請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71244
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝銘倫 | |
dc.contributor.author | Yao Cheng | en |
dc.contributor.author | 鄭堯 | zh_TW |
dc.date.accessioned | 2021-06-17T05:00:38Z | - |
dc.date.available | 2018-08-06 | |
dc.date.copyright | 2018-08-06 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-25 | |
dc.identifier.citation | [A04] Kable. A. Asai L-functions and Jacquet's conjecture. American Journal of Mathematics, 126(4):789-820, 2004
[AC89] J. Arthur and L. Clozel. Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Number 120. Annals of Mathematics Studies, 1989. Princeton University Press, Princeton, NJ. [Bha14] C. Bhagwat. On Deligne's periods for tensor product motives. Comptes Rendus Mathematique, 353(3):191-195, 2014. [BJ79] A. Borel and H. Jacquet. Automorphic forms and automorphic representations. In Automorphic forms, representations, and L-functions, volume 33 of Preceedings of Symposia in Pure Mathematics, pages 189-202, 1979. part 1. [BSP96] S. Bocherer and R. Schulze-Pillot. On the central critical value of the triple product L-function. In Number theory, volume 235 of London Mathematic Society Lecture Note Series, pages 1-46. Cambridge Univ. Press, Cambridge, 1996. [Bum98] D. Bump. Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, first edition, 1998. [Cas73] W. Casselman. On some results of Atkin and Lehner. Mathematische Annalen, 201:301-314, 1973. [CCI] S-Y Chen, Y. Cheng, and I. Ishikawa. Gamma factors for Asai representations of GL(2). preprint. [Che18] S. Y. Chen. Pull back formulas for nearly homomorphic Saito-Kurokawa lifts. PhD thesis, National Taiwan university, 2018. [Del79] P. Deligne. Valeurs de fonctions L et periodes d'integrales. In Automorphic Forms, Representations and L-Functions, volume 33 of Proceedings of Symposia in Pure Mathematics, pages 313-346, 1979. Part 2. [FH95] S. Friedberg and J. Hoffstein. Nonvanishing Theorems for Automorphic L-Functions on GL(2). Annals of Mathematics, 142(2):385-423, 1995. [Fli88] Y. Flicker. Twisted tensor and Euler Products. Bull. Soc. Math. France, 116(3):295-313, 1988. [FM14] M. Furusawa and K. Morimoto. On special vaules of certain L-functions. American Journal of Mathematics, 136(5):1385-1407, 2014. [FM16] M. Furusawa and K. Morimoto. On special vaules for certain L-functions II. American Journal of Mathematics, 138(4):1117-1166, 2016. [Gan08] W. T. Gan. Trilinear forms and triple product epsilon factors. International Mathematics Research Notices, 2008. [Gar87] P. Garrett. Decomposition of Eisenstein series: Rankin Triple Products. Annals of Mathematics, 125(2):209-235, 1987. [GH93] P. Garrett and M. Harris. Special values of triple product L-functions. American Journal of Mathematics, 115(1):161-240, 1993. [GI00] I.S. Gradshteyn and I.M.Ryzhik. Table of integrals, series,and products. Academic Press, sixth edition, 2000. [GJ79] S. Gelbart and H. Jacquet. Forms of GL(2) from the analytic point of view. In Automorphic forms, representations, and L-functions, volume 33 of Preceedings of Symposia in Pure Mathematics, pages 213-251, 1979. part 1. [GK92] B. Gross and S. Kudla. Heights and the central critical values of triple product L-functions. Compositio Mathematica, 81(2):143-209, 1992. [Hen00] G. Henniart. Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Inventiones mathematiace, 139:439-455, 2000. [Hid93] H. Hida. Elementary theory of L-functions and Eisenstein series, volume 26 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1993. [HK91] M. Harris and S. Kudla. The central critical value of a triple product L-function. Annals of Mathematics, 133(3):605-672, 1991. [HK04] M. Harris and S. Kudla. On a conjecture of Jacquet, pages 355-371. Johns Hopkins Univ. Press, Baltimore, 2004. [Hsi17] M. L. Hsieh. Hida families and p-adic triple L-function. 2017. arXiv:1075.02717. [HT01] M. Harris and R. Taylor. On the geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies. Princeton University press, 2001. [Hu17] Y. K. Hu. Triple product formula and the subconvexity bound of Triple product L-function in level aspect. American Journal of Mathematics, 139(1):215-159, February 2017. [Ich05] A. Ichino. Pullbacks of saito-kurokawa lifts. Inventiones mathematiace, 162:551-647, 2005. [Ich08] A. Ichino. Trilinear forms and the central values of triple product L-functions. Duke Mathematical Journal, 145(2):281-307, 2008. [II10] A. Ichino and T. Ikeda. On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Goemetric and functional analysis, 19:1378- 1425, 2010. [Ike92] T. Ikeda. On the location of poles of the triple L-functions. Compositio Mathematica, 83(2):187-237, 1992. [Ike98] T. Ikeda. On the gamma factor of the triple L-function II. Journal fur die reine und angewandte Mathematik, 499:199-223, 1998. [IP] A. Ichino and K. Prasanna. Period of quaternionic Simura varieties. I. preprint. [Ish17] Isao Ishikawa. On the construction of twisted triple product p-adic L-functions. PhD thesis, Kyoto University, 2017. [Jac72] H. Jacquet. Automorphic Forms on GL(2) II, volume 278. Springer-Verlag, Berlin and New York, 1972. [JL70] H. Jacquet and R. Langlands. Automorphic Forms on GL(2), volume 114 of Lecture Notes in Mathematics. Springer-Verlag, Berlin and New York, 1970. [Kim03] H. Kim. Functoriality for the exterior square of GL(4) and the symmetric fourth of GL(2). Journal of American mathematics society, 16(1):139-183, 2003. appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. [Lok01] H. Y. Loke. Trilinear forms of gl2. Paci c Journal of Mathematics, 197(1):119-144, 2001. [Mat10] Nadir Matringe. Distinguished representations and exceptional poles of the Asai L-function. Manuscripta Math. ,131:415-426, 2010. [MV10] P. Michel and A. Venkatesh. The subconvexity problem for GL2. Publ. Math. Inst. Hautes Etudes Sci.,(111):171-271, 2010. [Nel11] P. Nelson. Equidistribution of cusp forms in the level aspect. Duke Mathematical Journal, 160(3):467-501, 2011. [NPS14] P. Nelson, A. Pitale, and A. Saha. Bound for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels. Journal of American mathematics society, 27(1):147-191, 2014. [Orl87] T. Orlo . Special values and mixed weigh triple products. Inventiones mathematiace, 90:169-180, 1987. with appendix by Don Blasius. [Pra90] D. Prasad. Trilinear forms for representations of GL(2) and local epsilon-factors. Compositio Mathematica, 75(1):1 -46, 1990. [Pra92] D. Prasad. Invariant linear forms for representations of GL(2) over a local field. American Journal of Mathematics, 114:1317-1363, 1992. [PSP08] D. Prasad and R. Schulze-Pillot. Generalised form of a conjecture of jacquet and a local consequence. Journal fur diereine und angewandte Mathematik, (616):219-236, 2008. [PSR87] I. Piatetski-Shapiro and S. Rallis. Rankin triple L-functions. Compositio Mathematica, 64(1):31-115, 1987. [Rag09] A. Raghuram. On the special values of certain Rankin-Selberg L-functions and applications to odd symmetric power L-functions of modular forms. International Mathematics Research Notices, 2010(2):334-372, 2009. [Ram00] D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Annals of Mathematics, 152(2):45-111, 2000. [Sat87] T. Satoh. Some remarks on triple L-functions. Mathematische Annalen, 276:687-698, 1987. [Sch90] A.J. Scholl. Motives for modular forms. Inventiones mathematiace, 100:419-430, 1990. [Sch02] R. Schmidt. Some remarks on local newforms for GL(2). Journal of Ramanujan Mathematical Society, 17(2):115-147, 2002. [Shi76] G. Shimura. The special values of the zeta functions associated with cusp forms. Communications on Pure and Applied Mathematics, pages 783-804, 1976. [Shi77] G. Shimura. On the periods of modular forms. Mathematische Annalen, 229:211-221, 1977. [Shi78] G. Shimura. The special values of the zeta functions associated with Hilbert modular forms. Duke Mathematical Journal, 45(3):637-679, 1978. [Shi81] G. Shimura. On Certain Zeta Functions Attached to Two Hilbert Modular Forms: II. The Case ofAutomorphic Forms on a Quaternion Algebra. Annals of Mathematics, 114(3):569 -607, 1981. [Sne51] Ian N. Sneddon. Fourier transforms. McGraw-Hill Company, 1951. [Stu80] J. Sturm. Special values of zeta functions, and Eisenstein series of half Integral weight. American Journal of Mathematics, 102(2):219-240, 1980. [Stu89] J. Sturm. Evaluation of the symmetric square at the near center point. American Journal of Mathematics, 111(4):585-598, 1989. [Wal85a] J-L. Waldspurger. Quelques proprietes arithmetiques de certaines formes automorphes sur GL(2). Compositio Mathematica, 54:121-171, 1985. [Wal85b] J-L. Waldspurger. Sur les valeurs de certaines fonctions L automorphes en leur centre de syemetrie. Compositio Mathematica, 54(2):173-242, 1985. [Wat08] T. Watson. Rankin triple products and quantum chaos. 2008. Ph.D. dissertation, Princeton University, Princeton, N.J., 2002, arXiv:0810.0425v3 [math.NT]. [Xue] H. Xue. Central values of degree six L-functions. preprint. [Yos01] H. Yoshida. Motives and siegel modular forms. American Journal of Mathematics, 123(6):1171-1197, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71244 | - |
