Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁俞文
dc.contributor.authorShawn Tsaien
dc.contributor.author蔡騏襄zh_TW
dc.date.accessioned2021-06-17T04:35:36Z-
dc.date.available2020-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citation1. Ariyarathna, I. R.; Karunaratne, D. N., Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packaging and Shelf Life 2016, 10, 79-86.
2. Souza, M. P.; Vaz, A. F.; Correia, M. T.; Cerqueira, M. A.; Vicente, A. A.; Carneiro-da-Cunha, M. G., Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and bioprocess technology 2014, 7 (4), 1149-1159.
3. Toniazzo, T.; Peres, M. S.; Ramos, A. P.; Pinho, S. C., Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Bioscience 2017, 19, 17-25.
4. Yi, J.; Lam, T. I.; Yokoyama, W.; Cheng, L. W.; Zhong, F., Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids 2015, 43, 31-40.
5. F. Gibbs, S. K., Inteaz Alli, Catherine N. Mulligan, Bernard, Encapsulation in the food industry: a review. International journal of food sciences and nutrition 1999, 50 (3), 213-224.
6. Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B., An overview of encapsulation technologies for food applications. Procedia Food Science 2011, 1, 1806-1815.
7. Chaudhry, Q.; Castle, L., Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends in Food Science & Technology 2011, 22 (11), 595-603.
8. Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R., Applications and implications of nanotechnologies for the food sector. Food additives and contaminants 2008, 25 (3), 241-258.
9. Esmaili, M.; Ghaffari, S. M.; Moosavi-Movahedi, Z.; Atri, M. S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.-M.; Haertlé, T.; Moosavi-Movahedi, A. A., Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-food science and technology 2011, 44 (10), 2166-2172.
10. Fathi, M.; Mozafari, M.-R.; Mohebbi, M., Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in food science & technology 2012, 23 (1), 13-27.
11. Luykx, D. M.; Peters, R. J.; van Ruth, S. M.; Bouwmeester, H., A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of agricultural and food chemistry 2008, 56 (18), 8231-8247.
12. Tapia-Hernández, J. A.; Torres-Chávez, P. I.; Ramírez-Wong, B.; Rascón-Chu, A.; Plascencia-Jatomea, M.; Barreras-Urbina, C. G.; Rangel-Vázquez, N. A.; Rodríguez-Félix, F., Micro-and nanoparticles by electrospray: advances and applications in foods. Journal of agricultural and food chemistry 2015, 63 (19), 4699-4707.
13. Dias, M. I.; Ferreira, I. C.; Barreiro, M. F., Microencapsulation of bioactives for food applications. Food & function 2015, 6 (4), 1035-1052.
14. Silva, H. D.; Cerqueira, M. Â.; Vicente, A. A., Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology 2012, 5 (3), 854-867.
15. de Vos, P.; Faas, M. M.; Spasojevic, M.; Sikkema, J., Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 2010, 20 (4), 292-302.
16. Ezhilarasi, P.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C., Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology 2013, 6 (3), 628-647.
17. Zuidam, N. J.; Shimoni, E., Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation technologies for active food ingredients and food processing, Springer: 2010; pp 3-29.
18. Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N., Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry 2014, 25 (4), 363-376.
19. Hu, B.; Huang, Q.-r., Biopolymer based nano-delivery systems for enhancing bioavailability of nutraceuticals. Chinese Journal of Polymer Science 2013, 31 (9), 1190-1203.
20. Liu, J.; Willför, S.; Xu, C., A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre 2015, 5 (1), 31-61.
21. Sinha, V.; Kumria, R., Polysaccharides in colon-specific drug delivery. International journal of pharmaceutics 2001, 224 (1-2), 19-38.
22. Bagre, A. P.; Jain, K.; Jain, N. K., Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. International journal of pharmaceutics 2013, 456 (1), 31-40.
23. Douglas, K. L.; Tabrizian, M., Effect of experimental parameters on the formation of alginate–chitosan nanoparticles and evaluation of their potential application as DNA carrier. Journal of Biomaterials Science, Polymer Edition 2005, 16 (1), 43-56.
24. Goswami, S.; Bajpai, J.; Bajpai, A., Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. Journal of Experimental Nanoscience 2014, 9 (4), 337-356.
25. Rawat, M.; Singh, D.; Saraf, S.; Saraf, S., Development and in vitro evaluation of alginate gel–encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug development and industrial pharmacy 2008, 34 (2), 181-188.
26. Luo, Y.; Wang, Q., Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules 2014, 64, 353-367.
27. Santiago, L. G.; Castro, G. R., Novel technologies for the encapsulation of bioactive food compounds. Current Opinion in Food Science 2016, 7, 78-85.
28. Maity, S.; Mukhopadhyay, P.; Kundu, P. P.; Chakraborti, A. S., Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydrate polymers 2017, 170, 124-132.
29. Das, R. K.; Kasoju, N.; Bora, U., Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (1), 153-160.
30. Liu, W.; Liu, J.; Liu, W.; Li, T.; Liu, C., Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate–chitosan-coated nanoliposomes. Journal of agricultural and food chemistry 2013, 61 (17), 4133-4144.
31. Manjanna, K.; Shivakumar, B.; Kumar, T. P., Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Critical Reviews™ in Therapeutic Drug Carrier Systems 2010, 27 (6).
32. Ray, S.; Mishra, A.; Mandal, T. K.; Sa, B.; Chakraborty, J., Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Advances 2015, 5 (124), 102574-102592.
33. Wang, Y.; Li, P.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L., Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016, 6 (2), 26.
34. Zamani, M.; Prabhakaran, M. P.; Ramakrishna, S., Advances in drug delivery via electrospun and electrosprayed nanomaterials. International journal of nanomedicine 2013, 8, 2997.
35. Bhushani, J. A.; Anandharamakrishnan, C., Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 2014, 38 (1), 21-33.
36. Moghaddam, M. K.; Mortazavi, S. M.; Khayamian, T., Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. Journal of Electrostatics 2015, 73, 56-64.
37. Yurteri, C. U.; Hartman, R. P.; Marijnissen, J. C., Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles-a review. KONA Powder and Particle Journal 2010, 28, 91-115.
38. Zhang, L.; Huang, J.; Si, T.; Xu, R. X., Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert review of medical devices 2012, 9 (6), 595-612.
39. Eltayeb, M.; Stride, E.; Edirisinghe, M., Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery. Nanotechnology 2013, 24 (46), 465604.
40. Neethirajan, S.; Jayas, D. S., Nanotechnology for the food and bioprocessing industries. Food and bioprocess technology 2011, 4 (1), 39-47.
41. Drexler, E., Engines of Creation: Fourth Estate. London: 1996.
42. Huang, Q.; Yu, H.; Ru, Q., Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of food science 2010, 75 (1).
43. Moraru, C. I.; Panchapakesan, C. P.; Huang, Q.; Takhistov, P.; Liu, S.; Kokini, J. L., Nanotechnology: a new frontier in food science. Food Technology 2003.
44. Yin Win, K.; Feng, S.-S., Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26 (15), 2713-2722.
45. Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S., Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release 2016, 238, 176-185.
46. Gelperina, S.; Kisich, K.; Iseman, M. D.; Heifets, L., The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American journal of respiratory and critical care medicine 2005, 172 (12), 1487-1490.
47. Madene, A.; Jacquot, M.; Scher, J.; Desobry, S., Flavour encapsulation and controlled release–a review. International journal of food science & technology 2006, 41 (1), 1-21.
48. Yanagishita, T.; Maejima, Y.; Nishio, K.; Masuda, H., Monodisperse nanoparticles of metal oxides prepared by membrane emulsification using ordered anodic porous alumina. RSC Advances 2014, 4 (4), 1538-1542.
49. Lee, Y.-H.; Mei, F.; Bai, M.-Y.; Zhao, S.; Chen, D.-R., Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. Journal of controlled Release 2010, 145 (1), 58-65.
50. Li, D.; Xia, Y., Electrospinning of nanofibers: reinventing the wheel? Advanced materials 2004, 16 (14), 1151-1170.
51. Zhang, S.; Kawakami, K., One-step preparation of chitosan solid nanoparticles by electrospray deposition. International journal of pharmaceutics 2010, 397 (1-2), 211-217.
52. Clayton, B. D.; Willihnganz, M., Basic Pharmacology for Nurses-E-Book. Elsevier Health Sciences: 2016.
53. Ghayempour, S.; Mortazavi, S. M., Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics 2013, 71 (4), 717-727.
54. Jaworek, A.; Krupa, A.; Lackowski, M.; Sobczyk, A.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D., Nanocomposite fabric formation by electrospinning and electrospraying technologies. Journal of Electrostatics 2009, 67 (2-3), 435-438.
55. Kessick, R.; Fenn, J.; Tepper, G., The use of AC potentials in electrospraying and electrospinning processes. Polymer 2004, 45 (9), 2981-2984.
56. Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43 (16), 4403-4412.
57. Bock, N.; Dargaville, T. R.; Woodruff, M. A., Electrospraying of polymers with therapeutic molecules: state of the art. Progress in polymer science 2012, 37 (11), 1510-1551.
58. Gómez-Mascaraque, L. G.; Sanchez, G.; López-Rubio, A., Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydrate polymers 2016, 150, 121-130.
59. Ganan-Calvo, A.; Davila, J.; Barrero, A., Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science 1997, 28 (2), 249-275.
60. Farook, U.; Stride, E.; Edirisinghe, M., Controlling size and size distribution of electrohydrodynamically prepared microbubbles. Bubble Science, Engineering & Technology 2009, 1 (1-2), 53-57.
61. Mei, F.; Chen, D.-R., Operational modes of dual-capillary electrospraying and the formation of the stable compound cone-jet mod. Aerosol Air Qual. Res 2008, 8 (2), 218-232.
62. Drosou, C. G.; Krokida, M. K.; Biliaderis, C. G., Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology 2017, 35 (2), 139-162.
63. Wu, Y.; MacKay, J. A.; R. McDaniel, J.; Chilkoti, A.; Clark, R. L., Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules 2008, 10 (1), 19-24.
64. Meng, F.; Jiang, Y.; Sun, Z.; Yin, Y.; Li, Y., Electrohydrodynamic liquid atomization of biodegradable polymer microparticles: Effect of electrohydrodynamic liquid atomization variables on microparticles. Journal of applied polymer science 2009, 113 (1), 526-534.
65. Yao, J.; Lim, L. K.; Xie, J.; Hua, J.; Wang, C.-H., Characterization of electrospraying process for polymeric particle fabrication. Journal of aerosol science 2008, 39 (11), 987-1002.
66. Bock, N.; Woodruff, M. A.; Hutmacher, D. W.; Dargaville, T. R., Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 2011, 3 (1), 131-149.
67. Xu, Y.; Hanna, M. A., Electrospray encapsulation of water-soluble protein with polylactide: Effects of formulations on morphology, encapsulation efficiency and release profile of particles. International journal of pharmaceutics 2006, 320 (1-2), 30-36.
68. Rinaudo, M., Chitin and chitosan: properties and applications. Progress in polymer science 2006, 31 (7), 603-632.
69. Agnihotri, S. A.; Mallikarjuna, N. N.; Aminabhavi, T. M., Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of controlled release 2004, 100 (1), 5-28.
70. Chen, L.; Subirade, M., Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials 2005, 26 (30), 6041-6053.
71. Li, J.; Kim, S. Y.; Chen, X.; Park, H. J., Calcium-alginate beads loaded with gallic acid: Preparation and characterization. LWT-Food Science and Technology 2016, 68, 667-673.
72. Taqieddin, E.; Amiji, M., Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 2004, 25 (10), 1937-1945.
73. Laelorspoen, N.; Wongsasulak, S.; Yoovidhya, T.; Devahastin, S., Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. Journal of Functional Foods 2014, 7, 342-349.
74. Ammon, H. P.; Wahl, M. A., Pharmacology of Curcuma longa. Planta medica 1991, 57 (01), 1-7.
75. Maheshwari, R. K.; Singh, A. K.; Gaddipati, J.; Srimal, R. C., Multiple biological activities of curcumin: a short review. Life sciences 2006, 78 (18), 2081-2087.
76. Meng, J.; Sturgis, T. F.; Youan, B.-B. C., Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences 2011, 44 (1-2), 57-67.
77. Kumbar, S. G.; Bhattacharyya, S.; Sethuraman, S.; Laurencin, C. T., A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007, 81 (1), 91-103.
78. Abyadeh, M.; Zarchi, A. A. K.; Faramarzi, M. A.; Amani, A., Evaluation of factors affecting size and size distribution of chitosan-electrosprayed nanoparticles. Avicenna journal of medical biotechnology 2017, 9 (3), 126.
79. Gomez-Estaca, J.; Balaguer, M. P.; Gavara, R.; Hernandez-Munoz, P., Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids 2012, 28 (1), 82-91.
80. Suksamran, T.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T.; Ruktanonchai, U.; Supaphol, P., Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. Journal of microencapsulation 2009, 26 (7), 563-570.
81. Tang, L.; Kebarle, P., Effect of the conductivity of the electrosprayed solution on the electrospray current. Factors determining analyte sensitivity in electrospray mass spectrometry. Analytical Chemistry 1991, 63 (23), 2709-2715.
82. Hammond, S. J., Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying. Rutgers The State University of New Jersey-New Brunswick: 2015.
83. Chen, X.; Jia, L.; Yin, X.; Cheng, J.; Lu, J., Spraying modes in coaxial jet electrospray with outer driving liquid. Physics of fluids 2005, 17 (3), 032101.
84. Hwang, Y.; Lee, J.-K.; Lee, J.-K.; Jeong, Y.-M.; Cheong, S.-i.; Ahn, Y.-C.; Kim, S. H., Production and dispersion stability of nanoparticles in nanofluids. Powder Technology 2008, 186 (2), 145-153.
85. Wu, L.; Zhang, J.; Watanabe, W., Physical and chemical stability of drug nanoparticles. Advanced drug delivery reviews 2011, 63 (6), 456-469.
86. Luo, Y.; Teng, Z.; Wang, Q., Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of agricultural and food chemistry 2012, 60 (3), 836-843.
87. Nguyen, N.-T.; Shaegh, S. A. M.; Kashaninejad, N.; Phan, D.-T., Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced drug delivery reviews 2013, 65 (11-12), 1403-1419.
88. Derakhshandeh, K.; Azandaryani, A. H., Active-targeted Nanotherapy as Smart Cancer Treatment. In Smart Drug Delivery System, InTech: 2016.
89. Jaworek, A.; Krupa, A.; Sobczyk, A.; Lackowski, M.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D. In Electrospray nanocoating of microfibres, Solid state phenomena, Trans Tech Publ: 2008; pp 127-132.
90. Pantano, C.; Ganan-Calvo, A.; Barrero, A., Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode. Journal of aerosol science 1994, 25 (6), 1065-1077.
91. Mokhtari, F.; Latifi, M.; Shamshirsaz, M., Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. The Journal of The Textile Institute 2016, 107 (8), 1037-1055.
92. Kumar, M. N. R., A review of chitin and chitosan applications. Reactive and functional polymers 2000, 46 (1), 1-27.
93. Daemi, H.; Barikani, M., Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 2012, 19 (6), 2023-2028.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70707-
dc.description.abstract薑黃素(curcumin)具抗氧化、抗發炎、抗癌等功效,近年來被廣泛運用於保健食品及藥物中,但對於此類能有效預防慢性疾病的生物活性物質而言,低溶解度卻限制了其應用性。這些生物活性物質的口服生物有效性(oral bioavailbility)能透過與適當的載體系統結合進行改善,近幾年來科學家們積極嘗試設計具有多層膜及較小顆粒的載體系統,以增強對這類物質的保護作用以及在腸道中吸收的效果,在這樣的概念下,奈米級載體系統也被廣泛研究,奈米顆粒(nanoparticle)載體包覆生物活性物質、敏感性成分或藥物,因其粒徑小、總表面積大,可有效提升生物可利用率及生物可及性,但製備方法上需要繁瑣的操作程序以及巨大的能量花費,為了增加其效率因而發展出同軸電噴灑(coaxial electrospray)。同軸電噴灑能以簡單的一步驟製備出雙層膜(bilayer)的奈米顆粒載體,在食品科學中是一項非常新穎的技術。本研究中除採用此技術進行雙層膜奈米顆粒載體的製作外,也應用中央合成設計試驗的反應曲面法(CCD-RSM)以最適化雙層膜奈米顆粒載體的操作參數。幾丁聚醣(chitosan)與褐藻酸(alginate)兩種聚合物具備生物可分解性(biocompatibility),分別做為載體中核層(core)及殼層(shell)部分,能有效保護薑黃素使其能通過胃部酸性環境到達腸道被人體所利用。透過反應曲面法分析後最適化的參數-供應電壓27 kV、針頭到搜集器距離20 cm、2%幾丁聚醣濃度、3%褐藻酸濃度、內針流速1:外針流速11-能產生以這兩種物質所製造的雙層膜載體到達112.1 ± 35.2 nm之粒徑。另外顆粒表面型態及雙層膜構造分別以掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)進行觀察,對於薑黃素之包覆效率也可到達86.4%。總結而言,透過同軸電噴灑能成功製造出具備雙層膜狀構造之奈米顆粒載體,包覆藥物的效果良好,並且透過CCD-RSM能夠最適化整個技術製程,達到最小顆粒粒徑及最佳包覆效率之目標。本研究的結果將能更強力地支持這項創新技術-同軸電噴灑,包覆如薑黃素等生物活性物質的效益,並透過這項技術製造雙層膜奈米顆粒載體方法之確立,期望將來得以運用在其他藥物或生物活性物質的保護上,以為後續食品、醫藥界之用。zh_TW
dc.description.abstractCurcumin is recognized as a potential bioactive compound in the field of pharmacy and food technology, since it has a plenty of beneficial effects toward humans. However, the realization of using this natural bioactive compound to prevent the development of chronic diseases is most of the time constrained by the pool oral bioavailability. The oral bioavailability could be enhanced through the incorporation of suitable carrier system. To improve the ability to protect and the rate of intestinal absorption, designing carrier systems that have multiple layers and lower particle size has become the popular trend in recent decades. In this sense, the nano-scopic bilayer carrier system then catches the attention of many investigators. Nonetheless, the preparation of the nano-sized bilayer system commonly requires multiple operations and intense energy input. To improve the efficiency, coaxial electrospraying was developed as the novel method that utilize only one simple step to manufacture nanoparticles with dual