請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7323
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
dc.contributor.author | SHI-BAO DAI | en |
dc.contributor.author | 戴士寶 | zh_TW |
dc.date.accessioned | 2021-05-19T17:41:32Z | - |
dc.date.available | 2024-08-05 | |
dc.date.available | 2021-05-19T17:41:32Z | - |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-07 | |
dc.identifier.citation | (1) Miller, D. J.; Asthana, N.; Kolah, A.; Lira, C. T. Process for Production of Organic Acid Esters. US 7,652,167, Jan. 26, 2010.
(2) Pereira, C. S. M.; Silva, V. M. T. M.; Rodrigues, A. E. Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chem. 2011, 13, 2658-2671. (3) Global Ethyl Lactate Market Research Report 2016; Gos International Inc.: 2016. (4) de Jong, E.; Hisgson, A.; Walsh, P.; Wellisch, M. Bio-Based Chemicals: Value Added Products From Biorefineries; IEA Bioenergy, Task 42, Biorefineries: Wageningen, The Netherlands, 2013. (Available online at http://www.ieabioenergy.com/wp content/uploads/2013/10/Task-42-Biobased-Chemicals-value-added-products-from-biorefineries.pdf) (5) Biddy, M. J.; Scarlata, C.; Kinchin, C. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential; National Renewable Energy Laboratory: Golden, CO, United States, 2016 . (Available online at http://www.nrel.gov/docs/fy16osti/65509.pdf). (6) Asthana, N.; Kolah, A.; Vu, D. T.; Lira, C. T.; Miller, D. J. A Continuous Reactive Separation Process for Ethyl Lactate Formation. Org. Process Res. Dev. 2005, 9, 599-607. (7) Doherty, M. F.; Buzad, G., Reactive Distillation by Design. 1992; Vol. 70, p 448-458. (8) Perry, R., Chemical engineer’s handbook. McGraw Hill: New York, 1992. (9) Meirelles, A.; Weiss, S.; Herfurth, H. Ethanol dehydration by extractive distillation. J. Chem. Technol. Biotechnol. 1992, 53, 181-188. (10) Pinto, R. T. P.; Wolf-Maciel, M. R.; Lintomen, L. Saline extractive distillation process for ethanol purification. Comput. Chem. Eng. 2000, 24, 1689-1694. (11) Lynn, S.; Hanson, D. N. Multieffect extractive distillation for separating aqueous azeotropes. Ind. Eng. Chem. Proc. Des. Dev. 1986, 25, 936-941. (12) Arifin, S.; Chien, I. L. Design and Control of an Isopropyl Alcohol Dehydration Process via Extractive Distillation Using Dimethyl Sulfoxide as an Entrainer. Ind. Eng. Chem. Res. 2008, 47, 790-803. (13) Kober, P. A. Pervaporation, perstillation and percrystallization. J. Membr. Sci. 1995, 100, 61-64. (14) Lipnizki, F.; Field, R. W.; Ten, P.-K. Pervaporation-based hybrid process: a review of process design, applications and economics. J. Membr. Sci. 1999, 153, 183-210. (15) Waldburger Raoul, M.; Widmer, F. Membrane reactors in chemical production processes and the application to the pervaporation‐assisted esterification. Chem. Eng. Technol. 1996, 19, 117-126. (16) Jyoti, G.; Keshav, A.; Anandkumar, J. Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. J. Eng. 2015, 2015, 24. (17) Lee, H.-Y.; Li, S.-Y.; Chen, C.-L. Evolutional Design and Control of the Equilibrium-Limited Ethyl Acetate Process via Reactive Distillation−Pervaporation Hybrid Configuration. Ind. Eng. Chem. Res. 2016, 55, 8802-8817. (18) Gao, J.; Zhao, X. M.; Zhou, L. Y.; Huang, Z. H. Investigation of Ethyl Lactate Reactive Distillation Process. Chem. Eng. Res. Des. 2007, 85, 525-529. (19) Daengpradab, B.; Rattanaphanee, P. Process Intensification for Production of Ethyl Lactate from Fermentation-Derived Magnesium Lactate: A Preliminary Design. Int. J. Chem. React. Eng. 2015, 13, 407-412. (20) Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Proc. Des. Dev. 1975, 14, 209-216. (21) Asthana, N. S.; Kolah, A. K.; Vu, D. T.; Lira, C. T.; Miller, D. J. A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res. 2006, 45, 5251-5257. (22) Su, C.-Y.; Yu, C.-C.; Chien, I. L.; Ward, J. D. Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res. 2013, 52, 11070-11083. (23) Luyben, W. L. Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope. Ind. Eng. Chem. Res. 2009, 48, 3484-3495. (24) Santoso, A. Design and Control of Hybrid Distillation-Membrane Systems for Separating Azeotropic Mixtures. Master thesis, National Taiwan University, Taiwan, 2010. (25) Tusel, G. F.; Brüschke, H. E. A. Use of pervaporation systems in the chemical industry. Desalination 1985, 53, 327-338. (26) Geankoplis, C., Transport processes and separation process principles. Prentice Hall Professional Technical Reference: New York, 1993. (27) Sert, E.; Atalay, F. S. n-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chem. Eng. Process. Process Intensif. 2014, 81, 41-47. (28) Delgado, P.; Sanz, M. T.; Beltrán, S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol. J. Membr. Sci. 2009, 332, 113-120. (29) Lee, F. M.; Pahl, R. H. Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Ind. Eng. Chem. Proc. Des. Dev. 1985, 24, 168-172. (30) Douglas, J. M., Conceptual design of chemical processes. McGraw-Hill: New York, 1988. (31) Van Hoof, V.; Van den Abeele, L.; Buekenhoudt, A.; Dotremont, C.; Leysen, R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 2004, 37, 33-49. (32) Woods, D. R., Cost Estimation for the Process Industries. McMaster University: Hamilton, Ontario, Canada, 1983. (33) Oliveira, T. A. C.; Cocchini, U.; Scarpello, J. T.; Livingston, A. G. Pervaporation mass transfer with liquid flow in the transition regime. J. Membr. Sci. 2001, 183, 119-133. (34) Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S., Product and process design principles: synthesis, analysis, and evaluation. WILEY: New York, 2009. (35) Hooke, R.; Jeeves, T. A. `` Direct Search' Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212-229. (36) Luyben, W. L., Principles and Case Studies of Simultaneous Design. WILEY: United States, 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7323 | - |
dc.description.abstract | 本論文針對乳酸乙酯之酯化系統,提出兩組不同生產乳酸乙酯之商業化製程。整組架構可分為反應區域以及分離區域。在適當的熱力學與動力學模型之下,先探討針對Miller等人1的反應區域來改善。藉由觀察反應區域第一根反應蒸餾塔塔內之各成分摩爾組成分佈,可以發現乳酸乙酯組成最高點並非出現在塔底,而是在接近塔底的板。因此在第一根反應蒸餾塔取出一股高純度乳酸乙酯側流來取代原先的產物分離塔。最後在反應段僅需兩反應蒸餾塔即可實現生產高純度乳酸乙酯之目標,其一為乳酸乙酯酯化塔,其次為水解塔進行不純物水解。
在分離區域的設計上,以兩組不同的組態-萃取蒸餾與薄膜,處理來自反應區域的水與乙醇混合物。萃取蒸餾系統在處理水與乙醇的混合物上,甘油為一相當合適的萃取劑。其原因在於比起傳統萃取劑而言,甘油提取水的效果更好。除此之外,在考量製程的綠化上,甘油為無毒化合物,因此適合作為分離水與乙醇的萃取劑。在薄膜程序上,選用商業化薄膜-PERVAP® 2201。由於來自反應區域的水含量高於薄膜操作上限,因此選用複合式的方法,先將物流送至傳統蒸餾塔進行除水,而後再由滲透蒸發程序分離乙醇與水。 程序之最適化上,以年均總成本作為目標函數,針對以上兩組製程探討不同設計與操作變數對於系統的影響以求得最佳之設計組態。結果顯示,相較於傳統的萃取蒸餾法,以滲透蒸發複合程序結合兩反應蒸餾塔製程來生產乳酸乙酯較具經濟效益。總計節省76%之操作成本與31%之年均總成本。 | zh_TW |
dc.description.abstract | Two commercial scale ethyl lactate (L1E) production processes are studied in the work. The L1E processes can be divided into the reaction part and the separation section. For the reaction part, instead of the three-column design presented by Miller et al1, the proposed configuration only contains two reactive distillation (RD) columns, where the L1E product is taken from the first RD column as a sidedraw. This novel improvement can reduce 22.26% of energy consumption in the reaction part. Additionally, disparate separation approaches such as extractive distillation (ED) and the pervaporation (PV) are then implemented to deal with the ethanol/water azeotrope. Economics for alternative configurations are analyzed to find the most competitive and cost-effective process. As a result, the RD with PV design can save at least 31.47% of total annual cost compared to the RD with ED configuration. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:32Z (GMT). No. of bitstreams: 1 ntu-108-R05524070-1.pdf: 3604912 bytes, checksum: 9a43b9a55b9d8c16341e22e90d439743 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 II
中文摘要 IV Abstract V 1. Introduction 1 1.1. Review of ethyl lactate 1 1.2. Review of reactive distillation 5 1.1. Review of extractive distillation 8 1.2. Review of pervaporation 10 1.3. Literature survey 12 1.4. Research motivation 14 1.5. Dissertation organization 15 2. Model Building 16 2.1. Thermodynamic Property 16 2.2. Reaction Kinetics 22 2.3. Pervaporation Model 24 2.3.1. Preface 24 2.3.2. The influence of feed condition on membrane performance 26 2.3.3. Pervaporation module 28 2.3.4. Pervaporation model for ethyl lactate system 31 3. Steady State Design 34 3.1. Preface 34 3.2. Reaction Section 35 3.3. Separation Section 40 3.3.1. Extractive Distillation 43 3.3.2. Pervaporation 45 3.4. Process Optimization 46 3.5. Variables in Reaction Section 47 3.6. Variables in Separation Section 49 3.7. Optimization Strategy 51 4. Results and Discussion 56 5. Conclusion 65 Reference 66 Appendix 71 | |
dc.language.iso | en | |
dc.title | 乳酸乙酯製程之反應蒸餾系統與不同分離組態之設計與經濟評估 | zh_TW |
dc.title | Design and Economic Evaluation for Production of Ethyl Lactate via Reactive Distillation Combined with Various Separation Configurations | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳哲夫(Jeffrey D. Ward),錢義隆(I-Lung Chien),李豪業(Hao-Yeh Lee) | |
dc.subject.keyword | 乳酸乙酯,程序設計,反應蒸餾,萃取蒸餾,滲透蒸發, | zh_TW |
dc.subject.keyword | Ethyl Lactate,Process design,Reactive distillation,Extractive distillation,Pervaporation, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201802026 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-07-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-05 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 3.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。