Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70762
Title: 使用深度學習從單張低動態範圍影像重建高動態範圍影像
Using Convolutional Neural Network to Reconstruct High Dynamic Range Image from a Single Low Dynamic Range Image
Authors: Yi-Lung Kao
高以龍
Advisor: 歐陽明(Ming Ouhyoung)
Keyword: 反向色調映射,高動態範圍影像,卷積神經網絡,輻射校準,圖像處理,
Reverse Tone Mapping,High Dynamic Range Imaging,Convolutional Neural Networks,Radiometric Calibration,Image Processing,
Publication Year : 2018
Degree: 碩士
Abstract: 我們提出了一個基於深度學習的方式,從單張低動態範圍影 像 (LDR) 重建高動態範圍影像 (HDR) 。這個問題非常具有挑戰性, 因為目前相機結構上的限制,在拍攝照片時會有影像量化的問題 (quantization) 以及過曝的問題。與前人所提出的方法不同點是:我們提出的網路架構並不直接學習低動態範圍影像與高動態範圍影像之間的對應關係,我們在網路架構中加入了更多人類關於相機與影像的知識。明確的說,我們提出的網路架構含有三個部分:(1) 影像線性化 (2) 影像去量化 (3) 影像去過曝。第一,給訂一張低動態範圍影像,我們先找出對應的相機反應函數,便可以將影像轉換到線性的空間中。 第二,我們透過影像去量化網路來去除影像過暗區域所造成的影像量化問題。第三,我們使用影像去過曝網路來重新繪畫出因為過曝所缺失的影像內容。最後,我們對所提出的演算法與同類型演算法做了許多實驗與比較,證明我們的演算法優於前人所提出的演算法。
We present a learning-based approach for recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image. This problem is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to ex- isting methods that directly learn the mapping from LDR to HDR images using a generic network, we propose to integrate the domain knowledge of the LDR image formation pipeline into our model. Specifically, our ap- proach consists of three modules to restore HDR details from LDR images: (1) linearization, (2) dequantization, and (3) hallucination. First, given an input LDR image, we estimate the inverse camera response function using a Linearization-Net and map the LDR image to the linear space. Second, we apply a Dequantization-Net to remove quantization artifacts in the under- exposed regions. Third, we inpaint the missing regions due to saturation with a Hallucination-Net. Extensive quantitative and qualitative experiments demonstrate that our approach performs favorably against state-of-the-art tech- niques by learning to reverse the image formation pipeline.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70762
DOI: 10.6342/NTU201801416
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
63.15 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved