請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70750
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘敏雄(Ming-Hsiung Pan) | |
dc.contributor.author | Yi-Ang Shih | en |
dc.contributor.author | 石苡昂 | zh_TW |
dc.date.accessioned | 2021-06-17T04:37:07Z | - |
dc.date.available | 2021-08-13 | |
dc.date.copyright | 2018-08-13 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-08 | |
dc.identifier.citation | Ahmed, M. (2015). Non-alcoholic fatty liver disease in 2015. World journal of hepatology, 7(11), 1450-1459.
Altarejos, J. Y.; Montminy, M. (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nature Reviews Molecular Cell Biology, 12(3), 141-151. Andoh, A.; Imaeda, H. (2016). Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of Gastroenterology and Hepatology, 31, 155-155. Astell, K. J.; Mathai, M. L.; Su, X. Q. (2013). A Review on Botanical Species and Chemical Compounds with Appetite Suppressing Properties for Body Weight Control. Plant Foods for Human Nutrition, 68(3), 213-221. Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718-15723. Bailey, S. A.; Zidell, R. H.; Perry, R. W. (2004). Relationships between organ weight and body/brain weight in the rat: What is the best analytical endpoint? Toxicologic Pathology, 32(4), 448-466. Belzer, C.; de Vos, W. M. (2012). Microbes inside--from diversity to function: the case of Akkermansia. The ISME journal, 6(8), 1449-1458. Berry, D. C.; Stenesen, D.; Zeve, D.; Graff, J. M. (2013). The developmental origins of adipose tissue. Development, 140(19), 3939-3949. Bleich, S.; Cutler, D.; Murray, C.; Adams, A. (2008). Why is the developed world obese? Annual Review of Public Health, 29, 273-295. Boden, G. (1999). Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proceedings of the Association of American Physicians, 111(3), 241-248. Bose, M.; Lambert, J. D.; Ju, J.; Reuhl, K. R.; Shapses, S. A.; Yang, C. S. (2008). The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. Journal of Nutrition, 138(9), 1677-1683. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. Brasaemle, D. L.; Subramanian, V.; Garcia, A.; Marcinkiewicz, A.; Rothenberg, A. (2009). Perilipin A and the control of triacylglycerol metabolism. Molecular and Cellular Biochemistry, 326(1-2), 15-21. Cani, P. D.; Bibiloni, R.; Knauf, C.; Neyrinck, A. M.; Neyrinck, A. M.; Delzenne, N. M.; Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470-1481. Cani, P. D.; Delzenne, N. M.; Amar, J.; Burcelin, R. (2008). Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie Biologie, 56(5), 305-309. Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Lozupone, C. A.; Turnbaugh, P. J.; Fierer, N.; Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 4516-4522. Carmen, G. Y.; Victor, S. M. (2006). Signalling mechanisms regulating lipolysis. Cellular Signalling, 18(4), 401-408. Cecil, J. E.; Francis, J.; Read, N. W. (1999). Comparison of the effects of a high-fat and high-carbohydrate soup delivered orally and intragastrically on gastric emptying, appetite, and eating behaviour. Physiology & Behavior, 67(2), 299-306. Ceddia, R. B. (2005). Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. International Journal of Obesity, 29(10), 1175-1183. Chang, S. H.; Stoll, C. R. T.; Song, J.; Varela, J. E.; Eagon, C. J.; Colditz, G. A. (2014). The effectiveness and risks of bariatric surgery an updated systematic review and meta-analysis, 2003-2012. Jama Surgery, 149(3), 275-287. Choe, S. S.; Huh, J. Y.; Hwang, I. J.; Kim, J. I.; Kim, J. B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in endocrinology, 7, 30. Choi, H. J.; Eo, H.; Park, K.; Jin, M.; Park, E. J.; Kim, S. H.; Park, J. E.; Kim, S. (2007). A water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochemical and Biophysical Research Communications, 