請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7204完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李尉彰(Wei-Chang Li) | |
| dc.contributor.author | Jia-Ren Liu | en |
| dc.contributor.author | 劉嘉仁 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:12Z | - |
| dc.date.available | 2024-08-19 | |
| dc.date.available | 2021-05-19T17:40:12Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | [1] '中華民國空氣品質監測報告年年報(107),' 行政院環境保護署, 2018. [Online]. Available: https://www.epa.gov.tw/DisplayFile.aspx?FileID=9FDF33456FA1DB1F. [Accessed 29 6 2019].
[2] 'PM2.5 現形記:1000個小盒子完成不可能的任務,' Taiwan Enviromental Information Center, [Online]. Available: http://e-info.org.tw/node/204036. [Accessed 29 6 2019]. [3] 'Operating principle of catalytic-type gas sensor,' FIGARO Engineering, Inc., 2018. [Online]. Available: https://www.figaro.co.jp/en/technicalinfo/principle/catalytic-type.html. [4] 'The pros and cons of electrochemical sensors,' 2011. [Online]. Available: https://www.safetyandhealthmagazine.com/articles/the-pros-and-cons-of-electrochemical-sensors-2. [5] 'Principle of Operation for thermal conductivity analysis,' Systech Instruments Ltd and Illinois Instruments, Inc., 2019. [Online]. Available: https://www.systechillinois.com/en/support/technologies/thermal-conductivity-analyzers. [6] A. Dey, 'Semiconductor metal oxide gas sensors: A review,' Materials Science and Engineering: B, vol. 229, pp. 206-217, 2018. [7] 'Non-Dispersive Infrared (NDIR) Gas Detection,' LumaSense Technologies, Inc., 2019. [Online]. Available: https://www.lumasenseinc.com/EN/products/technology-overview/our-technologies/ndir/ndir.html. [8] Y. Hui and M. Rinaldi, 'Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element,' Applied Physics Letters, vol. 102, no. 9, p. 093501, 2013. [9] A. D. Luca, S. Z. Ali, R. H. Hopper, S. Boual, J. W. Gardner and F. Udrea, 'Filterless non-dispersive infra-red gas detection: A proof of concept,' in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 2017. [10] Z. Qian, S. Kang, V. Rajaram and M. Rinaldi, 'Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,' in 2016 IEEE SENSORS, Orlando, FL, 2016. [11] S. H. Han, D. G. Jung and S. H. Kong, 'An infrared detector based on SWNT film suspended on double cantilever,' in SENSORS, 2014 IEEE, Valencia, 2014. [12] Y. Hui and M. Rinaldi, 'High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator,' in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 2013. [13] Z. Qian, Y. Hui, F. Liu, S. Kai and M. Rinaldi, '1.27 GHz Graphene-Aluminum Nitride nano plate resonant infrared detector,' in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 2015. [14] T.-W. Shen, Y.-C. Lee, K.-C. Chang and W. Fang, 'Responsivity enhancement of CMOS-MEMS thermoelectric infrared sensor by heat transduction absorber design,' in 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, 2018. [15] S. Ogawa, J. Komoda, K. Masuda, Y. Takagawa and M. Kimata, 'Wavelength selective uncooled infrared sensor using triangular-lattice plasmonic absorbers,' in 2013 International Conference on Optical MEMS and Nanophotonics (OMN), Kanazawa, 2013. [16] V. J. Gokhale, P. D. Myers and M. Rais-Zadeh, 'Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors,' in SENSORS, 2014 IEEE, Valencia, 2017. [17] Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù and M. Rinaldi, 'Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,' Nature Communications, vol. 7, p. 11249, 2016. [18] Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer and M. Rinaldi, 'Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,' Nature Nanotechnology, vol. 12, pp. 969-973, 2017. [19] R. Tabrizian, G. Casinovi and F. Ayazi, 'Temperature-Stable Silicon Oxide (SilOx) Micromechanical Resonators,' IEEE Transactions on Electron Devices, vol. 60, no. 8, pp. 2656-2663, 2013. [20] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, M.-H. Li, S.-S. Li and F. Weileun, 'Temperature-Compensated CMOS-MEMS Oxide Resonators,' Journal of Microelectromechanical Systems, vol. 22, no. 5, pp. 1054-1065, 2013. [21] A. K. Samarao and F. Ayazi, 'Temperature Compensation of Silicon Resonators via Degenerate Doping,' IEEE Transactions on Electron Devices, vol. 59, no. 1, pp. 87-93, Jan. 2012. [22] W.-T. Hsu and C. T.-C. Nguyen , 'Stiffness-Compensated Temperature-Insensitive Micromechanical Resonators,' in IEEE 15th International Conference on Micro Electro Mechanical Systems (MEMS'02), Las Vegas, NV, USA, 2002. [23] S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer Science+Business Media LLC, 2007. [24] A. V. Kabashin and P. I. Nikitin, 'Surface plasmon resonance interferometer for bio- and chemical-sensors,' Optics Communications, vol. 150, no. 1-6, pp. 5-8, 1998. [25] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy and A. V. Zayats, 'Plasmonic nanorod metamaterials for biosensing,' Nature Materials, vol. 8, no. 11, pp. 867-871, 2009. [26] S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung and S.-M. Yang, 'Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,' Langmuir, vol. 22, no. 17, pp. 7109-7112, 2006. [27] J. Hendrickson, J. Guo, B. Zhang, W. Buchwald and R. Soref, 'Wideband perfect light absorber at midwave infrared using multiplexed metal structures,' Optics Letters, vol. 37, no. 3, p. 371, 2012. [28] S. Wang, X. Sun, M. Ding, G. Peng, Y. Qi, Y. Wang and J. Ren, 'The investigation of an LSPR refractive index sensor based on periodic gold nanorings array,' Journal of Physics D: Applied Physics, vol. 51, no. 4, p. 045101, 2018. [29] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou and M. Qiu, 'High performance optical absorber based on a plasmonic metamaterial,' Applied Physics Letters, vol. 95, no. 25, p. 251104, 2010. [30] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin 且 S.-S. Li, “Enhanced temperature sensitivity of a single CMOS-MEMS resonator via resonant modes in orthogonal axes,” 於 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, 2013. [31] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang and S.-S. Li, 'A Fully Differential CMOS–MEMS DETF Oxide Resonator With Q > 4800 and Positive TCF,' IEEE Electron Device Letters, vol. 33, no. 5, pp. 721-723, 2012. [32] S.-C. Lu, C.-P. Tsai and W.-C. Li, 'A CMOS-MEMS CC-beam metal resoswitch for zero quiescent power receiver applications,' in 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, 2018. [33] C. C. Katsidis, A. O. Ajagunna and A. Georgakilas, 'Optical characterization of free electron concentration in heteroepitaxial InN layers using Fourier transform infrared spectroscopy and a 2 × 2 transfer-matrix algebra,' Journal of Applied Physics, vol. 113, p. 073502, 2013. [34] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe and T. W. Kenny, 'Model and Observations of Dielectric Charge in Thermally Oxidized Silicon Resonators,' Journal of Microelectromechanical Systems, vol. 19, no. 1, pp. 162-174, Feb. 2010. [35] C.-S. Li, M.-H. Li, C.-C. Chen, C.-H. Chin and S.-S. Li, 'A Low-Voltage CMOS-Microelectromechanical Systems Thermal-Piezoresistive Resonator With Q > 10000,' IEEE Electron Device Letters, vol. 36, no. 2, pp. 192-194, 2015. [36] G. Pillai, A. A. Zope and S.-S. Li, 'A novel transducer design to enable high-performance piezoelectric MEMS resonators and oscillators,' in 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, 2018. [37] S.-S. Li, 'CMOS-MEMS resonators and their applications,' in 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, 2013. [38] F. D. Bannon, J. R. Clark and C. T.-C. Nguyen, 'High-Q HF Microelectromechanical Filters,' IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 512-526, 2000. [39] W.-C. Chen, W. Fang and S.-S. Li, 'A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,' Journal of Micromechanics and Microengineering, vol. 21, no. 6, May 2011. [40] M. Akgul, L. Wu, Z. Ren and C. T.-C. Nguyen, 'A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 5, pp. 849-869, 2014. [41] W. Leissa and M. S. Qatu, Vibration of continuous systems, New York: McGraw-Hill, 2011, p. 107. [42] X.-G. Guo, Z.-F. Zhou, C. Sun, W.-H. Li and Q.-A. Huang, 'A Simple Extraction Method of Young’s Modulus for Multilayer Films in MEMS Applications,' Micromachines, vol. 8, no. 7, p. 201, 2017. [43] J.-R. Liu and W.-C. Li, 'A Temperature-Insensitive CMOS-MEMS Resonator Utilizing Electrical Stiffness Compensation,' in the 32nd IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’19), Seoul, South Korea, 2019. [44] A. C. Ugural and S. K. Fenster, Advanced Mechanics of Materials and Applied Elasticity, 5th ed., Pearson Education, Inc., 2012. [45] R. C. Hibbeler, Mechanics of Materials, 8th ed., Pearson Education, Inc., 2011. [46] C.-H. Hsueh, 'Thermal stresses in elastic multilayer systems,' Thin Solid Films, vol. 418, no. 2, pp. 182-188, 2002. [47] P. Chen, P. Raghavan, K. Yazzie and H. Fei, 'On the effective coefficient of thermal expansion (CTE) of bilayer/trilayer in semiconductor package substrates,' in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015. [48] C.-L. Cheng, M.-H. Tsai and W. Fang, 'Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers,' Journal of Micromechanics and Microengineering, vol. 25, no. 2, p. 025014, 2015. [49] J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord and T. W. Kenny, 'Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop,' Journal of Microelectromechanical Systems, vol. 19, no. 1, pp. 192-201, 2010. [50] A. A. Zope, H. G. Ranjith, J.-H. Chang, C.-C. Chen, D.-J. Yao and S.-S. Li, 'An effective temperature compensation algorithm for CMOS-MEMS thermal-piezoresistive oscillators with SUB PPM/°C thermal stability,' in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 2017. [51] C.-m. Lin, T.-T. Yen, Y.-J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers and A. P. Pisano, 'Temperature-compensated aluminum nitride lamb wave resonators,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 3, pp. 524-532, 2010. [52] 'Foundry-CMOS integrated oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators,' in 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013. [53] 'FRANKFURT LASER COMPANY,' [Online]. Available: https://www.frlaserco.com/. [Accessed 29 6 2019]. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7204 | - |
| dc.description.abstract | 本論文研究為開發適用於非色散式(Nondispersive infrared, NDIR)紅外線氣體分析儀之局域表面電漿共振(Localized Surface Plasmon Resonance, LSPR)感測平台。透過局域表面電漿共振結構設計,此平台能針對不同紅外線光波長產生加強性吸收效果,並具有微小化、可攜式之特點。本研究為首次於CMOS製程平台上驗證LSPR結構,除理論模擬外,透過國家晶片中心所提供TSMC 0.35-μm 2-poly-4-metal CMOS-MEMS平台下線晶片,並在校內的北區微機電中心進行後製程步驟,包括金屬濕蝕刻釋放結構,及反應式離子蝕刻將保護層去除。元件利用METAL4與METAL3層建構MIM (Metal-Insulator-Metal)式的LSPR吸收層,並以傅立葉紅外線轉換光譜儀(Fourier Transform Infrared spectroscopy, FTIR)證明了LSPR結構之頻率選擇性,但推估可能由於製程誤差,元件經FTIR量測之光譜有Q值過低、波長飄離原本設計、非原始設計考慮到的偽模態等非理想效應產生。本研究進一步嘗試將LSPR吸收層與微機電共振器結合,共振器共振頻率高低可反映不同波長紅外線吸收。然而,由於共振器驗證結構設計上未考慮固定端結構應力之影響,具有表面電漿結構之元件在紅外光下雖有較大的共振頻率變化,對不同波長入射紅外光訊號並無明顯至足以區分選擇性,本論文亦提出共振器設計改善方案。
另一方面,以共振頻率做為感測平台的輸出物理量,元件需具有溫度補償特性,以減低環境溫度變化下後造成的頻率變化。本研究使用另一種後製程方式研發了一個被動式溫度頻率補償平台,適合用於偶極(dipole)形式的LSPR吸收層使用。此溫度補償兩端自由樑共振器利用U型補償電極的被動式電剛性頻率補償方法,使得共振器之頻率溫度係數(Temperature Coefficient of Frequency, TCF)由原本未經補償的-70 ppm下降為+0.43 ppm、在0-85°C範圍整體頻率飄移由5800 ppm下降為496 ppm,有近12倍之改善。另外,本研究亦提出預測頻率偏差的理論模型,經修正後可以準確預測頻率偏差,並實際演示了最佳化補償電極長度設計,免除了需要另一額外的補償電壓,可僅使用單一電壓同時供予共振器直流偏壓及補償偏壓以達到補償效果。 | zh_TW |
| dc.description.abstract | This thesis validated the possibility of applying localized surface plasmon reso-nance (LSPR) structures onto a commercially available CMOS-MEMS platform. Due to the wavelength-selectivity property of LSPR, one can embed the LSPR structures in a CMOS-MEMS resonator and realize a non-dispersive infrared (NDIR) based gas ana-lyzer. Although the LSPR structures have been widely studied in recent years, none of them has implanted LSPR structures on a standard CMOS platform yet. The LSPR structure used by this work consists of metal-insulator-metal (MIM) absorber based on METAL4 and METLA3 layers in TSMC 0.35-μm 2-poly-4-metal CMOS-MEMS plat-form and in-house post fabrication process of metal wet-etching and reactive ion etching steps. The Fourier transform infrared spectroscopy (FTIR) validates the wave-length-selectivity of the fabricated LSPR structure. Possibly due to fabrication process variation, however, the spectrum measured by FTIR presents some issues such as lower quality factor, wavelength drift and spurious modes. In addition, a clamped-clamped beam (CC-beam) resonator combined with the LSPR structure aims to yield selective responses of resonance frequency to different IR wavelengths. Although the CC-beam resonator with LSPR structures indeed shows larger frequency shift com-pared with that with no LSPR structures, the device does not produce selective fre-quency drifts in response to the IR with varying wavelengths due to improper device design. Work continues to fix this issue.
On the other hand, the change of ambient temperature would affect the resonance frequency. In order to realize a NDIR sensor based on the LSPR platform, one would need to reduce the frequency drift induced by ambient temperature. This thesis utilizes a passive compensation scheme to realize a temperature insensitive resonator based on an alternative post fabrication process suitable for dipole LSPR structures. The temperature coefficient of frequency (TCF) of the temperature compensated resonator reduces from -70 ppm to +0.43 ppm, and the overall frequency drift from 5800 ppm to 496 ppm, which is 12× improved through electrical stiffness compensating technique by introduc-ing a U-shaped compensating electrode. Besides, this thesis details a mathematical model that predicts the frequency deviation well. The model also leads to an optimized compensating electrode length that eliminates the need for a second compensating DC bias. This technique presents as a great candidate for low power frequency compensa-tion. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:12Z (GMT). No. of bitstreams: 1 ntu-108-R06543007-1.pdf: 9750371 bytes, checksum: 60909975aada525f46f5a18303293757 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 xiii 第一章 前言 1 1-1 研究動機 1 1-2 現有技術問題 3 1-2-1 氣體感測機制 3 1-2-2 波長選擇性與低功耗 4 1-3 研究方法 5 1-4 相關文獻回顧 5 1-4-1 紅外線感測器 6 1-4-2 頻率補償方法 10 1-5 論文架構 12 第二章 局域表面電漿增強式紅外線氣體感測器設計 13 2-1 局域化表面電漿共振 13 2-2 具波長選擇性之CMOS-MEMS紅外線感測器設計 14 2-2-1 氣體感測機制 14 2-2-2 具波長選擇性之CMOS-MEMS紅外線吸收層設計 16 2-3 於CMOS-MEMS平台上進行概念驗證 20 2-3-1 驗證用結構設計 20 2-3-2 實驗架設 26 2-3-3 實驗結果與分析 26 第三章 電容式驅動共振器之等效負電容模型 36 3-1 結構運作原理 37 3-2 等效單質點彈簧質量阻尼系統(k-m-b system) 37 3-3 等效集總參數電路模型(lumped parameter electrical equivalent circuit) 43 3-3-1 機電偶合係數(Electromechanical coupling factor) 45 3-3-2 受電剛性影響之等效集總模型 51 第四章 使用電剛性被動補償溫度效應之共振器 58 4-1 結構設計與頻率補償原理 58 4-2 與溫度相依之補償間隙設計 62 4-3 被動式頻率補償實驗結果 67 4-3-1 量測架構 68 4-3-2 頻率補償量測結果 69 4-3-3 頻率補償量測結果討論 71 4-4 小結 81 第五章 結論與未來展望 84 5-1 設計改良與未來展望 84 5-1-1 共振器本體改良 84 5-1-2 頻率讀取電路 86 5-1-3 系統整合 87 5-2 結論 89 參考文獻 90 | |
| dc.language.iso | zh-TW | |
| dc.title | 應用於氣體感測之局域表面電漿增強式CMOS-MEMS共振式感測平台 | zh_TW |
| dc.title | A CMOS-MEMS Temperature-Compensated Plasmonically-Enhanced Sensing Platform for IR-Based Gas Analyzer Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張培仁(Pei-Zen Chang),胡毓忠(Yuh-Chung Hu),莊承鑫(Cheng-Hsin Chuang) | |
| dc.subject.keyword | CMOS-MEMS,非分散性紅外線感測器,局域表面電漿共振,被動式頻率補償,電剛性, | zh_TW |
| dc.subject.keyword | CMOS-MEMS,electrical stiffness,localized surface plasmon resonance,non-dispersive infrared sensor,passively frequency compensation, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU201903139 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-19 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 9.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
