請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72536
標題: | 基於機器學習架構的經顱磁刺激抗鬱療效預測於重度憂鬱症之腦波即時分析 Real Time EEG Analysis for Prediction of Antidepressant Responses of Transcranial Magnetic Stimulation in Major Depressive Disorder Based on Machine Learning |
作者: | Yi-Chen Li 李易宸 |
指導教授: | 陳中平(Chung-Ping Chen),孫啟光(Chi-Kuang Sun) |
共同指導教授: | 李正達(Cheng-Ta Li) |
關鍵字: | 重度憂鬱症,腦電圖,重複性經顱磁刺激,間歇性脈衝式經顱磁刺激,機器學習,深度學習, Major depressive disorder,Electroencephalograph,Repetitive transcranial magnetic stimulation,Intermittent theta-burst stimulation,Machine learning,Deep learning, |
出版年 : | 2019 |
學位: | 碩士 |
摘要: | 重度憂鬱症被認為是一種傾向慢性,病程易惡化的疾病,具有與其他症狀高度合併風險。具有一定比例的重度憂鬱症病患在數個抗憂鬱藥物的治療下沒有好轉,而這類型的病患卻有機會被重複性經顱磁刺激或間歇性脈衝式經顱磁刺激所治療。本研究分析了來自90位重度憂鬱症患者的腦電圖信號,分別觀察重複性經顱磁刺激或間歇性脈衝式經顱磁刺激治療之重度憂鬱症患者的特徵來預測其抗憂鬱反應。腦電信號被分解為5個頻段:delta,theta,alpha,beta和gamma頻段。分頻段之後我們應用數個非線性方法和線性方法做特徵提取,從腦電信號中提取不同面向的特徵。在結果中,首先我們確認了在增加收案數量後,前額葉theta頻段能夠區分重複性經顱磁刺激的治療有效者與無效者;接著我們發現前額葉delta頻段以及全頻段也能夠區分重複性經顱磁刺激的治療有效者與無效者;最後我們探索性的發現間歇性脈衝式經顱磁刺激的抗憂鬱反應可能與前額葉beta頻段有關聯。我們使用機器學習與深度學習用於區分重複性經顱磁刺激的治療有效以及無效者,validation accuracy達到91.1%,其中TPR為83.3%,FPR為5%。 Major depressive disorder (MDD) is increasingly recognized as a chronic, deteriorating illness with high comorbidity. A significant proportion of patients with MDD fail to respond to sequential antidepressants. Such treatment-resistant depression can be treated with noninvasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS). In this study, we analyzed electroencephalograph (EEG) signals from a total of 90 patients with MDD. Antidepressant responses were predicted by observing the features of patients with MDD receiving rTMS or iTBS treatments. EEG signals were decomposed into 5 bands: delta, theta, alpha, beta, and gamma. Feature extraction, including linear and nonlinear methods, was applied to the EEG signals. First, our study demonstrated that frontal theta could be associated with antidepressant responses to rTMS instead of iTBS and sham treatments. Second, frontal delta and all bands (1–60 Hz) were associated with antidepressant responses to rTMS treatment. Third, antidepressant responses to iTBS treatment might be associated with frontal beta waves. Finally, machine learning and deep learning were used for distinguishing between responders and non-responders, and a 91% validation accuracy rate, an 83.3% true positive rate, and a 5.0% false positive rate were achieved. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72536 |
DOI: | 10.6342/NTU201902399 |
全文授權: | 有償授權 |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。