Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72920
標題: 機器學習在商業週期的分類與預測之應用
Applications of Machine Learning in Classifying and Forecasting Business Cycles
作者: Scott Schwartz
天空
指導教授: 楊曙榮(Sunny Yang)
關鍵字: 機器學習,商業週期,景氣衰退,預測,分類,
Machine Learning,Forecasting,Recession,Business Cycle,Prediction,Classification,
出版年 : 2019
學位: 碩士
摘要: The term “recession”is not only a sensitive topic to the workers, investors, and businesses that suffer immense loss during this time, but also economists whom continually struggle to predict them. Through the rise of Big Data, Machine Learning potentially gives statisticians and economists alike a new tool for predicting recessions. In order to explore this field, this paper asks two fundamental questions:
• Does machine learning help classify and forecast recessions within the business cycle?
• Which models are most effective in predicting and classifying recessions?
Applying the most common machine learning classification algorithms, we perform out-of-sample performance evaluations using a self-selected sample of macroeconomic indicators. Our findings imply that Random Forest, KNN, and Support Vector Machine models best classify and predict recessions. The analysis results suggest that machine learning has incredible potential in improving prediction accuracy. However, we believe these models can be further developed through additional research and application within the Deep Learning field of machine learning.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72920
DOI: 10.6342/NTU201901681
全文授權: 有償授權
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved