請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄(Min-Hsiung Pan) | |
| dc.contributor.author | Ya-Chun Chou | en |
| dc.contributor.author | 周雅淳 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:09:06Z | - |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-26 | |
| dc.identifier.citation | Allain, E.P., Rouleau, M., Lévesque, E., and Guillemette, C. (2020) 'Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression', British Journal of Cancer, 122: 1277-1287. Attie, A.D., and Scherer, P.E. (2009) 'Adipocyte metabolism and obesity', The Journal of Lipid Research, 50: S395-S399. Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., and Gattuso, G. (2010) 'Flavonoid composition and antioxidant activity of juices from Chinotto (Citrus × myrtifolia Raf.) fruits at different ripening stages', Journal of Agricultural and Food Chemistry, 58: 3031-3036. Bonet, M.L., Oliver, P., and Palou, A. (2013) 'Pharmacological and nutritional agents promoting browning of white adipose tissue', Biochimica et Biophysica Acta, 1831: 969-985. Burt, R.W. (2000) 'Colon cancer screening', Gastroenterology, 119: 837-853. Calderon-Dominguez, M., Mir, J.F., Fucho, R., Weber, M., Serra, D., and Herrero, L. (2015) 'Fatty acid metabolism and the basis of brown adipose tissue function', Adipocyte, 5: 98-118. Chang, H., Lei, L., Zhou, Y., Ye, F., and Zhao, G. (2018) 'Dietary flavonoids and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies', Nutrients, 10: 950. Charoensinphon, N., Qiu, P., Dong, P., Zheng, J., Ngauv, P., Cao, Y., Li, S., Ho, C.-T., and Xiao, H. (2013) '5-Demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis', Molecular Nutrition Food Research, 57: 2103-2111. Chen, H., An, Y., Yan, X., McClements, D.J., Li, B., and Li, Y. (2015) 'Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): Influence of hydroxypropyl methylcellulose and thermal processing', Food Hydrocolloids, 51: 395-404. Chen, Y.K., Wang, H.C., Ho, C.T., Chen, H.Y., Li, S., Chan, H.L., Chung, T.W., Tan, K.T., Li, Y.R., and Lin, C.C. (2015) '5-demethylnobiletin promotes the formation of polymerized tubulin, leads to G2/M phase arrest and induces autophagy via JNK activation in human lung cancer cells', The Journal of Nutritional Biochemistry, 26: 484-504. Chiou, Y.S., Zheng, Y.N., Tsai, M.L., Lai, C.S., Ho, C.T., and Pan, M.-H. (2018) '5-Demethylnobiletin more potently inhibits colon cancer cell growth than nobiletin in vitro and in vivo', Journal of Food Bioactives, 2: 91–97. Choe, S.S., Huh, J.Y., Hwang, I.J., Kim, J.I., and Kim, J.B. (2016) 'Adipose tissue remodeling: its role in energy metabolism and metabolic disorders', Frontiers in Endocrinology, 7: 30. Ding, X., Fan, S., Lu, Y., Zhang, Y., Gu, M., Zhang, L., Liu, G., Guo, L., Jiang, D., Lu, X., Li, Y., Zhou, Z., and Huang, C. (2012) 'Citrus ichangensis peel extract exhibits anti-metabolic disorder effects by the inhibition of PPARγ and LXR signaling in high-fat diet-induced C57BL/6 mouse', Evidence-Based Complementary and Alternative Medicine, 2012: 678592. Gleyzer, N., Vercauteren, K., and Scarpulla, R.C. (2005) 'Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators', Molecular and Cellular Biology, 25: 1354-1366. González-Castejón, M., and Rodriguez-Casado, A. (2011) 'Dietary phytochemicals and their potential effects on obesity: A review', Pharmacological Research, 64: 438-455. Guo, S., Wu, X., Zheng, J., Charoensinphon, N., Dong, P., Qiu, P., Song, M., Tang, Z., and Xiao, H. (2018) 'Anti-inflammatory effect of xanthomicrol, a major colonic metabolite of 5-demethyltangeretin', Food Function, 9: 3104-3113. Haaz, S., Fontaine, K.R., Cutter, G., Limdi, N., Perumean‐Chaney, S., and Allison, D.B. (2006) 'Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update', Obesity Reviews, 7: 79-88. Harms, M., and Seale, P. (2013) 'Brown and beige fat: development, function and therapeutic potential', Nature Medicine, 19: 1252. Honary, S., and Zahir, F. (2013) 'Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2)', Tropical Journal of Pharmaceutical Research, 12: 265-273. Inafuku-Teramoto, S., Suwa, R., Fukuzawa, Y., and Kawamitsu, Y. (2011) 'Polymethoxyflavones, synephrine and volatile constitution of peels of citrus fruit grown in Okinawa', Journal of the Japanese Society for Horticultural Science, 80: 214-224. Inoue, T., Tsubaki, S., Ogawa, K., Onishi, K., and Azuma, J.-i. (2010) 'Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction', Food Chemistry, 123: 542-547. Jespersen, Naja Z., Larsen, Therese J., Peijs, L., Daugaard, S., Homøe, P., Loft, A., de Jong, J., Mathur, N., Cannon, B., Nedergaard, J., Pedersen, Bente K., Møller, K., and Scheele, C. (2013) 'A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans', Cell Metabolism, 17: 798-805. Johnson, C.M., Wei, C., Ensor, J.E., Smolenski, D.J., Amos, C.I., Levin, B., and Berry, D.A. (2013) 'Meta-analyses of colorectal cancer risk factors', Cancer Causes Control, 24: 1207-1222. Joshi, A.K. (2015) 'Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead AU - Dokania, Shambhu', Drug Delivery, 22: 675-690. Jung, U.J., Lee, M.K., Jeong, K.S., and Choi, M.S. (2004) 'The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice', The Journal of Nutrition, 134: 2499-2503. Kang, S.I., Shin, H.S., Kim, H.M., Hong, Y.S., Yoon, S.A., Kang, S.W., Kim, J.H., Kim, M.H., Ko, H.C., and Kim, S.J. (2012) 'Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice', Biological and Pharmaceutical Bulletin, 35: 223-230. Karn, A., Zhao, C., Yang, F., Cui, J., Gao, Z., Wang, M., Wang, F., Xiao, H., and Zheng, J. (2020) 'In-vivo biotransformation of citrus functional components and their effects on health', Critical Reviews in Food Science and Nutrition: 1-21. Khan, A.W., Kotta, S., Ansari, S.H., Sharma, R.K., and Ali, J. (2015) 'Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation', Drug Delivery, 22: 552-561. Knight, J.A. (2011) 'Diseases and disorders associated with excess body weight', Annals of Clinical Laboratory Science, 41: 107-121. Kobayashi, H., Mitani, M., Minatogawa, Y., Hayashi, S., Nakamoto, M., Shuto, E., Nii, Y., and Sakai, T. (2017) 'Extracts of Citrus sudachi peel attenuate body weight gain in C57BL/6 mice fed a high-fat diet', The Journal of Medical Investigation, 64: 20-23. Kohli, K., Chopra, S., Dhar, D., Arora, S., and Khar, R.K. (2010) 'Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability', Drug Discovery Today, 15: 958-965. Kurowska, E.M., and Manthey, J.A. (2004) 'Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia', Journal of Agricultural and Food Chemistry, 52: 2879-2886. Lai, C.S., Li, S., Chai, C.Y., Lo, C.Y., Ho, C.T., Wang, Y.J., and Pan, M.H. (2007) 'Inhibitory effect of citrus 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice', Carcinogenesis, 28: 2581-2588. Lebovitz, H.E., and Banerji, M.A. (2005) 'Point: visceral adiposity is causally related to insulin resistance', Diabetes Care, 28: 2322-2325. Lee, Y.S., Cha, B.Y., Choi, S.S., Choi, B.K., Yonezawa, T., Teruya, T., Nagai, K., and Woo, J.T. (2013) 'Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice', The Journal of Nutritional Biochemistry, 24: 156-162. Li, S., Lo, C.Y., and Ho, C.T. (2006) 'Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel', Journal of Agricultural and Food Chemistry, 54: 4176-4185. Li, S., Pan, M.H., Lo, C.Y., Tan, D., Wang, Y., Shahidi, F., and Ho, C.T. (2009) 'Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones', Journal of Functional Foods, 1: 2-12. Li, S., Wang, Y., Wang, Z., Xiao, H., Lo, C.Y., Rawson, N., and Ho, C.T. (2010) 'Quantitative analysis of hydroxylated polymethoxyflavones by high-performance liquid chromatography', Biomedical Chromatography, 24: 838-845. Li, Y., Xiao, H., and McClements, D.J. (2012) 'Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility', Food Biophysics, 7: 341-353. Li, Y., Zheng, J., Xiao, H., and McClements, D.J. (2012) 'Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization', Food hydrocolloids, 27: 517-528. Lone, J., Parray, H.A., and Yun, J.W. (2018) 'Nobiletin induces brown adipocyte-like phenotype and ameliorates stress in 3T3-L1 adipocytes', Biochimie, 146: 97-104. Lu, J.L., Wang, J.C., Zhao, S.X., Liu, X.Y., Zhao, H., Zhang, X., Zhou, S.F., and Zhang, Q. (2008) 'Self-microemulsifying drug delivery system (SMEDDS) improves anticancer effect of oral 9-nitrocamptothecin on human cancer xenografts in nude mice', European Journal of Pharmaceutics and Biopharmaceutics, 69: 899-907. Lu, Y., Xi, W., Ding, X., Fan, S., Zhang, Y., Jiang, D., Li, Y., Huang, C., and Zhou, Z. (2013) 'Citrange fruit extracts alleviate obesity-associated metabolic disorder in high-fat diet-induced obese C57BL/6 mouse', International Journal of Molecular Sciences, 14: 23736. Ma, N., Lai, C.S., Chung, C.H., Yang, J.M., Hsu, K.C., Chen, C.Y., Chung, T.S., Li, S., Ho, C.T., and Pan, M.H. (2014) '5-Demethyltangeretin is more potent than tangeretin in inhibiting dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis', Journal of Functional Foods, 11: 528-537. Mahapatra, A.K., and Murthy, P.N. (2014) 'Self-emulsifying drug delivery systems (SEDDS): An update from formulation development to therapeutic strategies', International Journal of PharmTech Research, 6: 546-568. Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C. (1985) 'Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man', Diabetologia, 28: 412-419. Mekjaruskul, C., Yang, Y.-T., Leed, M.G.D., Sadgrove, M.P., Jay, M., and Sripanidkulchai, B. (2013) 'Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin', International Journal of Pharmaceutics, 445: 1-11. Moyer, M.P., Manzano, L.A., Merriman, R.L., Stauffer, J.S., and Tanzer, L.R. (1996) 'NCM460, a normal human colon mucosal epithelial cell line', In Vitro Cellular Developmental Biology - Animal, 32: 315-317. Nagase, I., Yoshida, T., Kumamoto, K., Umekawa, T., Sakane, N., Nikami, H., Kawada, T., and Saito, M. (1996) 'Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic beta 3-adrenergic agonist', The Journal of clinical investigation, 97: 2898-2904. Nielsen, S.E., Breinholt, V., Cornett, C., and Dragsted, L.O. (2000) 'Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus', Food and Chemical Toxicology, 38: 739-746. Pan, M.H., Lai, Y.S., Lai, C.S., Wang, Y.J., Li, S., Lo, C.Y., Dushenkov, S., and Ho, C.T. (2007) '5-Hydroxy-3,6,7,8,3‘,4‘-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells', Journal of Agricultural and Food Chemistry, 55: 5081-5091. Park, A., Kim, W.K., and Bae, K.H. (2014) 'Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells', World journal of stem cells, 6: 33-42. Qiu, P., Dong, P., Guan, H., Li, S., Ho, C.T., Pan, M.H., McClements, D.J., and Xiao, H. (2010) 'Inhibitory effects of 5-hydroxy polymethoxyflavones on colon cancer cells', Molecular Nutrition Food Research, 54: S244-S252. Sanchez-Gurmaches, J., Hung, C.M., and Guertin, D.A. (2016) 'Emerging complexities in adipocyte origins and identity', Trends in Cell Biology, 26: 313-326. Sapra, K., Sapra, A., Singh, S.K., and Kakkar, S. (2012) 'Self emulsifying drug delivery system: a tool in solubility enhancement of poorly soluble drugs', Indo Global Journal of Pharmaceutical Sciences, 2: 313-332. Seale, P. (2015) 'Transcriptional regulatory circuits controlling brown fat development and activation', Diabetes, 64: 2369-2375. Song, M., Charoensinphon, N., Wu, X., Zheng, J., Gao, Z., Xu, F., Wang, M., and Xiao, H. (2016) 'Inhibitory effects of metabolites of 5-demethylnobiletin on human nonsmall cell lung cancer cells', Journal of Agricultural and Food Chemistry, 64: 4943-4949. Song, M., Lan, Y., Wu, X., Han, Y., Wang, M., Zheng, J., Li, Z., Li, F., Zhou, J., Xiao, J., Cao, Y., and Xiao, H. (2020) 'The chemopreventive effect of 5-demethylnobiletin, a unique citrus flavonoid, on colitis-driven colorectal carcinogenesis in mice is associated with its colonic metabolites', Food Function, 11: 4940-4952. Song, M., Wu, X., Charoensinphon, N., Wang, M., Zheng, J., Gao, Z., Xu, F., Li, Z., Li, F., Zhou, J., and Xiao, H. (2017) 'Dietary 5-demethylnobiletin inhibits cigarette carcinogen NNK-induced lung tumorigenesis in mice', Food Function, 8: 954-963. Stohs, S.J., and Badmaev, V. (2016) 'A review of natural stimulant and non-stimulant thermogenic agents', Phytotherapy Research, 30: 732-740. Stohs, S.J., Preuss, H.G., and Shara, M. (2011) 'A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects', Oxidative Medicine and Cellular Longevity, 2011: 482973. Sun, X., and Kaufman, P.D. (2018) 'Ki-67: more than a proliferation marker', Chromosoma, 127: 175-186. Sun, Y., Han, Y., Song, M., Charoensinphon, N., Zheng, J., Qiu, P., Wu, X., and Xiao, H. (2019) 'Inhibitory effects of nobiletin and its major metabolites on lung tumorigenesis', Food Function, 10: 7444-7452. Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., and Ye, X. (2013) 'Phytochemical profile and antioxidant activity of physiological drop of citrus fruits', Journal of Food Science, 78: C37-42. Sundaram, R., Shanthi, P., and Sachdanandam, P. (2014) 'Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats', Phytomedicine, 21: 793-799. Surichan, S., Arroo, R.R., Tsatsakis, A.M., and Androutsopoulos, V.P. (2018) 'Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1–mediated metabolism to the product 4′ hydroxy tangeretin', Toxicology in Vitro, 50: 274-284. Tarr, B.D., and Yalkowsky, S.H. (1989) 'Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size', Pharmaceutical Research, 6: 40-43. Ting, Y., Xia, Q., Li, S., Ho, C.T., and Huang, Q. (2013) 'Design of high-loading and high-stability viscoelastic emulsions for polymethoxyflavones', Food Research International, 54: 633-640. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., and Bannerjee, S.K. (2012) 'Drug delivery systems: An updated review', International Journal of Pharmaceutical Investigation, 2: 2. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015) 'Global cancer statistics, 2012', CA: A Cancer Journal for Clinicians, 65: 87-108. Tran, T.H., Guo, Y., Song, D., Bruno, R.S., and Lu, X. (2014) 'Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability', Journal of Pharmaceutical Sciences, 103: 840-852. Wang, D., Wang, J., Huang, X., Tu, Y., and Ni, K. (2007) 'Identification of polymethoxylated flavones from green tangerine peel (Pericarpium Citri Reticulatae Viride) by chromatographic and spectroscopic techniques', Journal of Pharmaceutical and Biomedical Analysis, 44: 63-69. Wang, J., Duan, Y., Zhi, D., Li, G., Wang, L., Zhang, H., Gu, L., Ruan, H., Zhang, K., Liu, Q., Li, S., Ho, C.T., and Zhao, H. (2014) 'Pro-apoptotic effects of the novel tangeretin derivate 5-acetyl-6,7,8,4′-tetramethylnortangeretin on MCF-7 breast cancer cells', Cell Biochemistry and Biophysics, 70: 1255-1263. Wang, R.L., Li, S., and Ho, C.T. (2018) 'Absorption of polymethoxyflavones and their derivatives', Journal of Food Bioactives, 2: 82–90. Wang, S.T., Chou, C.T., and Su, N.W. (2017) 'A food-grade self-nanoemulsifying delivery system for enhancing oral bioavailability of ellagic acid', Journal of Functional Foods, 34: 207-215. Wang, W., and Seale, P. (2016) 'Control of brown and beige fat development', Nature Reviews Molecular Cell Biology, 17: 691. Wang, X., and Xia, M. (2016) '5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone, a polymethoxyflavone, exerts antitumor effect on PI3K/Akt signaling pathway in human gastric cancer cell BGC-7901', Journal of Receptors and Signal Transduction, 36: 471-477. Wong, H.M. (2014) 'Oral complications and management strategies for patients undergoing cancer therapy', The Scientific World Journal, 2014: 14. Wu, J.C., Tung, Y.C., Zheng, Y.N., Tsai, M.L., Lai, C.S., Ho, C.T., and Pan, M.H. (2018) '5-Demethylnobiletin is more effective than nobiletin in preventing AOM/DSS-induced colorectal carcinogenesis in ICR mice', Journal of Food Bioactives, 2: 98–103. Wu, X., Li, Z., Sun, Y., Li, F., Gao, Z., Zheng, J., and Xiao, H. (2020) 'Identification of xanthomicrol as a major metabolite of 5-demethyltangeretin in mouse gastrointestinal tract and its inhibitory effects on colon cancer cells', Frontiers in Nutrition, 7: 103. Yang, Y., Zhao, C., Chen, J., Tian, G., McClements, D.J., Xiao, H., and Zheng, J. (2017) 'Encapsulation of polymethoxyflavones in citrus oil emulsion-based delivery systems', Journal of Agricultural and Food Chemistry, 65: 1732-1739. Yi, L., Ma, S., and Ren, D. (2017) 'Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities', Phytochemistry Reviews, 16: 479-511. Zhang, H., Tian, G., Zhao, C., Han, Y., DiMarco-Crook, C., Lu, C., Bao, Y., Li, C., Xiao, H., and Zheng, J. (2019) 'Characterization of polymethoxyflavone demethylation during drying processes of citrus peels', Food Function, 10: 5707-5717. Zhao, L., Zhang, L., Meng, L., Wang, J., and Zhai, G. (2013) 'Design and evaluation of a self-microemulsifying drug delivery system for apigenin', Drug Development and Industrial Pharmacy, 39: 662-669. Zheng, J., Song, M., Dong, P., Qiu, P., Guo, S., Zhong, Z., Li, S., Ho, C.T., and Xiao, H. (2013) 'Identification of novel bioactive metabolites of 5-demethylnobiletin in mice', Molecular Nutrition Food Research, 57: 1999-2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72882 | - |
| dc.description.abstract | 柑橘果皮以及未成熟之柑橘幼果或稱生理性落果皆被視為農產廢棄物,這些廢棄的果實和果皮中含有相當豐富的次級代謝物如多酚類、黃酮類、生物鹼和揮發性油等活性成分。在細胞和動物實驗已有多篇文獻指出柑橘屬中的黃酮類化合物 (flavonoids) 具有抗發炎、抗氧化、預防心血管疾病甚至是抑制腫瘤生長等功效,因此本論文第一部分的研究將以動物模式探討柑橘幼果萃取物 (immature Citrus reticulata extract; ICRE) 抑制脂肪形成的功效和分子機制。由高效液相層析儀 (HPLC) 分析之結果顯示柑橘幼果的熱水萃取物中含有辛弗林 (p-synephrine)、柚皮苷 (narirutin)、橙皮苷 (hesperidin)、川陳皮素 (nobiletin) 和橘皮素 (tangeretin) 等,含量分別是16.0 ± 1.08、4.52 ± 0.31、9.14 ± 0.32、2.54 ± 0.07及1.67 ± 0.05 mg/g。動物實驗結果顯示餵食1%的柑橘幼果萃取物可顯著減少小鼠體重增加與內臟脂肪的重量,並且降低禁食血糖和血液中的三酸甘油酯與總膽固醇 (P < 0.05)。除此之外,由組織切片的結果可知餵食柑橘幼果萃取物的組別其肝臟內的脂肪空泡數量和大小明顯減少 (P < 0.05)。除此之外,我們也觀察到餵食柑橘幼果萃取物的小鼠在低溫的環境下具有較佳的耐寒性,且進一步研究發現米色脂肪組織中的去偶合蛋白 (uncoupling protein 1, UCP1) 和產熱基因 (thermogenic gene) 表現量皆增加,表示柑橘幼果萃取物具有提升適應性生熱作用 (adaptive thermogenesis) 的潛力。綜合前述,在高脂飲食誘導下柑橘幼果萃取物可藉由促進脂肪組織的棕色化 (browning) 來達到預防肥胖與減少脂肪堆積的效果。 本論文第二部分的研究聚焦在柑橘果皮中之一群結構特殊的黃酮類物質稱為多甲氧基黄酮類 (polymethoxyflavones, PMFs),其中川陳皮素 (nobiletin) 和橘皮素 (tangeretin) 的比例佔大多數,近期的研究發現柑橘果皮中的5-去甲基橘皮素 (5-demethyltangeretin, 5-DTAN) 具有較佳的抑制腸癌細胞生長之活性,但因其溶解度極差,影響5-DTAN在生物體中的吸收與利用,故希望能藉由開發新型的載體來增加5-DTAN的吸收,因此我們導入自微乳化載藥系統 (self-microemulsifying drug delivery system, SMEDDS) 的設計概念,找出對5-DTAN溶解度較高的油脂與界面活性劑,利用模擬乳化試驗建立擬三相圖篩選出最理想的配方,其組成為ethyl oleate / d-limonene (10% / 5%)、Cremophor® EL (59.5%) 和PEG 400 (25.5%),並以光散射儀測定載藥後之平均乳化粒徑約為97.1 ± 6.50 nm,最高5-DTAN承載量為3.01 ± 0.38 mg/mL,利用穿透式電子顯微鏡 (TEM) 觀察型態發現乳化顆粒大致呈圓球狀且分散均勻,僅部分有輕微聚集的現象。此外在小鼠體內試驗中,從血中濃度結果可證實經自微乳化載藥系統包載之5-DTAN其口服吸收程度明顯高於5-DTAN的水懸浮 (water suspension) 劑型,並且我們使用串聯式液相層析-固相萃取-核磁共振儀 (LC-SPE-NMR) 首次鑑定出5-DTAN的主要代謝物為TAN-O-glucuronide。不僅如此,在裸鼠異種移植模式 (xenograft model) 中,口服自微乳化載藥系統包載之5-DTAN可有效抑制腸癌腫瘤的生長。由此可知,自微乳化載藥系統確實可改善5-DTAN的生物可利用率 (bioavailability),並提升其癌症預防的特性。綜合上述結果,我們認為柑橘幼果和柑橘果皮相當具有潛力可被開發為保健食品,藉此方式以增加農產廢棄物的經濟價值。 | zh_TW |
| dc.description.abstract | Citrus peels and natural drop of immature citrus fruits are considered as agricultural waste. These agricultural citrus waste contain various secondary metabolites, such as polyphenols, flavonoids, alkaloids, and limonoids. Numerous studies have shown that citrus flavonoids exhibit many biological activities, such as anti-inflammatory, anti-oxidant, anti-atherogenic and even anticancer activity. In the first part of this dissertation, we investigated the bioactive compounds in these immature citrus fruits and evaluated the molecular target on anti-obesity in mice. Our results showed that the main phytochemical components of immature Citrus reticulata in water extraction analyzed by HPLC are synephrine, narirutin, hesperidin, nobiletin, and tangeretin (16.0 ± 1.08, 4.52 ± 0.31, 9.14 ± 0.32, 2.54 ± 0.07, 1.67 ± 0.05 mg/g, respectively). Oral administration of 1% immature Citrus reticulata extract (ICRE) for 11 weeks markedly reduced body weight gain, epididymal fat weight, fasting blood glucose, serum triglyceride, and total cholesterol (P < 0.05 for all). In addition, histological analysis revealed that dietary ICRE decreased adipocyte size and hepatic steatosis compared to the HFD group (P < 0.05 for both). Furthermore, we found that mice treated with ICRE have improved cold tolerance during acute cold challenge. These effects were associated with increased expression of uncoupling protein 1 (UCP1) and thermogenic genes in inguinal WAT. These results suggest that ICRE can prevent obesity and lipid accumulation through induction of brown-like adipocyte formation. In the second part of this dissertation, citrus peels contain polymethoxyflavones (PMFs) mainly in nobiletin and tangeretin. Previous studies indicated that 5-demethyltangeretin (5-DTAN) found in citrus peel exhibits highly potent anti-cancer activity in vitro. However, 5-DTAN is a hydrophobic compound with poor aqueous solubility, which limits its oral bioavailability and efficacy. Therefore, we aimed to develop and characterize an optimal self-microemulsifying delivery system (SMEDS) formulation for 5-DTAN and assess its anticancer activity in a xenograft model. SMEDS is a lipid-based formulation and typically comprises oil, surfactant, and co-surfactant. The results from our solubility and compatibility test revealed that ethyl oleate and d-limonene were appropriate for use as oil phases. The optimal formulation comprised ethyl oleate / d-limonene (10% / 5%), Cremophor® EL (59.5%), and PEG 400 (25.5%). With this optimal formulation, the mean particle size was 97.1 ± 6.50 nm with the highest 5-DTAN loading (3.01 ± 0.38 mg/mL) determined by photon correlation spectroscopy. The transmission electron microscopy (TEM) morphology of 5-DTAN microemulsion droplets demonstrated a spherical shape and uniform size. In pharmacokinetic study, the plasma concentration profiles showed that 5-DTAN-loaded SMEDS could significantly increase the oral absorption of 5-DTAN compare with the water suspension group. Meanwhile, for the first time, we identified TAN-O-glucuronide as a major metabolite of 5-DTAN by using liquid chromatography-solid phase extraction-nuclear magnetic resonance (LC-SPE-NMR). More than that using 5-DTAN loading SMEDS is an effective approach for inhibiting tumor growth in colon cancer xenograft mice. These results suggest that SMEDS is a promising delivery system to enhance antitumor effects of 5-DTAN through increasing the oral bioavailability. According to our data, we consider that these young citrus fruits and citrus peels can be developed into nutraceuticals, thereby increasing the economic value of this agricultural waste. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:09:06Z (GMT). No. of bitstreams: 1 U0001-2602202115481300.pdf: 6314509 bytes, checksum: 89e40076f506b052b680cad4742b349e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract iii Contents v Figures list vii Tables list viii Appendices list viii Abbreviations ix Graphical abstract xi Background 1 CHAPTER I. Immature Citrus reticulata extract promotes browning of beige adipocytes in high-fat diet-induced obese C57BL/6 mice 2 1. Literature review 2 1.1. Biological compounds of citrus fruits and properties 2 1.2. Introduction of obesity 3 1.3. Adipose tissue classification 5 1.4. Mechanisms regulating the balance of adipose tissue 6 2. Objectives and experimental design 8 2.1. Objectives 8 2.2. Experimental design 8 3. Materials and methods 9 3.1. Chemicals 9 3.2. Preparation of Immature Citrus reticulata extract (ICRE) 9 3.3. HPLC analysis 9 3.4. Animals and experimental design 10 3.5. Biochemical Analysis 11 3.6. Histological analysis 12 3.7. Immunoblotting analysis 12 3.8. Quantitative real-time qPCR 13 3.9. Statistical analysis 14 4. Results 15 4.1. Content of phytochemical components in ICRE 15 4.2. ICRE reduces HFD-induced body weight gain 15 4.3. ICRE attenuates lipid accumulation in liver and WAT 16 4.4. ICRE improves insulin resistance and dyslipidemia 16 4.5. ICRE induces browning of inguinal WAT (iWAT) 17 5. Discussion and Conclusion 18 6. Tables 21 7. Figures 24 CHAPTER II. Identification a novel metabolite of 5-demethyltangeretin and as an anti-cancer agent using self-microemulsifying delivery system 29 1. Literature review 29 1.1. Polymethoxyflavones and properties 29 1.2. Metabolism of polymethoxyflavones 30 1.3. Emulsion-based delivery systems – self-microemulsifying drug delivery system (SMEDDS) 33 1.4. Introduction of colon cancer 35 2. Objectives and experimental design 36 2.1. Objectives 36 2.2. Experimental design 36 3. Materials and methods 37 3.1. Materials 37 3.2. Solubility measurement 37 3.3. Construction of pseudoternary phase diagrams 38 3.4. Particle size, polydispersity index, and zeta potential determination 38 3.5. Morphological observation 39 3.6. Tumor xenograft mouse model 39 3.7. Immunohistochemical analysis 40 3.8. UPLC-ESI-MS/MS analysis 41 3.8.1. Measurement the levels of 5-DTAN in plasma 41 3.8.2. Measurement the metabolite of 5-DTAN in cultured cells 42 3.9. Sample preparation for LC-SPE-NMR 42 3.10. Statistical analysis 43 4. Results 44 4.1. Synthesis of 5-DTAN 44 4.2. Selection of oils, surfactants, and co-surfactants by solubility test 44 4.3. Construction of pseudo-ternary phase diagrams 45 4.4. Formulation optimization 45 4.5. Physicochemical characterization of 5-DTAN loading SMEDS 46 4.6. 5-DTAN-loaded SMEDS inhibited tumor growth in xenograft nude mice 47 4.7. Identification of 5-DTAN metabolites in vitro and in vivo 48 5. Discussion and Conclusion 50 6. Tables 53 7. Figures 56 8. Appendices 64 References 67 | |
| dc.language.iso | en | |
| dc.subject | 5-去甲基橘皮素 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 代謝物 | zh_TW |
| dc.subject | 自微乳化載藥系統 | zh_TW |
| dc.subject | 產熱基因 | zh_TW |
| dc.subject | 柑橘幼果 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | metabolite | en |
| dc.subject | obesity | en |
| dc.subject | self-microemulsifying delivery system(SMEDS) | en |
| dc.subject | 5-demethyltangeretin(5-DTAN) | en |
| dc.subject | immature citrus fruits | en |
| dc.subject | thermogenic gene | en |
| dc.subject | colon cancer | en |
| dc.title | 柑橘萃取物預防肥胖及自體微乳化多甲氧基類黃酮抑制腫瘤生長之研究 | zh_TW |
| dc.title | Study on the Preventive Effect of Citrus Extract on Obesity and the Inhibitory Effect of Polymethoxyflavones-Loaded SMEDDS on Tumor Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王朝鐘(Chau-Jong Wang),何元順(Yuan-Soon Ho),王應然(Ying-Jan Wang),黃步敏(Bu-Miin Huang),張嘉哲(Chia-Che Chang),徐丞志(Cheng-Chih Hsu | ccrhsu@ntu.edu.tw | 0000-0002-2892-5326),郭靜娟(Ching-Chuan Kuo) | |
| dc.contributor.oralexamcommittee-orcid | ,張嘉哲(0000-0003-3509-3713),徐丞志(0000-0002-2892-5326) | |
| dc.subject.keyword | 柑橘幼果,肥胖,產熱基因,5-去甲基橘皮素,自微乳化載藥系統,代謝物,大腸癌, | zh_TW |
| dc.subject.keyword | immature citrus fruits,obesity,thermogenic gene,5-demethyltangeretin(5-DTAN),self-microemulsifying delivery system(SMEDS),metabolite,colon cancer, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202100758 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-03-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2602202115481300.pdf 未授權公開取用 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
