Journal of Crystal Growth 1998, 186 (1-2), 245-250.
32. Chu, M.,Liu, G., Preparation and characterization of hydroxyapatite/liposome core–shell nanocomposites. Nanotechnology 2005, 16 (8), 1208.
33. Perttu, E. K.,Szoka, F. C., Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications 2011, 47 (47), 12613-12615.
34. Szcześ, A., Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate. Colloids and Surfaces B: Biointerfaces 2013, 101, 44-48.
35. Lis, L.,Lis, W.,Parsegian, V.,Rand, R., Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry 1981, 20 (7), 1771-1777.
36. Yu, P. T.,Tsao, C.,Wang, C. C.,Chang, C. Y.,Wang, C. H.,Chan, J. C. C., High‐Magnesium Calcite Mesocrystals: Formation in Aqueous Solution under Ambient Conditions. Angewandte Chemie 2017, 129 (51), 16420-16424.
37. Kuete, V.,Karaosmanoğlu, O.,Sivas, H., Anticancer Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa, Elsevier: 2017; pp 271-297.
38. Sanikop, S.,Patil, S.,Agrawal, P., Gingival crevicular fluid alkaline phosphatase as a potential diagnostic marker of periodontal disease. Journal of Indian Society of Periodontology 2012, 16 (4), 513.
39. Brundavanam, S.,Poinern, G. E. J.,Fawcett, D., Kinetic and adsorption behaviour of aqueous Fe2+, Cu2+ and Zn2+ using a 30 nm hydroxyapatite based powder synthesized via a combined ultrasound and microwave based technique. American Journal of Materials Science 2015, 5 (2), 31-40.
40. Nassif, N.,Martineau, F.,Syzgantseva, O.,Gobeaux, F.,Willinger, M.,Coradin, T.,Cassaignon, S.,Azais, T.,Giraud-Guille, M. M., In Vivo Inspired Conditions to Synthesize Biomimetic Hydroxyapatite. Chemistry of Materials 2010, 22 (12), 3653-3663.
41. Ren, F. Z.,Ding, Y. H.,Leng, Y., Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. Journal of Biomedical Materials Research Part A 2014, 102 (2), 496-505.
42. Destainville, A.,Champion, E.,Bernache-Assollant, D.,Laborde, E., Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Materials Chemistry and Physics 2003, 80 (1), 269-277.
43. Raynaud, S.,Champion, E.,Bernache-Assollant, D.,Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23 (4), 1065-1072.
44. Meejoo, S.,Maneeprakorn, W.,Winotai, P., Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochimica Acta 2006, 447 (1), 115-120.
45. Cagnasso, M.,Boero, V.,Franchini, M. A.,Chorover, J., ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces. Colloids and Surfaces B-Biointerfaces 2010, 76 (2), 456-467.
46. Sturm, E. V.,Colfen, H., Mesocrystals: structural and morphogenetic aspects. Chemical Society Reviews 2016, 45 (21), 5821-5833.
47. Schwarcz, H. P.,McNally, E. A.,Botton, G. A., Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. Journal of structural biology 2014, 188 (3), 240-248.
48. Ziv, V.,Wagner, H. D.,Weiner, S., Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone 1996, 18 (5), 417-428.
49. LeGeros, R. Z., Calcium phosphate-based osteoinductive materials. Chemical reviews 2008, 108 (11), 4742-4753.
50. Cheng, K.,Weng, W.,Wang, H.,Zhang, S., In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials 2005, 26 (32), 6288-6295.
51. Fahami, A.,Beall, G. W.,Betancourt, T., Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite. Materials Science & Engineering C-Materials for Biological Applications 2016, 59, 78-85.
52. Smeets, R.,Kolk, A.,Gerressen, M.,Driemel, O.,Maciejewski, O.,Hermanns-Sachweh, B.,Riediger, D.,Stein, J. M., A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation. Head & Face Medicine 2009, 5 (1), 13.
53. Fahami, A.,Beall, G. W., Mechanosynthesis of carbonate doped chlorapatite–ZnO nanocomposite with negative zeta potential. Ceramics International 2015, 41 (9), 12323-12330.
54. Fournier, V.,Marcus, P.,Olefjord, I., Oxidation of magnesium. Surface and Interface Analysis 2002, 34 (1), 494-497.
55. Mayer, I.,Schlam, R.,Featherstone, J., Magnesium-containing carbonate apatites. Journal of Inorganic Biochemistry 1997, 66 (1), 1-6.
56. Wang, J.,Chao, Y.,Wan, Q.,Zhu, Z.,Yu, H., Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomaterialia 2009, 5 (5), 1798-1807.
57. Chen, K.,Xie, K.,Long, Q.,Deng, L.,Fu, Z.,Xiao, H.,Xie, L., Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Advances 2017, 7 (47), 29368-29377.
58. Kačiulis, S.,Mattogno, G.,Pandolfi, L.,Cavalli, M.,Gnappi, G.,Montenero, A., XPS study of apatite-based coatings prepared by sol–gel technique. Applied Surface Science 1999, 151 (1-2), 1-5.
59. Khairallah, F.,Glisenti, A., XPS study of MgO nanopowders obtained by different preparation procedures. Surface Science Spectra 2006, 13 (1), 58-71.
60. Sivaranjini, B.,Mangaiyarkarasi, R.,Ganesh, V.,Umadevi, S., Vertical Alignment of Liquid Crystals Over a Functionalized Flexible Substrate. Scientific reports 2018, 8 (1), 8891.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7337-
dc.description.abstract含鎂氫氧基磷灰石應用於骨修復填補材料具有極大的發展潛力,但高鎂含量的氫氧基磷灰石之合成方法仍尚未發展成熟。在這項研究中,我們利用磷脂質(磷脂酰膽鹼)輔助合成含鎂氫氧基磷灰石,其中,鎂在材料中的重量百分比可控制在1.44至10.64 %之間。利用磷脂質中帶負電荷的磷酸官能基可作用於陽離子(如鈣離子或鎂離子),以提供含鎂氫氧基磷灰石穩定的成核。我們優化合成條件以獲得相對低結晶度的含鎂氫氧基磷灰石,透過X光繞射分析儀測量證明其晶相與人體骨骼相似。在體外試驗中,含鎂氫氧基磷灰石中的鎂離子釋放有利於骨細胞的增生和分化。綜上所述,這項研究闡述磷脂質應用於含鎂氫氧基磷灰石的新功效,並提供一種具前景的骨科生醫材料。zh_TW
dc.description.abstractMagnesium-loaded hydroxyapatite (Mg@HAp) is a potential biomaterial for bone healing application but has not been comprehensively synthesized yet. In this study, we utilize a phosphatidylcholine (PC)-assisted method for synthesizing Mg@HAp with controllable Mg amount from 1.44 to 10.64 wt%. It is proposed that the negatively charged phosphate functional group of PC could act on cations (i.e. Mg2+ or Ca2+), which provides a stable nucleation for the formation of Mg@HAp. We optimize synthetic conditions for achieving a Mg@HAp with a relatively low crystallinity which is similar to human bone structure, as evidenced by XRD measurement. The in vitro test of bone cells (MG63) shows that the release of Mg2+ ions from Mg@HAp enhances cellular proliferation and differentiation. We believe the synthesized Mg@HAp would be a promising biomaterial in orthopedic applications.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:41:44Z (GMT). No. of bitstreams: 1
ntu-108-R06524051-1.pdf: 4635525 bytes, checksum: 3d7d3f6bc2cab7decf35456aacf702fe (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAbstract i
摘要 ii
Table of Content iii
List of Figures vi
List of Tables viii
1. Introduction 1
1.1. Biomaterials for bone graft 1
1.2. Calcium phosphate 4
1.3. Magnesium loaded hydroxyapatite 9
1.4. Phospholipid 13
2. Objectives 17
3. Experimental 18
3.1. Chemicals and Materials 18
3.2. Equipment 20
3.3. Preparation of Mg@HAp and Mg@HAp-PC. 22
3.3.1. Synthesis of Mg@HAp 22
3.3.2. Synthesis of Mg@HAp-PC 24
3.4. Characterization 26
3.4.1. X-ray Diffractometer (XRD) 26
3.4.2. Field Emission Scanning Electron Microscope (FE-SEM) 26
3.4.3. Inductively Coupled Plasma-Mass Spectrometer (ICP/MS) 27
3.4.4. High Resolution Transmission Electron Microscope (HRTEM) 27
3.4.5. Fourier Transform Infrared Spectrometer (FTIR) 27
3.4.6. X-ray Photoelectron Spectroscopy (XPS) 28
3.4.7. Zeta Potential Analyzer 28
3.4.8. Degradation test 28
3.4.9. Cell Culture 29
3.4.10. MTT Assay 29
3.4.11. ALP Assay 32
3.4.12. Quantitative analysis of Mg ions release 35
3.4.13. Statistical analysis 35
4. Results and Discussion 36
4.1. Materials characterizations 36
4.2. PC-assisted reaction mechanism 53
4.3. Degradation test 56
4.4. In vitro test 57
4.4.1. Cell viability and proliferation 57
4.4.2. Cellular differentiation 59
4.4.3. Quantitative analysis of Mg ions release 60
5. Conclusion 62
6. Future Prospects 63
7. Reference 64
Appendix 69
A.1 ICP calibration curve of (a) magnesium, (b) calcium and (c) phosphorus 69
A.2 EDS of Mg@HAp and Mg@HAp-PC 71
A.3 The specific surface area of Mg@HAp and Mg@HAp-PC 71
A.4 Adsorption and desorption isotherms of (a) Mg@HAp and (b) Mg@HAp-PC 72
A.5 The mesoporous pore distribution of (a) Mg@HAp and (b) Mg@HAp-PC 73
A.6 The microporous pore distribution of (a) Mg@HAp and (b) Mg@HAp-PC 74
A.7 The XRD pattern of HAp (Ca/Mg=0.5) 75
A.8 TGA analysis of HAp-PC (Ca/Mg=5) 75
A.9 Hydrodynamic size of Mg@HAp and Mg@HAp-PC 76
-
dc.language.isoen-
dc.subject鎂zh_TW
dc.subject人類骨母細胞(MG63)zh_TW
dc.subject骨修復材料zh_TW
dc.subject磷脂質zh_TW
dc.subject氧基磷灰石zh_TW
dc.subjectbone healingen
dc.subjectmagnesiumen
dc.subjecthydroxyapatiteen
dc.subjectMG63 osteoblast-like cellsen
dc.subjectphosphatidylcholineen
dc.title磷脂質輔助合成含鎂氫氧基磷灰石應用於骨修復材料zh_TW
dc.titleLipid-Assisted Synthesis of Magnesium-Loaded Hydroxyapatite for Bone Healingen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林峰輝;方旭偉;張瑛芝;胡晉嘉zh_TW
dc.contributor.oralexamcommitteeFeng-Huei Lin;Hsu-Wei Fang;Ying-Chih Chang;Jin-Jia Huen
dc.subject.keyword鎂,氧基磷灰石,磷脂質,骨修復材料,人類骨母細胞(MG63),zh_TW
dc.subject.keywordhydroxyapatite,magnesium,phosphatidylcholine,bone healing,MG63 osteoblast-like cells,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU201901162-
dc.rights.note未授權-
dc.date.accepted2019-07-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2024-07-05-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
4.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved