Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorPei-Hsin Chiuen
dc.contributor.author邱沛馨zh_TW
dc.date.accessioned2021-06-17T06:10:41Z-
dc.date.available2023-11-23
dc.date.copyright2018-11-23
dc.date.issued2018
dc.date.submitted2018-11-15
dc.identifier.citation于達元。濃度效應對介質研磨纖維素流變性質的影響。國立台灣大學食品科技研究所碩士論文:台北市,2008。
吳佩璇。介質研磨對纖維素表面性質與巨量礦物元素結合力之影響。國立台灣大學食品科技研究所碩士論文:台北市,2010。
林麗娟。X光繞射原理及其應用。工業材料86期,1994。
徐敬添、張義和、簡維誼、蔡書雅。奈米微分散技術與材料應用。奈米技術專刊:台北市,2001。
莊鍇恩。微纖化纖維素對 β-胡蘿蔔素之包覆作用。國立台灣大學食品科技研究所碩士論文:台北市,2017。
郭心羽。全豆豆漿之理化性質與模擬腸胃道消化對其抗氧化活性的影響。國立台灣大學食品科技研究所博士論文:台北市,2014。
陳忠輝。造紙產業永續經營與地球資源善用之探討。印刷科技,31 : 4,2015,61–82。
黃仁毅。纖維素於介質研磨下之破碎模式。國立台灣大學食品科技研究所碩士論文:台北市,2007a。
黃宜瑾。介質研磨對纖維素之酵素水解動力學的影響。國立台灣大學食品科技研究所碩士論文:台北市,2007b。
劉宗毓。介質研磨纖維素與幾丁聚醣複合薄膜經三聚磷酸鈉交聯化反應後之物化性質探討。國立台灣大學食品科技研究所碩士論文:台北市,2014。
Abdelwahab, M. A.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stabil 2012, 97, 1822-1828.
Alcantara, C. R.; Rumsey, T. R.; Krochta, J. M. Drting rate effect on the properties of whey protein films. J Food Process Eng 1998, 21, 387-405.
ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, West Conshohocken, PA, 2012, www.astm.org
ASTM D883-17, Standard Terminology Relating to Plastics, ASTM International, West Conshohocken, PA, 2017, www.astm.org
ASTM E96/E96M-16, Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org
Aulin, C.; Salazar-Alvarez, G.; Lindstrom, T. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 2012, 4, 6622-8.
Ayranci, E.; Tunc, S. The effect of fatty acid content on water vapour and carbon dioxide transmissions of cellulose-based edible films. Food Chem 2001, 72, 231-236.
Boldt, R.; Gohs, U.; Wagenknecht, U.; Stamm, M. Effect of electron-induced reactive processing on morphology and structural properties of high-density polyethylene. Polymer 2016, 95, 1-8.
Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci. 2005, 5, 539-48.
Cazón, P.; Velazquez, G.; Ramírez, J. A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloid 2017, 68, 136-148.
Chen, H., Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose: Theory and Practice, Springer Netherlands: Dordrecht, 2014; pp 25-71.
Chu, Z.; Zhao, T.; Li, L.; Fan, J.; Qin, Y. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles. Materials (Basel, Switzerland) 2017, 10, 659.
Dogan, N.; McHugh, T. H. Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J Food Sci 2007, 72, E016-22.
Dubey, R.; Toh, Y.-R.; Yeh, A.-I. Enhancing cellulose functionalities by size reduction using media-mill. Sci Rep 2018, 8, 11343.
Eichhorn, S. J.; Baillie, C. A.; Zafeiropoulos, N.; Mwaikambo, L. Y.; Ansell, M. P.; Dufresne, A.; Entwistle, K. M.; Herrera-Franco, P. J.; Escamilla, G. C.; Groom, L.; Hughes, M.; Hill, C.; Rials, T. G.; Wild, P. M. Review: Current international research into cellulosic fibres and composites. J Mater Sci 2001, 36, 2107-2131.
Eriksson, M.; Notley, S. M.; Wagberg, L. Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 2007, 8, 912-9.
Fält, S.; Wågberg, L.; Vesterlind, E.-L.; Larsson, P. T. Model films of cellulose ID – improved preparation method and characterization of the cellulose film. Cellulose 2004, 11, 151-162.
Fernández-Pan, I.; Ziani, K.; Pedroza-Islas, R.; Maté, J. I. Effect of Drying Conditions on the Mechanical and Barrier Properties of Films Based on Chitosan. Drying Technol 2010, 28, 1350-1358.
French, A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885-896.
Garcia, M. A.; Pinotti, A.; Zaritzky, N. E. Physicochemical, Water Vapor Barrier and Mechanical Properties of Corn Starch and Chitosan Composite Films. Starch - Stärke 2006, 58, 453-463.
Gennadios, A.; Brandenburg, A. H.; Park, J. W.; Weller, C. L.; Testin, R. F. Water vapor permeability of wheat gluten and soy protein isolate films. Ind Crop Prod 1994, 2, 189-195.
Gourmelon, G. Global plastic production rises, recycling lags. New Worldwatch Institute analysis explores trends in global plastic consumption and recycling. Recuperado de http://www. worldwatch. org. 2015.
Guilbert, S.; Cuq, B.; Gontard, N. Recent innovations in edible and/or biodegradable packaging materials. Food Addit. Contam 1997, 14, 741-51.
Gulati, T.; Datta, A. K. Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng 2015, 166, 119-138.
Han, J. H., Chapter 9 - Edible Films and Coatings: A Review. In Innovations in Food Packaging (Second Edition), Academic Press: San Diego, 2014; pp 213-255.
He, M.; Wang, Y.; Forssberg, E. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol 2006, 161, 10-21.
Holtzapple, M. T., Cellulose In Encyclopedia of Food Sciences and Nutrition (Second Edition) 2003; pp 998-1007.
Hon, D. N.-S. Functional natural polymers: A new dimensional creativity in lignocellulosic chemistry. Chemical Modification of Lignocellulosic Materials 1996, 1-10.
Howsmon, J. A.; Marchessault, R. H. The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1959, 1, 313-322.
Inazu, T.; Iwasaki, K.-i.; Furuta, T. Stress and crack prediction during drying of Japanese noodle (udon). Int J Food Sci Technol 2005, 40, 621-630.
Jia, F.; Liu, H.-j.; Zhang, G.-g. Preparation of Carboxymethyl Cellulose from Corncob. Procedia Environ Sci 2016, 31, 98-102.
Jie, Z.; Harris, C. C.; Somasundaran, P. A study on grinding and energy input in stirred media mills. Powder Technol 1996, 86, 171-178.
Kadla, J. F.; Gilbert, R. D. Cellulose structure: A review. Cellulose Chem Technol 2000, 34, 197-216.
Kannangara, D.; Shen, W. Roughness effects of cellulose and paper substrates on water drop impact and recoil. Colloid Surf A: Physicochem Eng Asp 2008, 330, 151-160.
Kouris, M.; Ruck, H.; Mason, S. G. The Effect of Water Removal on the Crystallinity of Cellulose. Can J Chem 1958, 36, 931-948.
Krochta, J. M., Proteins as Raw Materials for Films and Coatings: Definitions, Current Status and Opportunity 2002; p 1-42.
Liu, C.-F.; Sun, R.-C., Chapter 5 - Cellulose. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, Elsevier: Amsterdam, 2010; pp 131-167.
Liu, S.; Zhang, L. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 2008, 16, 189-198.
Lähtinen, K.; Valve, H.; Jouttijärvi, T.; Kautto, P.; Koskela, S.; Leskinen, P.; Silvo, K.; Pitkänen, M.; Kangas, H.; Tukiainen, P., Piecing together research needs: safety, environmental performance and regulatory issues of nanofibrillated cellulose (NFC). In 2012.
Mandal, A.; Chakrabarty, D. Studies on mechanical, thermal, and barrier properties of carboxymethyl cellulose film highly filled with nanocellulose. J Thermoplast Compos 2018, 089270571877286.
Mayor, L.; Sereno, A. M. Modelling shrinkage during convective drying of food materials: a review. J Food Eng 2004, 61, 373-386.
Newman, R. H. Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 1999, 15, 21-29.
Ng, P. P.; Tasirin, S. M.; Law, C. L. Thin Layer Method Analysis of Spouted Bed Dried Malaysian Paddy – Characteristic Drying Curves. J Food Process Eng 2006, 29, 414-428.
Oun, A. A.; Rhim, J. W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 2015, 127, 101-9.
Park, H. J.; Weller, C. L.; Vergano, P. J.; Testin, R. F. Permeability and Mechanical Properties of Cellulose‐Based Edible Films. J Food Sci 1993, 58, 1361-1364.
Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010, 3, 10.
Paunonen, S. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 2013, 8, 3098-3121.
Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci Technol 2013, 32, 128-141.
Peng, Y.; Gardner, D. J.; Han, Y. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 2011, 19, 91-102.
Peng, Y. C.; Gardner, D. J.; Han, Y.; Kiziltas, A.; Cai, Z. Y.; Tshabalala, M. A. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 2013, 20, 2379-2392.
PlasticsEurope, Plastics – the Facts 2017. An analysis of European latest plastics production, demand and waste data. In 2018.
Qin, C.; Soykeabkaew, N.; Xiuyuan, N.; Peijs, T. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 2008, 71, 458-467.
Rhim, J. W.; Wang, L. F.; Hong, S. I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloid 2013, 33, 327-335.
Schroth, W. Organische Chemie. Zeitschrift für Chemie 1989, 29, 189-190.
Segal, L.; Creely, J. J.; A.E. Martin, Jr.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 1959, 29, 786-794.
Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. D. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008, 19, 634-643.
Sothornvit, R.; Krochta, J. M. Plasticizer Effect on Oxygen Permeability of β-Lactoglobulin Films. J Agric Food Chem 2000, 48, 6298-6302.
Sothornvit, R.; Krochta, J. M., Plasticizer Effect on Mechanical Properties of β-Lactalbumin Films. 2001; Vol. 50, p 149-155.
Su, J.; Zhang, J. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension. Appl Surf Sci 2016, 388, 531-538.
Sugiyama, J.; Persson, J.; Chanzy, H. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 1991, 24, 2461-2466.
Tanaka, F.; Fukui, N. The behavior of cellulose molecules in aqueous environments. Cellulose 2004, 11, 33-38.
Tharanathan, R. N. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 2003, 14, 71-78.
Thoorens, G.; Krier, F.; Leclercq, B.; Carlin, B.; Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review. Int J Pharm 2014, 473, 64-72.
Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A. B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563.
Varinot, C.; Hiltgun, S.; Pons, M. N.; Dodds, J. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem Eng Sci 1997, 52, 3605-3612.
Yao, Y. T.; Alderson, K. L.; Alderson, A. Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ. Cellulose 2016, 23, 3429-3448.
Zhao, J.; He, X.; Wang, Y.; Zhang, W.; Zhang, X.; Zhang, X.; Deng, Y.; Lu, C. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydr Polym 2014, 104, 143-50.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71812-
dc.description.abstract生物可分解聚合物係指可透過酵素或微生物,分解成二氧化碳、甲烷、水、無機化合物或生質能源等之材料,達到垃圾減量、永續性與友善環境的目標。一般使用纖維素原料或製備纖維素衍生物時,須先使用化學溶劑將其溶解,才可進行加工。這些方法使用了大量的化學溶劑,具有毒性,會破壞環境生態,更增加了處理大量廢水的成本。本研究以水與纖維素為原料,透過物理加工–介質研磨的方法,製作纖維素薄膜,探討纖維素經介質研磨之粒徑變化及濃度對薄膜性質的影響,與探討乾燥條件對薄膜之成膜性質。結果顯示,纖維素之平均粒徑會隨著研磨時間增加而減小,研磨時間 10分鐘至 60分鐘,體積平均粒徑由 11.37±0.34 μm下降至 4.03±0.03 μm,數量平均粒徑則由 3.72±0.50 μm下降至 0.14±0.02 μm。薄膜之固形物含量以 70.48 g/m2製作,可完整成膜,大於 105.73 g/m2則會有破裂的情形;固定每片薄膜為 70.48 g/m2的固形物含量,在研磨時間 10、20、30分鐘之各濃度皆可形成完整的薄膜,但在 60分鐘的薄膜易破裂。在溫度25℃,相對濕度 85%與75%之乾燥條件,可得到完整的薄膜外觀,當相對濕度降低至60%時,薄膜則會破裂。相對濕度由 60% RH (至水分含量達 5 g water/g dry cellulose時)轉換成 85% RH,也可得到完整、平整性佳的薄膜,且可節省 47.79%之乾燥時間。減速乾燥期的乾燥速率為薄膜成膜性的影響關鍵。研磨時間 10分鐘之薄膜有較佳之機械性質,抗張強度與延展性分別為 55.31±5.46 MPa、1.98±0.41%,機械性質皆會隨研磨時間增加而降低;就濃度而言,3%之濃度有較佳之機械性質。纖維素薄膜屬於抗張強度高的生物性材料,但薄膜之延展性不佳,未來需改善延展性與增加薄膜之應用性。zh_TW
dc.description.abstractBiodegradable polymers can be degraded to CO2, CH4, H2O, inorganic compounds or biomass predominantly through the enzymatic actions or microorganisms. Thus, the goals of waste management and sustainable environment can be achieved. Generally, cellulose or cellulose derivatives need to be dissolved or modified with chemical solvents before processing. However, the use of chemical solvents not only lead to the environmental issues but also increasing the cost for wastewater treatment. Therefore, in this study, an attempt has been made to fabricate the cellulose film through physical method (media milling) only by using cellulose and water. This study aimed to explore the effect of particle size, concentration of cellulose suspension and drying conditions on mechanical properties and integrity of film. The results showed that mean particle size decreased with the increase in milling time. Volume mean diameter decreased from 11.37±0.34 μm to 4.03±0.03 μm, and number mean diameter decreased from 3.72±0.50 μm to 0.14±0.02 μm with increase in milling time from 10 to 60 min. When solid content of film was 70.48 g/m2 film integrity was maintained but when the solid content was greater than 105.73 g/m2, the film was cracked. Moreover, the integrity of the film could be maintained using 70.48 g/m2 solid content, 1- 5% concentration of suspension and milling time 10, 20 and 30 min, but the film lost its integrity at milling time 60 min. The drying condition 25℃、85% RH and 75% RH favored the film integrity, while reducing the relative humidity to 60% resulted in a cracked film. By modifying the drying conditions to 60% RH (till 5 g water/g dry cellulose moisture content) and then increasing to 85% RH, an intact and flat film was obtained, which also saved 47.79% drying time. The drying during falling rate period is critical for film integrity. The film obtained after 10 minutes of milling showed good mechanical properties with tensile strength and percentage elongation as 55.31±5.46 MPa and 1.98±0.41%, respectively. Increase in milling time leads to reduction of these mechanical properties. In terms of concentration, the greatest mechanical properties of film were achieved at 3%. Hence, the cellulose film prepared in this study possess high tensile strength, but poor ductility. In the future, an improvement on film elongation could result in more applications of cellulose film.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:10:41Z (GMT). No. of bitstreams: 1
ntu-107-R05641003-1.pdf: 5755715 bytes, checksum: a74bf3d8409a63e5fb3580f4a0a5a304 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XII
壹、 前言 1
貳、 文獻回顧 2
1. 生物可分解材料 2
1.1. 定義 2
1.2. 生物可分解材料種類 3
2. 纖維素 4
2.1. 纖維素來源 4
2.2. 紙張的組成與加工 6
2.3. 纖維素結構 7
2.4. 纖維素的結晶性質 8
3. 纖維素薄膜 14
3.1. 薄膜形成之方法與原理 14
3.2. 纖維素薄膜之製備 15
3.3. 乾燥曲線 17
3.4. 乾燥速率對薄膜之影響 19
4. 濕式介質研磨 20
4.1. 濕式介質研磨原理 20
4.2. 介質研磨效益之影響因子 23
參、 實驗架構 24
肆、 材料與方法 25
1. 實驗材料 25
2. 設備 25
3. 實驗方法 27
3.1. 介質研磨 27
3.2. 水分含量測定與濃度調整 27
3.3. 薄膜製備 27
3.4. 薄膜之乾燥速率測定 28
3.5. 粒徑分析 28
3.6. 黏度測定 29
3.7. 懸浮液穩定性 29
3.8. 可溶性固形物含量 29
3.9. 型態觀察 30
3.10. 厚度測量 30
3.11. 機械性質 31
3.12. 結晶性質 31
3.13. 接觸角 32
3.14. 水氣透過率分析 32
3.15. 統計分析 33
伍、 結果與討論 34
1. 粒徑分佈 34
2. 黏度 37
3. 懸浮液穩定性 43
4. 可溶性固形物含量 45
5. 型態觀察 46
5.1. 薄膜外觀 46
5.2. 光學顯微鏡觀察 51
5.3. 掃描式電子顯微鏡觀察 54
6. 乾燥速率 59
6.1. 相對濕度對乾燥曲線之影響 59
6.2. 濃度對乾燥曲線之影響 63
6.3. 乾燥速率理論值與實驗值之比較 67
6.4. 薄膜之外觀 70
6.5. 調整乾燥條件 73
7. 薄膜水分含量 77
8. 厚度與機械性質 79
8.1. 薄膜厚度 79
8.2. 薄膜機械性質 80
9. 結晶性質 87
10. 接觸角 92
11. 水氣透過率 98
陸、 結論 102
柒、 參考文獻 103
捌、 附錄 111
dc.language.isozh-TW
dc.title纖維素懸浮液之粒徑與濃度對薄膜性質之影響zh_TW
dc.titleEffect of particle size and concentration of cellulose suspension on film propertiesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔣丙煌,馮臨惠,陳政雄,陳時欣
dc.subject.keyword生物可分解聚合物,介質研磨,纖維素薄膜,乾燥條件,機械性質,zh_TW
dc.subject.keywordBiodegradable polymers,media milling,cellulose film,drying conditions,mechanical properties,en
dc.relation.page126
dc.identifier.doi10.6342/NTU201804273
dc.rights.note有償授權
dc.date.accepted2018-11-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved