Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71160
Title: 機器學習在血糖指數建模和預測中的應用
Application of Machine Learning in the Modeling and the Prediction of Glycemic Indices
Authors: Ching-Chen Lu
呂晉成
Advisor: 周呈霙(Cheng-Ying Chou)
Keyword: 糖尿病,機器學習,血糖,典型相關分析,最小絕對值收斂和選擇算子,
diabetes,machine learning,blood glucose,canonical correlation analysis,least absolute shrinkage and selection operator,
Publication Year : 2020
Degree: 碩士
Abstract: 本研究的目的是利用最小絕對值收斂和選擇算子(LASSO)與典型相關分析(CCA)來篩選餐後血糖(GLU_2hr_PC)、空腹血糖(GLU_AC)和糖化血紅蛋白(HbA1c)這三種血糖指數之潛在因子。同時,應用了羅吉斯回歸(LR)、K-近鄰演算法(KNN)、決策樹(DT)、線性判別分析(LDA)和支持向量機(SVM)五種不同的機器學習方法,對健檢資料集的患者是否有糖尿病進行分類。然後,將混淆矩陣建立的相關指標用於比較這五項分類器的表現。從研究結果可以發現,糖尿病的危險因素可能包括鈣離子(Ca)、氯離子(Cl)、肌酸酐 (CRE)、高敏感度C-反應蛋白(hs_CRP)、尿比重(Sp_Gr_C)、年齡、身高體重指數…等等。而在機器學習的分類結果裡,綜觀所有的評分指標,LDA在此資料集對於糖尿病病患的偵測能力最佳。這項研究將提高我們對於健康檢查的重視,並且針對降低糖尿病病例的臨床決策有所幫助。
The objective of this study is to identify the potential factors of glycemic indices, i.e., postprandial blood glucose (GLU_2hr_PC), fasting blood glucose (GLU_AC), and glycated hemoglobin (HbA1c) by least absolute shrinkage and selection operator (LASSO) and canonical correlation analysis (CCA). At the same time, five different machine learning methods including logistic regression (LR), K-nearest neighbor classification (KNN), decision tree (DT), linear discriminant analysis (LDA), and support vector machine (SVM) were applied to build the learning system in order to classify whether the patients in the healthcare dataset have diabetes or not. Then, the relevant indicators established by the confusion matrix were used to compare the performances of these five classifiers. It can be found from the research results that the risk factors for diabetes may include calcium (Ca), chloride (Cl), creatinine(CRE), high sensitivity C-reactive protein(hs_CRP), urine Specific Gravity(Sp_Gr_C), age, Body Mass Index, etc. In the classification results of machine learning, LDA has the best detection ability for diabetic patients in this dataset among all the evaluate indicators. This work will increase people’s attention to the health checkups and aid in the clinical decision making for reducing diabetes cases.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71160
DOI: 10.6342/NTU202004062
Fulltext Rights: 有償授權
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
U0001-1908202003171300.pdf
  Restricted Access
1.25 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved