Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊曙榮(Sunny Yang)
dc.contributor.authorScott Schwartzen
dc.contributor.author天空zh_TW
dc.date.accessioned2021-06-17T07:10:23Z-
dc.date.available2019-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-22
dc.identifier.citationAltug, S. G. (2009). Business Cycles: Fact, Fallacy and Fantasy. World Scientific Pub Co Inc.
Benoit, S., & Raffinot, T. (2018). Investing Through Economic Cycles with Ensemble Machine Learning. Paris.
Berge, T. (2014). Predicting Recessions with Leading Indicators: Model Averaging and Selection Over Business Cycles. Federal Reserve Bank of Kansas City.
Berge, T. J., & Jorda, O. (2010). Evaluating the Classification of Economic Expansion into Recessions and Expansions. Davis: National Bureau of Economic Research .
Burns, A. F., & Mitchell, W. C. (1946). Measuring Business Cycles. Naitonal Bureau of Economic Research.
Carter, S., & Cox, A. (2011, September 8). One 9/11 Tally. Retrieved from The New York Times: https://archive.nytimes.com/www.nytimes.com/interactive/2011/09/08/us/sept-11-reckoning/cost-graphic.html?hp
Estrella, A., & Mishkin, F. (1996). The Yield Curve as a Predictor of U.S Recessions. Federal Reserve Bank ofa New York.
Ferrara, J. A. (2004). Detecting Cyclical Turning Points: The ABCD Approach. Journal of Business Cycle Measurement and Analysis – Vol. 1.
Frumkin, N. (2015). Recession Prevention Handbook. New York: Routledge.
Garbellano, J. (2016). Nowcasting Recessions with Machine Learning - New Tools for Predicting the Business Cycle.
Hamilton, J. D. (2010). Calling Recessions in Real Time. National Bureau of Economics Research.
Heilemann, U., & Weihs, C. (2007). Classification and Clustering in Business Cycle Analysis. Berlin: Duncker and Humblot.
Ineichen, A. (2015). Nowcasting: A Risk Management Tool. Chartered Alternative Investment Analysis (CAIA).
Liu, W., & Moench, E. (2014). What Predicts U.S. Recessions? Federal Reserve Bank of New York Staff Reports.
Mintz, I. (1974). Dating United States Growth Cycles. In NBER, Explorations in Economics Research, Volume I, Number I (pp. 1-113). National Bureau of Economics Research .
Mitchell, T. (1997). Machine Learning. McGraw-Hill .
Ng, S. (2013). Boosting Recessions. New York: Columbia University.
Ng, S., & Wright, J. H. (2013). Facts and Challenges From the Great Recession for Forecasting and Macroeconomic Modeling. Boston: National Bureau of Economics Research.
Papadimitriou, T., Gogas, P., Matthaiou, M., & Chrysanthidou, E. (2007). Yield Curve and Recession Forecasting in a Machine Learning Framework . Rimini Centre for Economic Analysis.
Raffinot, T. (2017). Asset Allocation, Economic Cycles and Machine Learning. PSL Research University.
Silvia, J. E., & Iqbal, A. (2018). Can Machine Learning Improve Recession Predictions? Wells Fargo Security Economics Group.
Stengel, D. N., & Chaffe-Stengel, P. (2011). Working with Economic Indicators: Interpretations and Sources. New York City: Business Expert Press.
Stock, J. H., & Watson, M. W. (1989). New Indexes of Coincident and Leading Economic Indicators. NBER Macroenomics Annual, 351-409.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72920-
dc.description.abstractThe term “recession”is not only a sensitive topic to the workers, investors, and businesses that suffer immense loss during this time, but also economists whom continually struggle to predict them. Through the rise of Big Data, Machine Learning potentially gives statisticians and economists alike a new tool for predicting recessions. In order to explore this field, this paper asks two fundamental questions:
• Does machine learning help classify and forecast recessions within the business cycle?
• Which models are most effective in predicting and classifying recessions?
Applying the most common machine learning classification algorithms, we perform out-of-sample performance evaluations using a self-selected sample of macroeconomic indicators. Our findings imply that Random Forest, KNN, and Support Vector Machine models best classify and predict recessions. The analysis results suggest that machine learning has incredible potential in improving prediction accuracy. However, we believe these models can be further developed through additional research and application within the Deep Learning field of machine learning.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:10:23Z (GMT). No. of bitstreams: 1
ntu-108-R06749065-1.pdf: 3941329 bytes, checksum: 38e81fdb484496ecd632afa6362a2839 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAbstract i
Acknowledgements ii
Contents iii
List of Tables v
List of Figures vi
1. Introduction 1
2. Background 3
2.1. Seasonality and Cyclicity 3
2.2. GDP and the Economic Cycle 4
2.3. Potential Causes of the Business Cycle 7
2.4. Business Cycle Theory 9
2.5. Indicator Variables 11
2.6. Development of Business Cycle Modern Theory 12
2.7. Challenges in Forecasting Model Development 14
3. Machine Learning 17
3.1. What is Machine Learning? 17
3.2. Why Machine Learning? 19
3.3. Types of Machine Learning 19
3.4. Machine Learning in Economics 21
3.5. Machine Learning Models 21
3.5.1. Logistic Regression 22
3.5.2. Naïve Bayes 23
3.5.3. Support Vector Machine (SVM) 26
3.5.3.1. The Kernal Trick 27
3.5.4. K Nearest Neighbors (KNN) 28
3.5.5. Decision Trees 29
3.6. Ensemble Learning 31
3.6.1. Random Forest 31
3.7. Evaluating Machine Learning Models 32
3.7.1. Evaluation Techniques 32
3.7.1.1. Holdout 32
3.7.1.2. Cross-Validation 33
3.7.2. Evaluation Metrics 33
3.7.2.1. Confusion Matrix 35
3.7.2.2. F1 Score 36
3.7.2.3. ROC-AUC Score 37
4. Data Description 38
4.1. Variable Selection 38
4.2. Data Resource and Cleaning 40
5. Methodology and Results 42
5.1. Comparing Classification Models 42
5.1.1. Random Forest Classification 48
5.1.2. Logistic Regression Classification 50
5.2. Adding Features 51
5.3. The Question of Time 56
5.3.1. Linear Weighted Moving Average 57
5.3.2. Exponential Weighted Moving Average 58
5.3.3. Predictions 60
5.4. Future Forecasts 62
6. Conclusion and Future Areas of Research 64
References 66
Appendix 68
Appendix A: Significance Test Result 68
Appendix B: Weighted Moving Average Model Results 72
Appendix C: R Coding 74
C.1 Data Processing 74
C.2 Random Forest Model and Significance Test 76
C.3 Logistic Regression and Significance Test 78
C.4 KNN Model 80
C.5 SVM Model 81
C.6 Naïve Bayes Model 82
C.7 Evaluation Metrics 83
C.8 Graphs and Visuals 84
Appendix D: Future Forecasts 90
dc.language.isoen
dc.subject景氣衰退zh_TW
dc.subject商業週期zh_TW
dc.subject機器學習zh_TW
dc.subject分類zh_TW
dc.subject預測zh_TW
dc.subjectClassificationen
dc.subjectForecastingen
dc.subjectRecessionen
dc.subjectBusiness Cycleen
dc.subjectPredictionen
dc.subjectMachine Learningen
dc.title機器學習在商業週期的分類與預測之應用zh_TW
dc.titleApplications of Machine Learning in Classifying and Forecasting Business Cyclesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅明琇(Sonia Lo),陳立民(Li-Ming Chen)
dc.subject.keyword機器學習,商業週期,景氣衰退,預測,分類,zh_TW
dc.subject.keywordMachine Learning,Forecasting,Recession,Business Cycle,Prediction,Classification,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201901681
dc.rights.note有償授權
dc.date.accepted2019-07-22
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved