Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70920
Title: 卷積神經網絡的集成學習之乳房超音波電腦輔助診斷
Computer‐Aided Diagnosis of Breast Ultrasound Images Using Ensemble Learning from Convolutional Neural Networks
Authors: Hao-Hsiang Ke
柯皓翔
Advisor: 張瑞峰
Keyword: 乳癌,乳房超音波影像,電腦輔助診斷,深度學習,卷積神經網絡,集成學習,
Breast cancer,Breast ultrasound,Computer-aided diagnosis,Deep learning,Convolutional neural network,Ensemble learning,
Publication Year : 2018
Degree: 碩士
Abstract: 乳癌是女性癌症中很常見的一種,而近年來,乳癌的死亡率已大大下降,因為及早發現及早治療能有效的提高存活率。而在臨床上,乳房超音波影像常用來判斷腫瘤的良惡性,並且搭配電腦輔助診斷系統以協助醫生偵測及診斷,也能夠降低不同醫生對於相同腫瘤診斷的變異性。本研究主要的目的是使用卷積神經網路自動提取腫瘤特徵,並且搭配集成學習結合多個網路以增進效能。此篇研究我們提出的方法是利用四種不同架構的卷積神經網路分別學習不同腫瘤特徵,並且我們還提出利用全卷積神經網路自動切割出腫瘤遮罩影像的方法提供腫瘤形狀的特徵達成更精確的診斷。本篇研究使用了1687筆腫瘤資料,其中有953顆良性腫瘤,有734顆惡性腫瘤,研究顯示,使用集成學習結合學習到不同特徵的卷積神經網路的分類結果確實比單一卷積神經網路的分類結果還要好,可達到準確率91.10%,靈敏性 85.14%,特異性 95.77%,ROC曲線面積0.9697,比所有單一網路的分類結果還要高,因此,使用集合方法可以減少分類的偏差,並且使用代表性特徵可以提高診斷效果。
Breast cancer is the most common malignancy of the total cancer cases in United States females. However, early diagnosis leads to early treatment and reduces mortality rates. In the clinical usage, breast ultrasound and computer aided diagnosis (CAD) is usually used to diagnosis tumors into benignancy or malignancy. In addition, CAD has been used to decrease the diagnosis variation of different physicians and assist to classify or detect the tumors. In our study, we use the convolutional neural network (CNN) for automatic feature extraction and the ensemble method to combine multi CNN models for better diagnostic performance. The CNN-based method proposed in this study includes VGG-Like, VGG-16, ResNet, and DenseNet. Also, we proposed a fully convolutional network (FCN) to employ tumor segmentation and extract tumor shape features automatically. There were total 1687 tumors used in this study, including 953 benign tumors and 734 malignant tumors. The accuracy, sensitivity, and the specificity of the proposed method were 91.10%, 85.14%, and 95.77%, respectively, and the area under the ROC curve was 0.9697. In conclusion, the ensemble method can improve the performance by using multiple CNN methods and the tumor shape feature can improve the diagnostic effect.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70920
DOI: 10.6342/NTU201802461
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.48 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved