請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72347完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | |
| dc.contributor.author | Jin-Yi Li | en |
| dc.contributor.author | 黎晉易 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:36:49Z | - |
| dc.date.available | 2021-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | 林哲宇 (2016)。乳酸菌發酵紅茶茶湯化學成份組成與感官品評之評估。國立臺灣大學生物資源暨農學院食品科技研究所碩士論文。
程竹青. (1996)。蛋白水解液苦味之探討。食品工業月刊 (台), 5, 32-39. 許秀娟. (1997)。自明膠及乳淸蛋白水解液中製備血管收縮素轉化酶抑制劑之硏究。國立臺灣大學生物資源暨農學院食品科技研究所碩士論文。 Ahmed, T., Kanwal, R., & Ayub, N. (2006). Influence of temperature on growth pattern of Lactococcus lactis, Streptococcus cremoris and Lactobacillus acidophilus isolated from camel milk. Biotechnology, 5(4), 481-486. Alder-Nissen, J. (1986). Enzymatic hydrolysis of food proteins. Barking. Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnology advances, 24(2), 238-242. Arnal, M. A., Mosoni, L., Boirie, Y., Houlier, M. L., Morin, L., Verdier, E., ... & Mirand, P. P. (1999). Protein pulse feeding improves protein retention in elderly women–. The American journal of clinical nutrition, 69(6), 1202-1208. Axelsson, L., & Ahrné, S. (2000). Lactic acid bacteria. In Applied microbial systematics (pp. 367-388). Springer, Dordrecht. Beckman Coulter. (1999) Introduction to Capillary Electrophoresis. Bottcher, S. R., & Foegeding, E. A. (1994). Whey protein gels: fracture stress and strain and related microstructural properties. Food Hydrocolloids, 8(2), 113-123. Boza, J. J., Moennoz, D., Vuichoud, J., Jarret, A. R., Gaudard-de-Weck, D., & Ballevre, O. (2000). Protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat. European Journal of Nutrition, 39(6), 237-243. Bromley, E. H., Krebs, M. R., & Donald, A. M. (2005). Aggregation across the length-scales in β-lactoglobulin. Faraday discussions, 128, 13-27. Calbet, J. A., & Holst, J. J. (2004). Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. European journal of nutrition, 43(3), 127-139. Canani R. B.; Cirillo P.; Terrin G.; Cesarano L.; Spagnuolo M. I.; De Vincenzo A.; Albano F.; Passariello A.; De Marco G.; Manguso F. & Guarino A. (2007). Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. Bmj, 335(7615), 340. Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins1. Journal of Dairy Science, 66(6), 1219-1227. Cupp-Enyard, C. (2008). Sigma's non-specific protease activity assay-casein as a substrate. Journal of visualized experiments: JoVE, (19). De Wit, J. N. (1981). Structure and functional behaviour of whey proteins. Netherlands Milk and Dairy Journal (Netherlands). Denoroy, L., & Parrot, S. (2017). Analysis of amino acids and related compounds by capillary electrophoresis. Separation & Purification Reviews, 46(2), 108-151. Denter, J., & Bisping, B. (1994). Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. International journal of food microbiology, 22(1), 23-31. Doi, E., Shibata, D., & Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Analytical biochemistry, 118(1), 173-184. Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait, 87(1), 21-38. Doucet, D., Otter, D. E., Gauthier, S. F., & Foegeding, E. A. (2003). Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. Journal of Agricultural and Food Chemistry, 51(21), 6300-6308. Foegeding, E.A., (2006). Food biophysics of protein gels: A challenge of nano and macroscopic proportions. Food Biophysics 1, 41–50. Forssén, K. M., Jagerstad, M. I., Wigertz, K., & Witthöft, C. M. (2000). Folates and dairy products: a critical update. Journal of the American College of Nutrition, 19(sup2), 100S-110S. Gadaga, T. H., Viljoen, B. C., & Narvhus, J. A. (2007). Volatile organic compounds in naturally fermented milk and milk fermented using yeasts, lactic acid bacteria and their combinations as starter cultures. Food Technology and Biotechnology, 45(2), 195. Gauthier, S. F., & Pouliot, Y. (2003). Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins1. Journal of dairy science, 86, E78-E87. Goh, K. K., Haisman, D. R., & Singh, H. (2005). Development of an improved procedure for isolation and purification of exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483. Applied microbiology and biotechnology, 67(2), 202-208. Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods—selected applications. Trends in Food Science & Technology, 11(3), 115-127. Hall, W. L., Millward, D. J., Long, S. J., & Morgan, L. M. (2003). Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. British Journal of Nutrition, 89(2), 239-248. Harding, L.P., V.M. Marshall, Y. Hernandez, Y. Gu, M. Maqsood, N. McLay, and A.P. Laws. (2005) Structural characterization of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074. Carbohydr. Res. 340:1107-1111. Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition–a review. Lipids in health and disease, 6(1), 25. Hinck, L. W., & Ivey, M. H. (1976). Proteinase activity in Ascaris suum eggs, hatching fluid, and excretions-secretions. The Journal of parasitology, 771-774. Hines, M. E., & Foegeding, E. A. (1993). Interactions of. alpha.-lactalbumin and bovine serum albumin with. beta.-lactoglobulin in thermally induced gelation. Journal of Agricultural and Food Chemistry, 41(3), 341-346. Hofvendahl, K., & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and microbial technology, 26(2-4), 87-107. Horne, D. S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. International Dairy Journal, 8(3), 171-177. Hugenholtz, J. (1993). Citrate metabolism in lactic acid bacteria. FEMS Microbiology Reviews, 12(1-3), 165-178. Jiang, T., Mustapha, A., & Savaiano, D. A. (1996). Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. Journal of Dairy Science, 79(5), 750-757. Jou, K. D. (1996). Effect of disaccharides on the thermal properties of whey proteins determined by differential scanning calorimetry (DSC). Milchwissenschaft, 51, 509-511. Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 209-224. Kawase, M., Hashimoto, H., Hosoda, M., Morita, H., & Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. Journal of dairy science, 83(2), 255-263. Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterisation of semi-solid foods. Food research international, 39(3), 265-276. Keri Marshall, N. D. (2004). Therapeutic applications of whey protein. Alternative medicine review, 9(2), 136-156. KIM, B. Y., & KINSELLA, J. E. (1989). Rheological changes during slow acid induced gelation of milk by D‐glucono‐δ‐lactone. Journal of Food Science, 54(4), 894-898. Kristo, E., Biliaderis, C. G., & Tzanetakis, N. (2003). Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. International Dairy Journal, 13(7), 517-528. Kuhn, P. R., & Foegeding, E. A. (1991). Mineral salt effects on whey protein gelation. Journal of Agricultural and Food Chemistry, 39(6), 1013-1016. Lauer H. H. & Rozing G. P.. (2014). High Performance Capillary Electrophoresis. Agilent Technologies. Lee, W. J., & Lucey, J. A. (2004). Structure and physical properties of yogurt gels: Effect of inoculation rate and incubation temperature. Journal of dairy science, 87(10), 3153-3164. Lemieux, L., & Simard, M. E. (1992). Bitter flavour in dairy products. II. A review of bitter peptides from caseins: Their formation, isolation and identification, structure masking and inhibition. Lait, 72, 335–382. Liu, M., Bayjanov, J. R., Renckens, B., Nauta, A., & Siezen, R. J. (2010). The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC genomics, 11(1), 36. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275. Lucey, J. A. (2002). Formation and physical properties of milk protein gels. Journal of Dairy Science, 85(2), 281-294. Lucey, J. A. (2014). Milk protein gels. In Milk Proteins (Second Edition) (pp. 493-523). Lucey, J. A., Johnson, M. E., & Horne, D. S. (2003). Invited review: perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86(9), 2725-2743. Mangino, M. E. (1992). Gelation of whey protein concentrates. Food technology (USA). Marshall, V. M., & Rawson, H. L. (1999). Effects of exopolysaccharide‐producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. International journal of food science & technology, 34(2), 137-143. Maruyama, S., & Suzuki, H. (1982). A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agricultural and Biological Chemistry, 46(5), 1393-1394. Maturano, Y. P., Assaf, L. A. R., Toro, M. E., Nally, M. C., Vallejo, M., de Figueroa, L. I. C., ... & Vazquez, F. (2012). Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation. International journal of food microbiology, 155(1), 43-50. McDonald, C. E., & Chen, L. L. (1965). The Lowry modification of the Folin reagent for determination of proteinase activity. Analytical biochemistry, 10(1), 175-177. Miettinen, M., Vuopio-Varkila, J., & Varkila, K. (1996). Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infection and immunity, 64(12), 5403-5405. Molimard, P., & Spinnler, H. E. (1996). Compounds involved in the flavor of surface mold-ripened cheeses: Origins and properties. Journal of dairy science, 79(2), 169-184. Monchi, M., & Rérat, A. A. (1993). Comparison of net protein utilization of milk protein mild enzymatic hydrolysates and free amino acid mixtures with a close pattern in the rat. Journal of Parenteral and Enteral Nutrition, 17(4), 355-363. Moore, S., & Stein, W. H. (1948). Photometric nin-hydrin method for use in the ehromatography of amino acids. Journal of biological chemistry, 176, 367-388. Morato, P. N., Lollo, P. C. B., Moura, C. S., Batista, T. M., Carneiro, E. M., & Amaya-Farfan, J. (2013). A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats. Food chemistry, 139(1-4), 853-859. Mulvihill, D., & Donovan, M. (1987). Whey proteins and their thermal denaturation-a review. Irish Journal of Food Science and Technology, 11(1), 43-75. Nachman, R. L., & Ferris, B. (1968). Studies on human platelet protease activity. The Journal of clinical investigation, 47(11), 2530-2540. Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K. & Kuwata, T. (2001). Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochemical and Biophysical Research Communications, 281(1), 11-17. Ong, L., Henriksson, A., & Shah, N. P. (2007). Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium sp. International Dairy Journal, 17(1), 67-78. Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of applied microbiology, 100(6), 1171-1185. Peleg, M. (2017). The basics of solid foods rheology. In Food texture (pp. 3-33). Routledge. Pelegrine, D. H. G., & Gasparetto, C. A. (2005). Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology, 38(1), 77-80. Pena-Ramos, E. A., & Xiong, Y. L. (2001). Antioxidative activity of whey protein hydrolysates in a liposomal system1. Journal of Dairy Science, 84(12), 2577-2583. Peng, G. C., & Hsu, C. H. (2005). The efficacy and safety of heat‐killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house‐dust mite. Pediatric Allergy and Immunology, 16(5), 433-438. Pereira, D. I., & Gibson, G. R. (2002). Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Applied and environmental microbiology, 68(9), 4689-4693. Pescuma, M., Hébert, E. M., Mozzi, F., & De Valdez, G. F. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International journal of food microbiology, 141(1-2), 73-81. Pihlanto-Leppälä, A. (2000). Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends in food science & technology, 11(9-10), 347-356. Rahman, R. N. Z. A., Razak, C. N., Ampon, K., Basri, M., Zin, W. M., Yunus, W., & Salleh, A. B. (1994). Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Applied microbiology and biotechnology, 40(6), 822-827. Rajalakshmi, D., & Marasimhan, S. (1995). Food Antioxidants: Sources and Methods ot Evaluation. Food Antioxidants: Technological: Toxicological and Health Perspectives, 65. Robijn, G. W., Wienk, H. L., van den Berg, D. J., Haas, H., Kamerling, J. P., & Vliegenthart, J. F. (1996). Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1. Carbohydrate research, 285, 129-139. Roefs, S. P. F. M., & Van Vliet, T. (1990). Structure of acid casein gels 2. Dynamic measurements and type of interaction forces. Colloids and Surfaces, 50, 161-175. Sautier, C., Dieng, K., Flament, C., Doucet, C., Suquet, J. P., & Lemonnier, D. (1983). Effects of whey protein, casein, soya-bean and sunflower proteins on the serum, tissue and faecal steroids in rats. British Journal of Nutrition, 49(3), 313-319. Schmidt, R. H., Illingworth, B. L., Deng, J. C., & Cornell, J. A. (1979). Multiple regression and response surface analysis of the effects of calcium chloride and cysteine on heat-induced whey protein gelation. Journal of Agricultural and Food Chemistry, 27(3), 529-532. Shah, N. P. (2007). Functional cultures and health benefits. International dairy journal, 17(11), 1262-1277.. Shihata, A., & Shah, N. P. (2000). Proteolytic profiles of yogurt and probiotic bacteria. International Dairy Journal, 10(5-6), 401-408. Simova, E. D., Frengova, G. I., & Beshkova, D. M. (2004). Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a+ Lactobacillus bulgaricus 2‐11). Journal of applied microbiology, 97(3), 512-519. Sinha, R., Radha, C., Prakash, J., & Kaul, P. (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry, 101(4), 1484-1491. Smithers, G. W. (2008). Whey and whey proteins—from ‘gutter-to-gold’. International Dairy Journal, 18(7), 695-704.. Spellman, D., McEvoy, E., O’cuinn, G., & FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447-453. Stading, M., & Hermansson, A. M. (1991). Large deformation properties of β-lactoglobulin gel structures. Food Hydrocolloids, 5(4), 339-352. Stading, M., Langton, M., & Hermansson, A. M. (1992). Inhomogeneous fine-stranded β-lactoglobulin gels. Food Hydrocolloids, 6(5), 455-470. Steffe, J. F. (1996). Rheological methods in food process engineering. Freeman press. Tabilo-Munizaga, G., & Barbosa-Cánovas, G. V. (2005). Rheology for the food industry. Journal of Food Engineering, 67(1-2), 147-156. Tammam, J. D., Williams, A. G., Noble, J., & Lloyd, D. (2000). Amino acid fermentation in non‐starter Lactobacillus spp. isolated from Cheddar cheese. Letters in applied microbiology, 30(5), 370-374. Tamura, M., Mori, N., Miyoshi, T., Koyama, S., Kohri, H., & Okai, H. (1990). Practical debittering using model peptides and related compounds. Agricultural and biological chemistry, 54(1), 41-51. Tan, P. S., Van Kessel, T. A., Van de Veerdonk, F. L., Zuurendonk, P. F., Bruins, A. P., & Konings, W. N. (1993). Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Applied and environmental microbiology, 59(5), 1430-1436. Tian, M., Zhang, J., Mohamed, A. C., Han, Y., Guo, L., & Yang, L. (2014). Efficient capillary electrophoresis separation and determination of free amino acids in beer samples. Electrophoresis, 35(4), 577-584. Tok, E., & Aslim, B. (2010). Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiology and immunology, 54(5), 257-264. van Kranenburg, R., Kleerebezem, M., van Hylckama Vlieg, J., Ursing, B. M., Boekhorst, J., Smit, B. A., Ayad, E. H.E., Smit, G., Siezen, R. J. (2002). Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. International Dairy Journal, 12(2-3), 111-121. Vanhaverbeke, C., Bosso, C., Colin-Morel, P., Gey, C., Gamar-Nourani, L., Blondeau, K., Simonet J.-M. & Heyraud, A. (1998). Structure of an extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83. Carbohydrate research, 314(3-4), 211-220. Virtanen, T., Pihlanto, A., Akkanen, S., & Korhonen, H. (2007). Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of applied microbiology, 102(1), 106-115. Walzem, R. L., Dillard, C. J., & German, J. B. (2002). Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Critical reviews in food science and nutrition, 42(4), 353-375. Wang, T., & Lucey, J. A. (2003). Use of multi-angle laser light scattering and size-exclusion chromatography to characterize the molecular weight and types of aggregates present in commercial whey protein products. Journal of dairy science, 86(10), 3090-3101. Wegmann, U., Klein, J. R., Drumm, I., Kuipers, O. P., & Henrich, B. (1999). Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Applied and environmental microbiology, 65(11), 4729-4733. Williams, A. G., Noble, J., & Banks, J. M. (2001). Catabolism of amino acids by lactic acid bacteria isolated from Cheddar cheese. International Dairy Journal, 11(4-7), 203-215. Wu, G. (2013). Amino acids: biochemistry and nutrition. CRC Press. Ch. 1, p. 23 Yamasaki, Y., & Maekawa, K. (1978). A peptide with delicious taste. Agricultural and Biological Chemistry, 42, 1761–1765. Yoon, H., Benamouzig, R., Little, J., Francois-Collange, M., & Tome, D. (2000). Systematic review of epidemiological studies on meat, dairy products, and egg consumption and risk of colorectal adenomas. European Journal of Cancer Prevention, 9, 151–164. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72347 | - |
| dc.description.abstract | 牛奶中的蛋白質有80% 為酪蛋白(casein),另外20% 為乳清蛋白(whey protein),在製作乳酪的過程中,酪蛋白會凝結成為乳酪,而其餘未凝結的液體則被稱為乳清,乳清蛋白營養價值相當高,相較於酪蛋白有更高的生物價以及必需胺基酸,因此在市面上常作為營養補充品或是運動增補劑,除此之外,有研究指出乳清蛋白水解物之消化率(digestibility)優於乳清蛋白,而市面上的乳清蛋白水解物多為酵素水解製成,但這些水解產物卻因為具有苦味而使喜好程度降低,因此期望利用發酵產物遮蓋苦味,故以乳酸菌發酵乳清蛋白之水解產物即成為一個值得探討方向,除了探討不同乳酸菌株水解乳清蛋白的能力之外,在發酵過程中亦發現乳清蛋白有成膠而凝固的現象,故一併探討其膠體特性。結果發現13株乳酸菌分別有不同的生長情形,以生長速率及菌數做為篩選門檻,選出8株生長較好的乳酸菌,再以茚三酮評估乳酸菌的蛋白質水解能力,結果發現並非生長情況良好的乳酸菌就具備優異的蛋白水解能力,因此再選出5株蛋白水解能力表現較佳者,而經由毛細管電泳分析亦能看出不同乳酸菌在發酵36小時水解出的游離胺基酸有不同的分佈,且總量以L. acidophilus的發酵產物為最多;另外以動態流變儀及共軛焦雷射掃描顯微鏡觀察發酵產物之黏彈性質及膠體結構,發現L. lactis的發酵產物最具黏彈性;最後在消費者感官品評試驗,得知不論是顏色、香氣、酸度、風味、質地還是整體喜好度,皆是L. bulgaricus的發酵產物得到最高的分數,且幾乎所有經過發酵的乳清蛋白組別得分皆顯著高於未發酵組別。故乳酸菌所具備的酵素系統,不僅可將蛋白質水解成小分子胜肽及胺基酸,在提昇營養價值之餘,這些胜肽和胺基酸本身或是代謝產物甚至對於膠體特性、香氣以及風味有所貢獻,故綜合上述優點,期望乳酸菌發酵乳清蛋白能成為良好的營養補充品。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:36:49Z (GMT). No. of bitstreams: 1 ntu-107-R05641012-1.pdf: 3462275 bytes, checksum: 6632407ac83a6efd3cf66f93188af5d3 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 壹、 前言 1
貳、 文獻回顧: 2 一、 乳清蛋白簡介 2 (一) 乳清蛋白之組成 2 (二) 乳清蛋白純化及應用 2 (三) 乳清蛋白之營養價值與生理功效 3 (四) 乳清蛋白水解物 3 二、 乳酸菌介紹 4 (一) 乳酸菌種類 4 (二) 乳酸菌生長條件 4 (三) 乳酸菌應用於食品之功能性 4 (四) 乳酸菌保健功效 5 三、 蛋白水解評估方式 6 (一) 蛋白水解能力評估 6 (二) 蛋白酶活性測定 6 (三) 游離胺基酸分析 7 四、 蛋白質的膠體特性 8 (一) 優格發酵過程中膠體形成的微觀現象 8 (二) 優格產品的膠體特性 10 (三) 乳清蛋白的凝膠聚集 12 參、 研究目的與實驗架構 14 一、 研究目的 14 二、 實驗架構 14 肆、 材料與方法 15 一、 實驗材料 15 (一) 乳清蛋白來源 15 (二) 乳酸菌來源 15 (三) 實驗藥品與耗材 15 二、 實驗方法 18 (一) 乳清發酵 18 (二) 篩選菌株 18 (三) 茚三酮比色定量 19 (四) 蛋白酶活性測定 20 (五) 毛細管電泳分析 21 (六) 動態流變儀分析 21 (七) 共軛焦雷射掃描顯微鏡 23 (八) 消費者感官品評試驗 23 伍、 結果與討論: 24 一、 乳酸菌於乳清蛋白中之生長情形 24 (一) 乳清蛋白培養液之條件選擇 24 (二) 各乳酸菌之生長比較 26 二、 乳酸菌於乳清蛋白中之蛋白水解情形 27 (一) 以茚三酮比色定量法評估乳酸菌蛋白水解能力 27 (二) 蛋白酶活性測定 30 (三) 游離胺基酸含量 31 三、 乳酸菌發酵乳清蛋白之膠體特性 35 (一) 產物之pH與滴定酸度 35 (二) 流變性質之觀察 36 (三) 共軛焦雷射掃描顯微鏡之觀察 37 四、 乳清蛋白發酵產物之消費者感官品評 39 陸、 結論 43 柒、 圖表 44 捌、 參考文獻 62 玖、 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蛋白水解能力 | zh_TW |
| dc.subject | 乳清蛋白水解物 | zh_TW |
| dc.subject | 發酵 | zh_TW |
| dc.subject | 乳清蛋白 | zh_TW |
| dc.subject | 乳酸菌 | zh_TW |
| dc.subject | 膠體 | zh_TW |
| dc.subject | lactic acid bacteria | en |
| dc.subject | proteolytic activity | en |
| dc.subject | whey protein | en |
| dc.subject | gel | en |
| dc.subject | whey protein hydrolysate | en |
| dc.subject | fermentation | en |
| dc.title | 乳酸菌發酵對乳清蛋白之影響 | zh_TW |
| dc.title | Effects of lactic acid bacteria fermentation on whey protein properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋,謝淑貞,陳宏彰 | |
| dc.subject.keyword | 乳清蛋白,乳清蛋白水解物,發酵,乳酸菌,蛋白水解能力,膠體, | zh_TW |
| dc.subject.keyword | whey protein,whey protein hydrolysate,fermentation,lactic acid bacteria,proteolytic activity,gel, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201803612 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