dc.description.abstract | 利用Ichino的公式, 我們給了三重積L-函數特殊值的精確公式. 特別的, 我們計算了很多實賦值上的局部周期積分. 關於公式的應用, 我們首先利用這些公式建立三重積L-函數特殊值的代數性. 接著我們利用三重積L-函數特殊值的代數性證明某些GL(2)xGL(3)上自守L-函數中心值的Deligne猜想. | zh_TW |
dc.description.abstract | We present explicit central value formulae for certain triple product L-functions over a totally real number field by using Ichino's formula. In particular, we carry out explicit computations for the local period integrals at the real defined in the Ichino's formula in very general settings. As applications, we first establish the rationality of the central critical values of these triple product L-functions. Base on this result, we prove the Deligne's conjecture for the central critical values of certain class of automorphic L-functions for GL(2)xGL(3). | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:00:38Z (GMT). No. of bitstreams: 1 ntu-107-D02221003-1.pdf: 1366481 bytes, checksum: ebbc29f4be345ed2f89da7d0bb7166dd (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 ……………………………………………………..i
Acknowledgements...………………………………………………...ii 中文摘要 …………………………………………………….............iii Abstract...…………………………………………………………….iv 1. Introduction………………………………………………………..1 1.1. Basic notations…………………………………………………4 2. Local invariant forms……………………………………………...5 2.1. Ichino’s integral………………………………………………...5 2.2. An identity between invariant forms…………………………..5 2.3. Rankin-Selberg integrals……………………………………….7 3. The calculation of local period integrals for matrix algebra: Archimedean case.………………………………………………….9 3.1. Notation and conventions………………………………………9 3.2. Definition of local period integrals……………………………10 3.3. Period integrals for E=R x R x R………………………………14 3.4. Period integrals for E=C x R…..……………………………….22 4. The calculation of local period integrals for matrix algebra: non-Archimedean case……………………………………………..27 4.1. Notation and conventions……………………………………....27 4.2. Definition of period integrals……………………………….….28 4.3. Period integrals for E=F x F x F………………………….……29 4.4. Period integrals for E=F’ x F…………………………………..31 4.5. Period integrals for E is a field……………………….………..34 5. The calculation of local period integrals for division algebra………35 5.1. Notation and conventions……………………………………….35 5.2 Definition of period integrals……………………………………36 5.3. Period integrals for division algebra……………………………38 6. Proof of Proposition 2.3……………………………………………41 6.1. The proof……………………………………………………….41 6.2. Proof of lemma 6.3: Archimedean case………………………..46 6.3. Proof of lemma 6.3: non-Archimedean case…………………...52 6.4. The constant c(delta)……………………………………………57 7. Special value formulae……………………………………………..58 7.1. Notation………………………………………………………...58 7.2. Global settings and assumptions……………………………….58 7.3. Vector-valued automorphic form………………………………59 7.4. Global period integral…………………………………………..60 7.5. The formulae……………………………………………………63 8. Applications………………………………………………………..64 8.1. Modular forms and auromorphic forms………………………..64 8.2. Algebraicity for triple product L-functions……………….66 8.3. Deligne’s conjecture for GL(3) x GL(2)………………………..73 Appendix A: Whittaker functions and matrix coefficients for GL(2)…75 A.1. Notation and convention…………………………………………75 A.2. Whittaker functions for GL(2,C)…………………………………76 A.3. Whittaker functions for GL(2,R)…………………………………77 A.4. Whittaker functions for GL(2,F)…………………………………78 A.5. Matrix coefficients for GL(2,R)……………………………..…80 A.6. Matrix coefficients for GL(2,F)………………………………...81 Appendix B: Description of Kirillov models………………………...83 Appendix C: Root numbers and Deligne’s periods…………………..88 C.1. Root numbers…………………………………………………….88 C.2. Deligne’s period………………………………………………….89 References..…………………………………………………………....90 | |
dc.language.iso | en | |
dc.title | 三重積L-函數之特殊值公式及其應用 | zh_TW |
dc.title | Special value formulae for triple product L-functions and applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 潘戍衍,魏福村,康明軒,K. Namikawa | |
dc.subject.keyword | 特殊值公式,三重積L-函數,局部周期積分,Ichino公式,Deligne猜想, | zh_TW |
dc.subject.keyword | Special value formulae,triple product L-functions,local period integrals, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU201801839 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。