359(3), 419-425. Chuah, L. O.; Ho, W. Y.; Beh, B. K.; Yeap, S. K. (2013). Updates on Antiobesity effect of garcinia origin (-)-HCA. Evidence-Based Complementary and Alternative Medicine. Coates, M. E. (1975). Gnotobiotic animals in research: their uses and limitations. Laboratory animals, 9(4), 275-282. Colquitt, J. L.; Pickett, K.; Loveman, E.; Frampton, G. K. (2014). Surgery for weight loss in adults. Cochrane Database of Systematic Reviews(8). Coppola, A.; Marfella, R.; Coppola, L.; Tagliamonte, E.; Fontana, D.; Liguori, E.; Cirillo, T.; Cafiero, M.; Natale, S.; Astarita, C. (2009). Effect of weight loss on coronary circulation and adiponectin levels in obese women. International Journal of Cardiology, 134(3), 414-416. Dao, M. C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E. O.; Kayser, B. D.; Levenez, F.; Chilloux, J.; Hoyles, L.; Consortium, M. I.-O.; Dumas, M. E.; Rizkalla, S. W.; Dore, J.; Cani, P. D.; Clement, K. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-436. Derrien, M.; Vaughan, E. E.; Plugge, C. M.; de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54, 1469-1476. Diez, J. J.; Iglesias, P. (2003). The role of the novel adipocyte-derived hormone adiponectin in human disease. European Journal of Endocrinology, 148(3), 293-300. Drent, M. L.; Larsson, I.; Williamolsson, T.; Quaade, F.; Czubayko, F.; Vonbergmann, K.; Strobel, W.; Sjostrom, L.; Vanderveen, E. A. (1995). Orlistat (Ro-18-0647), a lipase inhibitor, in the treatment of human obesity - a multiple-dose study. International Journal of Obesity, 19(4), 221-226. Durbán, A.; Abellán, J. J.; Latorre, A.; Moya, A. (2013). Effect of dietary carbohydrate restriction on an obesity-related Prevotella-dominated human fecal microbiota. Metagenomics, 2, 1-4. Epel, E.; Lapidus, R.; McEwen, B.; Brownell, K. (2001). Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology, 26(1), 37-49. Erejuwa, O. O.; Sulaiman, S. A.; Ab Wahab, M. S. (2014). Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. International Journal of Molecular Sciences, 15(3), 4158-4188. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M.; de Vos, W. M.; Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066-9071. Fåk, F.; Bäckhed, F. (2012). Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice. Plos One, 7(10), e46837. Fillmore, N.; Alrob, O. A.; Lopaschuk, G. D. (2011). Fatty acid beta-oxidation. AOCS Lipid library. Flint, H. J.; Scott, K. P.; Duncan, S. H.; Louis, P.; Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289-306. Gargari, G.; Taverniti, V.; Balzaretti, S.; Ferrario, C.; Gardana, C.; Simonetti, P.; Guglielmetti, S. (2016). Consumption of a Bifidobacterium bifidum strain for 4 weeks modulates dominant intestinal bacterial taxa and fecal butyrate in healthy adults. Applied and Environmental Microbiology, 82(19), 5850-5859. Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355-1359. Godard, M. P.; Johnson, B. A.; Richmond, S. R. (2005). Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obesity Research, 13(8), 1335-1343. Goran, M. I.; Gower, B. A. (1999). Relation between visceral fat and disease risk in children and adolescents. American Journal of Clinical Nutrition, 70(1), 149s-156s. Goto, T.; Kim, M.; Takahashi, H.; Takahashi, N.; Kawada, T. (2016). Food intake and thermogenesis in adipose tissue. The Korean Journal of Obesity, 25(3), 109-114. Greenhill, C. (2017). OBESITY Gut microbiome and serum metabolome changes. Nature Reviews Endocrinology, 13(9), 498-498. Håkansson, M. L.; Brown, H.; Ghilardi, N.; Skoda, R. C.; Meister, B. (1998). Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. Journal of Neuroscience, 18(1), 559-572. Hamajima, H.; Matsunaga, H.; Fujikawa, A.; Sato, T.; Mitsutake, S.; Yanagita, T.; Nagao, K.; Nakayama, J.; Kitagaki, H. (2016). Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SpringerPlus, 5(1), 1321. Haslam, D. W.; James, W. P. (2005). Obesity. Lancet, 366(9492), 1197-1209. He, M. Q.; Shi, B. Y. (2017). Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell and Bioscience, 7(1), 54. Henderson, S.; Magu, B.; Rasmussen, C.; Lancaster, S.; Kerksick, C.; Smith, P.; Melton, C.; Cowan, P.; Greenwood, M.; Earnest, C.; Almada, A.; Milnor, P.; Magrans, T.; Bowden, R.; Ounpraseuth, S.; Thomas, A.; Kreider, R. B. (2005). Effects of Coleus Forskohlii supplementation on body composition and hematological profiles in mildly overweight women. Journal of the International Society of Sports Nutrition, 2(2), 54. Henninger, A. M. J.; Eliasson, B.; Jenndahl, L. E.; Hammarstedt, A. (2014). Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. Plos One, 9(8). Hensle, T. W.; Lambert, E. H. (2010). Renal function, fluids, electrolytes, and nutrition from birth to adulthood. Pediatric Urology, 23-30. Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. (2017). Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: A systematic review. Sports medicine-open, 3(1), 8. Hildebrandt, M. A.; Hoffmann, C.; Sherrill-Mix, S. A.; Keilbaugh, S. A.; Hamady, M.; Chen, Y. Y.; Knight, R.; Ahima, R. S.; Bushman, F.; Wu, G. D. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 137(5), 1716-1724. Hsu, C. L.; Lin, Y. J.; Ho, C. T.; Yen, G. C. (2012). Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food & Function, 3(1), 49-57. Hu, E. D.; Kim, J. B.; Sarraf, P.; Spiegelman, B. M. (1996). Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science, 274(5295), 2100-2103. Jogl, G.; Tong, L. (2003). Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell, 112(1), 113-122. Journey, E.; Hotz, R. L.; Bruening, M.; Whisner, C. M. (2016). Assessing relationships between dietary intake, gut microbiota and weight among a diverse cohort of college freshmen. The FASEB Journal, 30(1_supplement), 1166-10. Jung, C. H.; Cho, I.; Ahn, J.; Jeon, T. I.; Ha, T. Y. (2013). Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytotherapy Research, 27(1), 139-143. Karlsson, C. L. J.; Onnerfalt, J.; Xu, J.; Molin, G.; Ahrne, S.; Thorngren-Jerneck, K. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. Obesity, 20(11), 2257-2261. Kim, S.; Jin, Y.; Choi, Y.; Park, T. (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochemical Pharmacology, 81(11), 1343-1351. Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; Sineok, L.; Lushchak, O.; Vaiserman, A. (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17(1), 120. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635-643. Lazzer, S.; Bedogni, G.; Lafortuna, C. L.; Marazzi, N.; Busti, C.; Galli, R.; De Col, A.; Agosti, F.; Sartorio, A. (2010). Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity, 18(1), 71-78. Lean, M. E. J.; James, W. P. T.; Jennings, G.; Trayhurn, P. (1986). Brown adipose-tissue uncoupling protein-content in human infants, children and adults. Clinical Science, 71(3), 291-297. Ley, R. E.; Turnbaugh, P. J.; Klein, S.; Gordon, J. I. (2006). Microbial ecology - Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. Li, Q.; Liu, Z.; Huang, J.; Luo, G.; Liang, Q.; Wang, D.; Ye, X.; Wu, C.; Wang, L.; Hu, J. (2013). Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. Journal of the Science of Food and Agriculture, 93(6), 1310-1316. Limdi, J. K.; Hyde, G. M. (2003). Evaluation of abnormal liver function tests. Postgraduate Medical Journal, 79(932), 307-312. Litosch, I.; Hudson, T. H.; Mills, I.; Li, S. Y.; Fain, J. N. (1982). Forskolin as an activator of cyclic-AMP accumulation and lipolysis in rat adipocytes. Molecular Pharmacology, 22(1), 109-115. Loos, R. J. F.; Bouchard, C. (2008). FTO: the first gene contributing to common forms of human obesity. Obesity Reviews, 9(3), 246-250. Lowenstein, J. M. (1971). Effect of (-)-Hydroxycitrate on fatty acid synthesis by rat liver in vivo. Journal of Biological Chemistry, 246(3), 629-632. Luglio, H. F.; Sulistyoningrum, D. C.; Susilowati, R. (2015). The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. Journal of Clinical Biochemistry and Nutrition, 57(2), 91-97. Maggard, M. A.; Shugarman, L. R.; Suttorp, M.; Maglione, M.; Sugarman, H. J.; Livingston, E. H.; Nguyen, N. T.; Li, Z. P.; Mojica, W. A.; Hilton, L.; Rhodes, S.; Morton, S. C.; Shekelle, P. G. (2005). Meta-analysis: Surgical treatment of obesity. Annals of Internal Medicine, 142(7), 547-559. Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J. K.; Manttari, M.; Heinonen, O. P.; Frick, M. H. (1992). Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart-disease risk in the Helsinki Heart-Study - implications for treatment. Circulation, 85(1), 37-45. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387-402. McArdle, M. A.; Finucane, O. M.; Connaughton, R. M.; McMorrow, A. M.; Roche, H. M. (2013). Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Frontiers in endocrinology, 4, 52. Mekada, K.; Abe, K.; Murakami, A.; Nakamura, S.; Nakata, H.; Moriwaki, K.; Obata, Y.; Yoshiki, A. (2009). Genetic differences among C57BL/6 substrains. Experimental Animals, 58(2), 141-149. Mobini, R.; Tremaroli, V.; Stahlman, M.; Karlsson, F.; Levin, M.; Ljungberg, M.; Sohlin, M.; Perkins, R.; Perkins, R.; Baackhed, F.; Jansson, P. A. (2017). Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: A randomized controlled trial. Diabetes Obesity & Metabolism, 19(4), 579-589. Nadal, I.; Santacruz, A.; Marcos, A.; Warnberg, J.; Garagorri, M.; Moreno, L. A.; Martin-Matillas, M.; Campoy, C.; Marti, A.; Moleres, A.; Delgado, M.; Veiga, O. L.; Garcia-Fuentes, M.; Redondo, C. G.; Sanz, Y. (2009). Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. International Journal of Obesity, 33(7), 758-767. Nedergaard, J.; Bengtsson, T.; Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism, 293(2), E444-E452. Nelson, R. H. (2013). Hyperlipidemia as a risk factor for cardiovascular disease. Clinics in Perinatology, 40(1), 195-211. Nevalainen, A.; Seuri, M. (2005). Of microbes and men. Indoor Air, 15, 58-64. Nicholson, A.; Reifsnyder, P. C.; Malcolm, R. D.; Lucas, C. A.; MacGregor, G. R.; Zhang, W. D.; Leiter, E. H. (2010). Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity, 18(10), 1902-1905. Onrust, L.; Ducatelle, R.; Van Driessche, K.; De Maesschalck, C.; Vermeulen, K.; Haesebrouck, F.; Eeckhaut, V.; Van Immerseel, F. (2015). Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Frontiers in veterinary science, 2, 75. Ouchi, N.; Walsh, K. (2007). Adiponectin as an anti-inflammatory factor. Clinica Chimica Acta, 380(1-2), 24-30. Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F. H. (2009). Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. Journal of Hematology & Oncology, 2(1), 38. Parlee, S. D.; Lentz, S. I.; Mori, H.; MacDougald, O. A. (2014). Quantifying Size and number of adipocytes in adipose tissue. Methods of Adipose Tissue Biology, Pt A, 537, 93-122. Peirce, V.; Carobbio, S.; Vidal-Puig, A. (2014). The different shades of fat. Nature, 510(7503), 76-83. Poirier, P.; Giles, T. D.; Bray, G. A.; Hong, Y.; Stern, J. S.; Pi-Sunyer, F. X.; Eckel, R. H.; American Heart, A.; Obesity Committee of the Council on Nutrition, P. A.; Metabolism. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918. Pool, R. (2001). Fat: Fighting the obesity epidemic. Oxford University Press. Qiao, Y.; Sun, J.; Xia, S. F.; Li, L. T.; Li, Y.; Wang, P. P.; Shi, Y. H.; Le, G. W. (2015). Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. Journal of Functional Foods, 14, 424-434. Radilla-Vazquez, R. B.; Parra-Rojas, I.; Martinez-Hernandez, N. E.; Marquez-Sandoval, Y. F.; Illades-Aguiar, B.; Castro-Alarcon, N. (2016). Gut microbiota and metabolic endotoxemia in young obese Mexican subjects. Obesity facts, 9(1), 1-11. Ràfols, M. E. (2014). Adipose tissue: Cell heterogeneity and functional diversity. Endocrinologia Y Nutricion, 61(2), 100-112. Rao, R. N.; Sakariah, K. K. (1988). Lipid-lowering and antiobesity effect of (-)hydroxycitric acid. Nutrition Research, 8(2), 209-212. Rios-Covian, D.; Salazar, N.; Gueimonde, M.; de los Reyes-Gavilan, C. G. (2017). Shaping the metabolism of intestinal bacteroides population through diet to improve human health. Frontiers in Microbiology, 8, 376. Roden, M.; Price, T. B.; Perseghin, G.; Petersen, K. F.; Rothman, D. L.; Cline, G. W.; Shulman, G. I. (1996). Mechanism of free fatty acid-induced insulin resistance in humans. Journal of Clinical Investigation, 97(12), 2859-2865. Rosen, E. D. (2015). Two paths to fat. Nature Cell Biology, 17(4), 360-361. Rothwell, N. J.; Stock, M. J. (1983). Luxuskonsumption, diet-induced thermogenesis and brown fat - the case in favor. Clinical Science, 64(1), 19-23. Rucker, D.; Padwal, R.; Li, S. K.; Curioni, C.; Lau, D. C. W. (2007). Long term pharmacotherapy for obesity and overweight: updated meta-analysis. British Medical Journal, 335(7631), 1194-1199. Sanz, Y.; Santacruz, A.; Gauffin, P. (2010). Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 69(3), 434-441. Scarpellini, E.; Campanale, M.; Leone, D.; Purchiaroni, F.; Vitale, G.; Lauritano, E. C.; Gasbarrini, A. (2010). Gut microbiota and obesity. Internal and Emergency Medicine, 5, S53-S56. Scheppach, W. (1994). Effects of short-chain fatty-acids on gut morphology and function. Gut, 35(1), S35-S38. Seale, P.; Lazar, M. A. (2009). Brown fat in humans: turning up the heat on obesity. Diabetes, 58(7), 1482-1484. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W. S.; Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6). Shen, F.; Zheng, R. D.; Sun, X. Q.; Ding, W. J.; Wang, X. Y.; Fan, J. G. (2017). Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary & Pancreatic Diseases International, 16(4), 375-381. Shick, S. M.; Wing, R. R.; Klem, M. L.; McGuire, M. T.; Hill, J. O.; Seagle, H. (1998). Persons successful at long-term weight loss and maintenance continue to consume a low-energy, low-fat diet. Journal of the American Dietetic Association, 98(4), 408-413. Shimomura, I.; Hammer, R. E.; Ikemoto, S.; Brown, M. S.; Goldstein, J. L. (1999). Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature, 401(6748), 73-76. Shin, N. R.; Lee, J. C.; Lee, H. Y.; Kim, M. S.; Whon, T. W.; Lee, M. S.; Bae, J. W. (2014). An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 63(5), 727-735. Shivaprasad, H. N.; Gopalakrishna, S.; Mariyanna, B.; Thekkoot, M.; Reddy, R.; Tippeswamy, B. S. (2014). Effect of Coleus forskohlii extract on cafeteria diet-induced obesity in rats. Pharmacognosy research, 6(1), 42-45. Snow, V.; Barry, P.; Fitterman, N.; Qaseem, A.; Weiss, K.; Physicians, A. C. (2005). Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians. Annals of Internal Medicine, 142(7), 525-531. Strychar, I. (2006). Diet in the management of weight loss. Canadian Medical Association Journal, 174(1), 56-63. Sugerman, H. J. (2001). Bariatric surgery for severe obesity. Journal of the Association for Academic Minority Physicians: the official publication of the Association for Academic Minority Physicians, 12(3), 129-136. Sullivan, A. C.; Triscari, J.; Hamilton, J. G.; Miller, O. N. (1974). Effect of (-)-hydroxycitrate upon accumulation of lipid in rat .2. Appetite. Lipids, 9(2), 129-134. Tate, D. F.; Jeffery, R. W.; Sherwood, N. E.; Wing, R. R. (2007). Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? The American journal of clinical nutrition, 85(4), 954-959. Tchoukalova, Y. D.; Koutsari, C.; Karpyak, M. V.; Votruba, S. B.; Wendland, E.; Jensen, M. D. (2008). Subcutaneous adipocyte size and body fat distribution. American Journal of Clinical Nutrition, 87(1), 56-63. Tews, D.; Wabitsch, M. (2011). Renaissance of brown adipose tissue. Hormone Research in Paediatrics, 75(4), 231-239. Trayhurn, P.; Wood, I. S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition, 92(3), 347-355. Tsai, F.; Coyle, W. J. (2009). The microbiome and obesity: is obesity linked to our gut flora? Current gastroenterology reports, 11(4), 307-313. Tsai, M. L.; Chiou, Y. S.; Chiou, L. Y.; Ho, C. T.; Pan, M. H. (2014). Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Molecular Nutrition & Food Research, 58(9), 1820-1829. Turnbaugh, P. J.; Hamady, M.; Yatsunenko, T.; Cantarel, B. L.; Duncan, A.; Ley, R. E.; Sogin, M. L.; Jones, W. J.; Roe, B. A.; Affourtit, J. P.; Egholm, M.; Henrissat, B.; Heath, A. C.; Knight, R.; Gordon, J. I. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-484. Ukkola, O.; Santaniemi, M. (2002). Adiponectin: a link between excess adiposity and associated comorbidities? Journal of Molecular Medicine-Jmm, 80(11), 696-702. Valet, P.; Tavernier, G.; Castan-Laurell, I.; Saulnier-Blache, J. S.; Langin, D. (2002). Understanding adipose tissue development from transgenic animal models. Journal of lipid research, 43(6), 835-860. Van Gaal, L. F.; Mertens, I. L.; De Block, C. E. (2006). Mechanisms linking obesity with cardiovascular disease. Nature, 444(7121), 875-880. Vilgrain, V.; Ronot, M.; Abdel-Rehim, M.; Zappa, M.; d'Assignies, G.; Bruno, O.; Vullierme, M. P. (2013). Hepatic steatosis: a major trap in liver imaging. Diagnostic and interventional imaging, 94(7-8), 713-727. Wanless, I. R.; Lentz, J. S. (1990). Fatty liver hepatitis (steatohepatitis) and obesity - an autopsy study with analysis of risk-factors. Hepatology, 12(5), 1106-1110. Watt, M. J.; Steinberg, G. R. (2008). Regulation and function of triacylglycerol lipases in cellular metabolism. Biochemical Journal, 414, 313-325. Wei, Z. S.; Augusto, L. A.; Zhao, L. P.; Caroff, M. (2015). Desulfovibrio desulfuricans isolates from the gut of a single individual: structural and biological lipid A characterization. FEBS Letters, 589(1), 165-171. Wing, R. R.; Phelan, S. (2005). Long-term weight loss maintenance. American Journal of Clinical Nutrition, 82(1), 222s-225s. Wood, S. (2011). Diet drug orlistat linked to kidney, pancreas injuries. Medscape, Medscape News, Retrieved, 26. World Health organization (WHO) (2017). Global Health Risks-Mortality and burden of disease attributable to selected major risks. Cancer. Yamaguchi, F.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. (2000). Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. Journal of Agricultural and Food Chemistry, 48(2), 180-185. Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; Eto, K.; Akanuma, Y.; Froguel, P.; Foufelle, F.; Ferre, P.; Carling, D.; Kimura, S.; Nagai, R.; Kahn, B. B.; Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8(11), 1288-1295. Yoon, M. J.; Lee, G. Y.; Chung, J. J.; Ahn, Y. H.; Hong, S. H.; Kim, J. B. (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes, 55(9), 2562-2570. Youssef, N.; Sheik, C. S.; Krumholz, L. R.; Najar, F. Z.; Roe, B. A.; Elshahed, M. S. (2009). Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied and Environmental Microbiology, 75(16), 5227-5236. Zhang, Y. Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homolog. Nature, 372(6505), 425-432. Zhu, L.; Zhang, D. Y.; Zhu, H.; Zhu, J. M.; Weng, S. G.; Dong, L.; Liu, T. T.; Hu, Y.; Shen, X. Z. (2018). Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe(-/-) mice. Atherosclerosis, 268, 117-126. Zimmermann, R.; Lass, A.; Haemmerle, G.; Zechner, R. (2009). Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1791(6), 494-500. The Jackson Laboratory (2018), https://www.jax.org/strain/000664 樂斯科 (BioLASCO) 生物科技 (2018),取自http://www.biolasco.com.tw/index.php/tw/2014-03-26-15-23-34/2014-01-16-10-41-51/2014-02-17-14-45-52 李純瑩 (2007)。認識減肥藥物〔電子版〕。高醫醫訊月刊第26卷第9期。2007年2月1日,取自https://www.kmuh.org.tw/www/kmcj/data/9602/10.htm 邱俐穎 (2017)。脾氣大沒關係, 「脾腫大」就糟了!〔電子版〕。好心肝會刊,第79期。2017年7月15日,取自https://www.liver.org.tw/journalView.php?cat=2&sid=667&page 國家實驗動物中心 (2008)。血液生化及血液學參考值。 陳力豪、胡鄴方、朱惠真 (2015)。核酸定序的下一個里程碑:次世代定序。行政院農委會水產試驗所電子報,第108期。2015年4月30日,取自http://www.tfrin.gov.tw/friweb/frienews/enews0108/t2.html 衛生福利部 (2011)。減肥藥不安全?諾美婷 (Sibutramine) 等15種藥物下架。取自https://www.pnhb.mohw.gov.tw/?aid=509&pid=0&page_name=detail&iid=78 廖廣義 (1989)。外科營養學 (頁160)。台灣:聯經 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70750 | - |
dc.description.abstract | 肥胖被認為是長期熱量的攝取和消耗間的不平衡所導致,且與第二型糖尿病、高血壓、冠狀動脈心臟病以及癌症等多種疾病高度相關,是全球引起死亡的第五大風險因素。因此,如何預防及延緩肥胖已為全球性健康議題。文獻指出,Coleus forskohlii中的Forskolin是一種腺苷酸環化酶 (adenylyl cyclase) 的促進劑,可促進脂肪細胞進行脂肪分解 (Lipolysis) 的速率而具有減緩肥胖之功效。另外, Garcinia indica萃取物中的Garcinol則在3T3-L1細胞實驗當中被發現到,可透過抑制脂肪細胞新生 (adipogenesis) 的方式而具有抗肥胖之潛力。近年來許多研究皆指出腸道菌群能夠影響宿主對於營養物質的吸收和能量分佈,因此腸道菌群在肥胖及代謝症候群等疾病的發病機制中扮演著重要的角色。因此,本研究採用Coleus forskohlii萃取物 (CFE)、Garcinia indica萃取物 (GIE) 及兩種萃取物之混合物,以3T3-L1細胞實驗及高脂飲食誘導小鼠肥胖的動物模式,探討單獨或是混合給予此兩種萃取物是否可以透過抑制脂肪細胞新生或是促進脂肪分解兩種不同路徑來達到抗肥胖之功效,亦或藉由腸道菌相之影響進而改善肥胖之狀況。細胞實驗結果顯示,CFE會促進3T3-L1脂肪細胞的脂解作用,GIE則會抑制3T3-L1前脂肪細胞的分化及減少油滴生成,而混合物組之結果與單獨CFE及GIE的組別相似。動物實驗結果顯示,CFE可藉由活化cAMP-dependent路徑促進C57BL/6小鼠之脂解作用,GIE則可抑制脂肪細胞新生相關轉錄因子PPARγ及C/EBPα之蛋白質表現量,且兩者皆具有促進脂肪酸β-氧化的效果,因此可達到抑制小鼠體重增加、減少白色脂肪組織重量的現象,此外CFE及GIE也具有降低血液中總膽固醇和三酸甘油酯及改善脂肪肝的效果,其中CFE組於此些方面的效果最好,而混合物組之效果則僅與GIE組相似,顯示CFE及GIE的組合對於抗肥胖功效並不具有協同作用。腸道菌相方面,CFE及GIE可減少腸道中Firmicutes/Bacteroidetes之比例,增加Ruminococcaceae科、Bacteroides屬及Lactobacillus reuteri等有益菌種之比例,並降低壞菌Desulfovibrio屬之比例。綜合上述結果,CFE對於減少脂肪堆積、降低血脂及改善脂肪肝具有較佳之效果,並能調節腸道菌相,因此具有抗肥胖之潛力。 | zh_TW |
dc.description.abstract | Obesity is caused by an imbalance between long-term caloric intake and energy expenditure, and is highly correlated with various diseases such as type 2 diabetes, hypertension, coronary heart disease, and cancer, making it the fifth leading risk for global deaths. Therefore, how to prevent obesity has become a global health issue. Forskolin from Coleus forskohlii is a promoter of adenylate cyclase that promotes the breakdown of stored fats in fat cells, and may aid in weight loss. Garcinol is a polyprenylated benzophenone derivative obtained from Garcinia indica. Previous study has showed that garcinol can inhibit cell proliferation and adipogenesis in 3T3-L1 cells, and may have anti-obesity potential. In recent years, many studies have pointed out that the gut microbiota can affect the host's absorption of nutrients and energy distribution, so the gut microbiota may play an important role in the pathogenesis of obesity and metabolic syndrome. Therefore, in this study, we want to investigate the anti-obesity effects of Coleus forskohlii extract (CFE), Garcinia indica extract (GIE), and a mixture of these two extracts in 3T3-L1 cell model and high-fat diet (HFD)-induced obesity animal model. In addition, we would like to find out whether these two extracts can improve obesity through the influence of intestinal flora or not. The results showed that CFE promotes the lipolysis of 3T3-L1 adipocytes, while GIE decreased triacylglyceride content of 3T3-L1 adipocytes. The results of the mixture group were similar to those of CFE and GIE alone. In animal experiments, CFE promoted lipolysis in C57BL/6 mice by activating cAMP-dependent pathway, while GIE decreased protein level of adipogenesis-related transcription factors PPARγ and C/EBPα, and both of which promote fatty acid β-oxidation can therefore suppress the weight gain of mice and reduce the weight of white adipose tissue. In addition, CFE and GIE also have the effect of lowering total cholesterol and triacylglyceride levels in the blood and improving fatty liver. The CFE group is the most effective on these aspects, and the effects of mixture are similar to the GIE group, indicating that the combination of CFE and GIE does not have synergistic effect on anti-obesity. In terms of gut microbiota, CFE and GIE could decrease Firmicutes /Bacteroidetes ratio, increase beneficial bacteria such as Ruminococcaceae, Bacteroides and Lactobacillus reuteri, and decrease harmful Desulfovibrio compared with HFD-treated group. Based on the above results, CFE has a better effect on reducing fat accumulation, improving hyperlipidemia and fatty liver, and it can also regulate the gut microbiota. As a result, CFE has the potential to be developed as anti-obesity therapeutic agent. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:37:07Z (GMT). No. of bitstreams: 1 ntu-107-R05641024-1.pdf: 6240825 bytes, checksum: 33debdea9484369e3c847c2438ad424d (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III 目錄 V 附圖目錄 VIII 附表目錄 IX 圖目錄 X 表目錄 XII 縮寫表 XIII 第一章、文獻回顧 1 第一節、肥胖(Obesity) 1 (一)簡介 1 (二)肥胖的成因 1 (三)肥胖與疾病的關係 3 (四)肥胖的預防及治療 4 第二節、脂肪組織(Adipose tissue) 6 (一)簡介 6 (二)脂肪組織的功能 7 (三)脂肪細胞新生作用 (Adipogenesis) 8 第三節、調控脂肪分解的分子訊息傳遞路徑 11 (一)cAMP-dependent路徑 11 (二) Fatty acid β-oxidation路徑 13 第四節、腸道菌相與肥胖 15 第五節、Coleus forskohlii 與 Garcinia indica之介紹 17 (一)簡介 17 (二)Coleus forskohlii萃取物的活性成分及已知功效 17 (三)Garcinia indica萃取物的活性成分及已知功效 18 第二章、實驗目的與架構 19 第一節、研究目的 19 第二節、實驗架構 19 第三章、材料與方法 22 第一節、實驗材料 22 (一)儀器設備 22 (二)藥品試劑 23 第二節、細胞實驗方法 24 (一)樣品介紹及配製 24 (二)細胞培養 24 (三)誘導細胞分化 26 (四)細胞存活率試驗 (Trypan blue assay) 28 (五)油紅O染色 (Oil red O stain) 28 (六)甘油試驗 (Glycerol assay) 30 第三節、動物實驗方法 32 (一)動物品系與飼養環境 32 (二)飼料配製 33 (三)動物犧牲 34 (四)組織均質與蛋白質萃取 35 (五)蛋白質定量 36 (六)西方墨點法 37 (七)組織切片與染色 41 (八)測定肝臟中三酸甘油酯含量 45 (九)糞便DNA之萃取 46 (十)次世代定序 48 第四節、統計分析 51 第四章、結果與討論 52 第一節、細胞實驗 (in vitro) 52 (一)不同濃度之CFE、GIE及其混合物對3T3-L1脂肪細胞存活率之影響 52 (二)不同濃度之CFE、GIE及其混合物抑制3T3-L1脂肪細胞內油脂堆積之情形 52 (三)不同濃度之CFE、GIE及其混合物促進3T3-L1脂肪細胞脂肪分解之情形 53 第二節、動物實驗 (in vivo) 55 (一)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠體重之影響 55 (二)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠攝食量及食物利用率之影響 56 (三)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠臟器外觀及重量之影響 58 (四)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠肝臟脂肪及三酸甘油酯之影響 59 (五)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠血清生化數值之影響 61 (六)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠脂肪組織之影響 63 (七)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠脂肪細胞新生相關轉錄因子之影響 65 (八)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠cAMP-dependent路徑中相關蛋白之影響 66 (九)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠fatty acid β-oxidation路徑中相關蛋白之影響 68 (十)CFE、GIE及其混合物對高脂飲食C57BL/6小鼠腸道菌相之影響 69 第五章、結論 75 第六章、圖表 76 參考文獻 100 附錄 112 | |
dc.language.iso | zh-TW | |
dc.title | Coleus forskohlii萃取物及Garcinia indica萃取物於高脂飲食誘導肥胖的小鼠中具有減緩肥胖及調節腸道菌相的功效 | zh_TW |
dc.title | Coleus forskohlii extract and Garcinia indica extract attenuated obesity and modulated gut microbiota in mice with high-fat diet | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何元順(Yuan-Soon Ho),陳億乘(Yi-Chen Chen),黃步敏(Bu-Miin Huang),王朝鐘(Chau-Jong Wang) | |
dc.subject.keyword | 肥胖,Coleus forskohlii,Garcinia indica,脂肪分解,脂肪細胞新生,β-氧化,腸道菌相, | zh_TW |
dc.subject.keyword | Obesity,Coleus forskohlii,Garcinia indica,Lipolysis,Adipogenesis,β-oxidation,Gut microbiota, | en |
dc.relation.page | 112 | |
dc.identifier.doi | 10.6342/NTU201802753 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 6.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。