請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72536
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平(Chung-Ping Chen),孫啟光(Chi-Kuang Sun) | |
dc.contributor.author | Yi-Chen Li | en |
dc.contributor.author | 李易宸 | zh_TW |
dc.date.accessioned | 2021-06-17T07:00:30Z | - |
dc.date.available | 2024-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-01 | |
dc.identifier.citation | [1] K. R. Krishnan, 'Comorbidity and depression treatment, ' Biological psychiatry, vol. 53, pp. 701-706, 2003.
[2] B. Kennard, S. Silva, B. Vitiello, J. Curry, C. Kratochvil, A. Simons, et al., 'Remission and residual symptoms after short-term treatment in the Treatment of Adolescents with Depression Study (TADS), ' Journal of the American Academy of Child and Adolescent Psychiatry, vol. 45, pp. 1404-1411, 2006. [3] N. Kennedy, E.S. Paykel, 'Residual symptoms at remission from depression: impact on long-term outcome, ' Journal of affective disorders, vol. 80, pp. 135-144, 2004. [4] S.P. Roose, A.H. Glassman, S.N. Seidman, 'Relationship between depression and other medical illnesses, ' JAMA : the journal of the American Medical Association, vol. 286, pp. 1687-1690, 2001. [5] D. A. Pizzagalli, 'Frontocingulate dysfunction in depression: Toward biomarkers of treatment response,' Neuropsychopharmacology, vol. 36, pp. 183-206, 2011. [6] S.C. Liao, W. J. Chen, M.B. Lee, F.W. Lung, T.J. Lai, C.Y. Liu, et al., 'Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications,' Psychological Medicine, vol. 42, pp. 1227-1237, 2012. [7] R. C. Kessler, P. Berglund, O. Demler, R. Jin, D. Koretz, K. R. Merikangas, et al., 'The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R),' Journal of the American Medical Association, vol. 289, pp. 3095-3105, 2003. [8] The Washington Post, 'A stunning map of depression rates around the world, ' Available: https://www.washingtonpost.com/news/worldviews/wp/2013/11/07/a-stunning-map-of-depression-rates-around-the-world/?noredirect=on&utm_term=.c9519baf4f44, 2013. [9] R. M. Hirschfeld, 'History and evolution of the monoamine hypothesis of depression,' The Journal of Clinical Psychiatry, vol. 61, pp. 4-6, 2000. [10] Ministry of Health and Welfare and National Health Insurance Administration, Available: http://www.nhi.gov.tw/index2015.aspx, 2016. [11] Ministry of Health and Welfare and National Health Insurance Administration, 'The population of taking antidepressant medication,' 2016. [12] Ministry of Health and Welfare and National Health Insurance Administration, '抗憂鬱藥物使用人數, ' Available: https://dep.mohw.gov.tw/DOS/cp-1720-9734-113.html, 2018. [13] A.J. Rush, M.H. Trivedi, S.R. Wisniewski, et al., 'Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report, ' Am J Psychiatry, vol. 163, pp. 1905-1917, 2006. [14] C.T. Li, S.J. Wang, J. Hirvonen, J.C. Hsieh, Y.M. Bai, C.J. Hong, et al., 'Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication-resistant depression using cerebral glucose metabolism,' Journal of Affective Disorders, vol. 127, pp. 219-229, 2010. [15] Y.Z. Huang, M.J. Edwards, E. Rounis, K.P. Bhatia, J.C. Rothwell, 'Theta burst stimulation of the human motor cortex,' Neuron, vol. 45, pp. 201-206, 2005. [16] N. Bakker, S. Shahab, P. Giacobbe, D.M. Blumberger, et al., 'rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation, ' Brain Stimulation, vol. 8, pp. 208-215, 2015. [17] The Magstim Company, 'The Magstim® Rapid2 Family, ' Available: https://www.magstim.com/product/rapid-family/, 2019. [18] Psychiatry Centre, 'Transcranial Magnetic Stimulation (rTMS), ' Available: http://manorog.com/rtms/, 2017. [19] M. R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J. M. Guérit, H. Hinrichs, et al., 'IFCN standards for digital recording of clinical EEG. The International Federation of Clinical Neurophysiology,' Electroencephalography and Clinical Neurophysiology, vol. 52, pp. 11-14, 1999. [20] D. A. Pizzagalli, T. R. Oakes, and R. J. Davidson, 'Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects,' Psychophysiology, vol. 40, pp. 939-949, 2003. [21] Ina Wu, 'Real Time Computer Aided Detection System for the Prediction of Clinical Antidepressant Responses, ' Master Thesis from National Taiwan University, 2017. [22] C.T. Li, J.C. Hsieh, H.H. Huang, M.H. Chen, C.H. Juan, P.C. Tu, et al., 'Cognition-Modulated Frontal Activity in Prediction and Augmentation of Antidepressant Efficacy: A Randomized Controlled Pilot Study,' Cerebral Cortex, vol. 26, pp. 202-210, 2014. [23] A. L. Brody, M. W. Barsom, R. G. Bota, S. Saxena, 'Prefrontal-subcortical and limbic circuit mediation of major depressive disorder,' Seminars in Clinical Neuropsychiatry, vol. 6, pp. 102-112, 2001. [24] M. Petrides, 'Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies,' Annals of the New York Academy of Sciences, vol. 769, pp. 85-96, 1995. [25] W. C. Drevets, 'Neuroimaging studies of mood disorders,' Biological Psychiatry, vol. 48, pp. 813-829, 2000. [26] H. O. Veiel, 'A preliminary profile of neuropsychological deficits associated with major depression,' Journal of Clinical and Experimental Neuropsychology, vol. 19, pp. 587-603, 1997. [27] C. J. Bench, K. J. Friston, R. G. Brown, R. S. Frackowiak, and R. G. Dolan, 'Regional cerebral blood flow in depression: the relationship with clinical dimensions,' Psychological Medicine, vol. 23, pp. 579-590, 1993. [28] H. S. Mayberg, P. J. Lewis, W. Regenold, and H. N. Wagner, 'Paralimbic hypoperfusion in unipolar major depression,' Journal of Nuclear Medicine, vol. 35, pp. 929-934, 1994. [29] W. C. Drevets, 'Functional neuroimaging studies of depression: the anatomy of melancholia,' Annual review of medicine, vol. 49, pp. 341-361, 1998. [30] C.T. Li, T.P. Su, S.J. Wang, P.C. Tu, J.C Hsieh, 'Prefrontal glucose metabolism in medication-resistant major depression, ' Br J Psychiatry, vol. 206, pp. 316-323, 2015. [31] R. Coben, J. R. Evans, 'Neurofeedback and Neuromodulation Techniques and Applications, ' Academic Press, 2011. [32] R. J. Davidson, D. Pizzagalli, J. B. Nitschke, and K. Putnam, 'Depression: perspectives from affective neuroscience,' Annual Review of Psychology, vol. 53, pp. 545-574, 2002. [33] J. F. Thayer and R. D. Lane, 'A model of neurovisceral integration in emotion regulation and dysregulation,' Journal of Affective Disorders, vol. 61, pp. 201-216, 2000. [34] O. Devinsky, M. J. Morrell, and B. A. Vogt, 'Contributions of anterior cingulate cortex to behavior,' Brain, vol. 118, pp. 279-306, 1995. [35] D. A. Pizzagalli, R. D. Pascual-Marqui, J. B. Nitschke, T. R. Oakes, C. L. Larson, H. C. Abercrombie, et al., 'Anterior Cingulate Activity as a Predictor of Degree of Treatment Response in Major Depression: Evidence From Brain Electrical Tomography Analysis,' The American Journal of Psychiatry, vol. 158, pp. 405-415, 2001. [36] H. Asada, Y. Fukuda, S. Tsunoda, M. Yamaguchic, and M. Tonoike, 'Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans,' Neuroscience Letters, vol. 274, pp. 29-32, 1999. [37] P.S. Cooper, A.S. Wong, W.R. Fulham, R. Thienel, et al., 'Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes, ' Neuroimage, 2015. [38] J.F. Cavanagh, M.J. Frank, 'Frontal theta as a mechanism for cognitive control, ' Trends Cogn Sci, vol. 18, pp. 414-421, 2014. [39] Y. Noda, W.K. Silverstein, M.S. Barr, et al., 'Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review, ' Psychol Med, vol. 45, pp. 3411-3432, 2015. [40] M. Tik, A. Hoffmann, R. Sladky, et al., ' Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity,' Neuroimage, 2017. [41] M. R. Milad, B. T. Quinn, R. K. Pitman, S. P. Orr, B. Fischl, and S. L. Rauch, 'Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory,' PNAS, vol. 102, pp. 10706-10711, 2005. [42] P. Zimmermann and B. Fimm, 'Test for Attentional Performance (TAP),' Psytest Press, 1997. [43] B.K. Min and H.J. Park, 'Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation,' BMC Neuroscience, vol. 11, p. 79, 2010. [44] C.T. Hsu, '探討經由認知作業程式驅動後的前額葉 Theta 波預測憂鬱症病患 未來之療效以及認知作業程式開發與驗證,' Master Thesis from National Taiwan University, 2017. [45] The Compumedics Neuroscan Company, 'Quik-Cap Electrode System, ' Available: https://compumedicsneuroscan.com/quik-cap-electrode-system/, 2019. [46] WIKIPEDIA, '10-20 system (EEG), ' Available: https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG) , 2019. [47] The Compumedics Neuroscan Company, 'Nuamps, ' Available: https://compumedicsneuroscan.com/tag/nuamps/, 2019. [48] Y.P. Lin, Y.H. Yang, and T.P. Jung, 'Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening,' Frontiers in Neuroscience, vol. 8, pp. 1-14, 2014. [49] A. Hyvärinen, J. Karhunen, and E. Oja, 'Independent Component Analysis, ' 2004. [50] J. Theiler, 'Estimating fractal dimension,' Journal of the Optical Society of America A, vol. 7, pp. 1055-1073, 1990. [51] M. J. Katz, 'Fractals and the analysis of waveforms,' Computers in Biology and Medicine, vol. 18, pp. 145-156, 1988. [52] T. Higuchi, 'Approach to an irregular time series on the basis of the fractal theory,' Physica D: Nonlinear Phenomena, vol. 31, pp. 277-283, 1988. [53] P. Grassberger and I. Procaccia, 'Measuring the Strangeness of Strange Attractors,' Physica D: Nonlinear Phenomena, vol. 9, pp. 189-208, 1983. [54] S. M Pincus, I. M. Gladstone, R. A. Ehrenkranz, 'A REGULARITY STATISTIC FOR MEDICAL DATA ANALYSIS,' Journal of Clinical Monitoring and Computing, vol. 7, pp. 335-345, 1991. [55] S. Pincus, 'Approximate entropy as a measure of system complexity,' PNAS, vol. 88, pp. 2297-2301, 1991. [56] A. Wolf and H. Swinney, 'Determining Lyapunov Exponents From a Time Series,' Physica D: Nonlinear Phenomena, vol. 16, pp. 285-317, 1985. [57] C. K. Peng and S. V. Buldyrev, 'Long-Range Correlations in Nucleotide Sequences,' Nature, vol. 356, pp. 168-170, 1992. [58] P. D. Welch, 'The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, ' IEEE Trans. Audio Electroacoust, vol. 15, pp. 70-73, 1967. [59] The morning paper, 'P-value-wikipedia.jpeg, ' Available: https://blog.acolyer.org/p-value-wikipedia-jpeg/, 2017. [60] HappyMan’s Studio, 'Non-linear SVMs, ' Available: https://cg2010studio.com/2012/05/20/%E9%9D%9E%E7%B7%9A%E6%80%A7%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%A9%9F%E5%99%A8-non-linear-svms/, 2013. [61] R.E. Schapire and Y. Singer, 'Improved Boosting Algorithms using Confidence-rated Prediction,' Machine Learning, vol. 37, pp. 297-336, 1999. [62] Towards Data Science, ' Understanding AdaBoost, ' Available: https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe, 2017. [63] Y. Benjamini, Y. Hochberg, ' Controlling the false discovery rate: A practical and powerful approach to multiple testing, ' Journal of the Royal Statistical Society, Series B, vol. 57, pp. 289-300, 1995. [64] V. Valiulis, G. Gerulskis, K. Dapšys, G. Vištartaite, A. Šiurkute, V. Mačiulis, 'Electrophysiological differences between high and low frequency rTMS protocols in depression treatment, ' Acta Neurobiol Exp (Wars), vol. 72, pp. 283-295, 2012. [65] C. Liston, A.C. Chen, B.D. Zebley, et al., 'Default mode network mechanisms of transcranial magnetic stimulation in depression, ' Biol Psychiatry, vol. 76, pp. 517-526, 2014. [66] N.A. Noh, G. Fuggetta, P. Manganotti, A. Fiaschi, 'Long lasting modulation of cortical oscillations after continuous theta burst transcranial magnetic stimulation, ' PLoS One, vol. 7, e35080, 2012. [67] L. Cardenas-Morales, D.A. Nowak, T. Kammer, R.C. Wolf, C. Schonfeldt-Lecuona, 'Mechanisms and applications of theta-burst rTMS on the human motor cortex, ' Brain Topogr, vol. 22, pp. 294-306, 2010. [68] Y.Z. Huang, R.S. Chen, J.C. Rothwell, H.Y. Wen, 'The after-effect of human theta burst stimulation is NMDA receptor dependent, ' Clin Neurophysiol, vol. 118, pp. 1028–1032, 2007. [69] C.T. Li, M.H. Chen, C.H. Juan, R.S. Liu, W.C. Lin, Y.M. Bai, T.P. Su, 'Effects of prefrontal theta-burst stimulation on brain function in treatment-resistant depression: A randomized sham-controlled neuroimaging study, ' Brain Stimul, vol. 11, pp. 1054–1062, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72536 | - |
dc.description.abstract | 重度憂鬱症被認為是一種傾向慢性,病程易惡化的疾病,具有與其他症狀高度合併風險。具有一定比例的重度憂鬱症病患在數個抗憂鬱藥物的治療下沒有好轉,而這類型的病患卻有機會被重複性經顱磁刺激或間歇性脈衝式經顱磁刺激所治療。本研究分析了來自90位重度憂鬱症患者的腦電圖信號,分別觀察重複性經顱磁刺激或間歇性脈衝式經顱磁刺激治療之重度憂鬱症患者的特徵來預測其抗憂鬱反應。腦電信號被分解為5個頻段:delta,theta,alpha,beta和gamma頻段。分頻段之後我們應用數個非線性方法和線性方法做特徵提取,從腦電信號中提取不同面向的特徵。在結果中,首先我們確認了在增加收案數量後,前額葉theta頻段能夠區分重複性經顱磁刺激的治療有效者與無效者;接著我們發現前額葉delta頻段以及全頻段也能夠區分重複性經顱磁刺激的治療有效者與無效者;最後我們探索性的發現間歇性脈衝式經顱磁刺激的抗憂鬱反應可能與前額葉beta頻段有關聯。我們使用機器學習與深度學習用於區分重複性經顱磁刺激的治療有效以及無效者,validation accuracy達到91.1%,其中TPR為83.3%,FPR為5%。 | zh_TW |
dc.description.abstract | Major depressive disorder (MDD) is increasingly recognized as a chronic, deteriorating illness with high comorbidity. A significant proportion of patients with MDD fail to respond to sequential antidepressants. Such treatment-resistant depression can be treated with noninvasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS). In this study, we analyzed electroencephalograph (EEG) signals from a total of 90 patients with MDD. Antidepressant responses were predicted by observing the features of patients with MDD receiving rTMS or iTBS treatments. EEG signals were decomposed into 5 bands: delta, theta, alpha, beta, and gamma. Feature extraction, including linear and nonlinear methods, was applied to the EEG signals. First, our study demonstrated that frontal theta could be associated with antidepressant responses to rTMS instead of iTBS and sham treatments. Second, frontal delta and all bands (1–60 Hz) were associated with antidepressant responses to rTMS treatment. Third, antidepressant responses to iTBS treatment might be associated with frontal beta waves. Finally, machine learning and deep learning were used for distinguishing between responders and non-responders, and a 91% validation accuracy rate, an 83.3% true positive rate, and a 5.0% false positive rate were achieved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:30Z (GMT). No. of bitstreams: 1 ntu-108-R06945031-1.pdf: 3278686 bytes, checksum: e5e170f2065f08932239bf317f6d0e3a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Major Depressive Disorder 1 1.2 Advanced Treatments for MDD Patients 3 1.3 Electroencephalogram 5 1.4 Thesis Motivation 7 1.5 Thesis Organization 8 Chapter 2 Previous Research 9 2.1 Left DLPFC Dysfunction in MDD 9 2.2 Prediction of rTMS Antidepressant Response by EEG 10 2.3 Computerized rACC-Engaging Cognitive Task 13 2.4 Aims and Hypothesis 14 Chapter 3 Study Procedures and EEG Data Acquisition 15 3.1 Psychiatric Evaluations 16 3.2 Clinical Subjects 17 3.3 EEG Data Acquisition 20 Chapter 4 Methodology 21 4.1 Preprocessing 22 4.1.1 EEG Signal Resampling 22 4.1.2 Band-Pass Filter 22 4.1.3 Independent Component Analysis 23 4.2 Feature Extraction 25 4.2.1 Fractal Dimension 26 4.2.2 Correlation Dimension 27 4.2.3 Approximate Entropy 28 4.2.4 Largest Lyapunov Exponent 29 4.2.5 Detrended Fluctuation Analysis 30 4.2.6 Welch Periodogram 31 4.3 Statistical Analysis 31 4.4 Classification 33 4.4.1 Support Vector Machine 33 4.4.2 Adaptive Boosting Algorithm 34 4.4.3 Deep Neural Network 35 Chapter 5 Experimental Results 37 5.1.1 Comparisons of Different EEG Features between Responders and Non-Responders 37 5.1.2 Correlation Analysis 46 5.1.3 Classification Performance 49 Chapter 6 Discussion 58 Chapter 7 Conclusion 62 Chapter 8 Future Work 63 REFERENCE 64 | |
dc.language.iso | en | |
dc.title | 基於機器學習架構的經顱磁刺激抗鬱療效預測於重度憂鬱症之腦波即時分析 | zh_TW |
dc.title | Real Time EEG Analysis for Prediction of Antidepressant Responses of Transcranial Magnetic Stimulation in Major Depressive Disorder Based on Machine Learning | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李正達(Cheng-Ta Li) | |
dc.contributor.oralexamcommittee | 陳志宏(Jyh-Horng Chen) | |
dc.subject.keyword | 重度憂鬱症,腦電圖,重複性經顱磁刺激,間歇性脈衝式經顱磁刺激,機器學習,深度學習, | zh_TW |
dc.subject.keyword | Major depressive disorder,Electroencephalograph,Repetitive transcranial magnetic stimulation,Intermittent theta-burst stimulation,Machine learning,Deep learning, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201902399 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-02 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。