layers. In present work, the process of generating bilayered nanoparticles was optimized using CCD-RSM. Biocompatible polymers, chitosan and alginate, were arranged into the core and shell part of the carrier for better protection of the contained curcumin through the gastrointestinal tract. Through the RSM analysis, the optimum processing parameters to prepare the chitosan/ alginate bilayer carrier with 112.1 ± 35.2 nm diameter were efficiently set at 27 kV of applied voltage, 20 cm tip-to-collector distance, 2% inner polymer concentration, and 3% outer polymer concentration. The speed ratio of inner and outer polymers passing through the concentric needle was 1:11. The surface morphology and dual layer structure were observed using SEM and TEM. The encapsulation efficiency of curcumin reached 86.4%. In summary, this work has successfully developed the efficient production process to produce bilayer nanoparticles using co-axial electrospraying combine with CCD-RSM analysis. The result from this work could serve as the strong foundation to promote this innovative technique, electrospraying, for the preparation of oral formulations containing diverse bioactive components, such as curcumin.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:35:36Z (GMT). No. of bitstreams: 1
ntu-107-R05641022-1.pdf: 2413924 bytes, checksum: e47c79958061e674a5aa2dabad8375ac (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 …………………….…………………………………………………………….... i
ACKNOWLEDGEMENT …...……………………………………………………….... ii
中文摘要 ……………………………………………………………………………... iii
Abstract …………………………………………………………………………..…….. v
Table of contents …………. …………………………………………………………... vii
List of tables …………….. …………………………………………………………....... x
List of figures …………….. …………………………………………………………… xi
Chapter 1 Introduction ………………………………………………………………..… 1
Chapter 2 Literature Review ………………………………………………….………… 5
2.1 Nanoparticles ………………………………………………………………….. 5
2.1.1 Introduction of nanoparticles …………………………………………... 6
2.1.2 Recent methods to manufacture nanoparticles ………………………… 6
2.2 Electrospray …………………………………………………………………… 6
2.2.1 Operation units and mechanism ………………………………………... 6
2.2.2 Coaxial electrospray …………………………………………………… 8
2.2.3 Processing parameters ……………………………………………….… 8
2.2.4 Advantages and applications ………………………………………….. 11
2.3 Encapsulating materials ……………………………………………………… 12
2.3.1 Chitosan ………………………………………………………………. 12
2.3.2 Alginate ………………………………………………………………. 13
2.3.3 Curcumin ……………………………………………………………... 14
Chapter 3 Objectives and Experimental Design ……………………………………….. 15
3.1 Objectives ………………………………………………………………….… 15
3.2 Experimental design …………………………………………………………. 16
Chapter 4 Materials and Methods ……………………………………………………... 17
4.1 Materials ……………………………………………………………………... 17
4.2 Methods ……………………………………………………………………… 17
4.2.1 Preparation of polymer solution ………………………………………. 17
4.2.2 Rheological behavior …………………………………………………. 18
4.2.3 Electric conductivity ………………………………………………….. 18
4.2.4 Electrospraying ……………………………………………………….. 18
4.2.5 Morphology …………………………………………………………... 19
4.2.6 Particle size, distribution, and zeta-potential ………………………….. 20
4.2.7 Response surface methodology ………………………………………. 20
4.2.8 Encapsulation efficiency ……………………………………………… 21
4.2.9 Statistical analysis …………………………………………………….. 22
Chapter 5 Results and discussions …………………………………………………….. 23
5.1 Viscosity and electrical conductivity of the polymer solution ……………….. 23
5.2 Central Composite Design (CCD) model for process optimization ………….. 24
5.3 Effect of independent variables on the particle size ………………………….. 26
5.4 Surface and contour plots …………………………………………………….. 27
5.5 Preparation of chitosan/alginate bilayer nanoparticles ……………………….. 27
5.6 Particle size of the chitosan/alginate bilayer particle ………………………… 29
5.7 Zeta-potential of the bilayer particles ………………………………………… 30
5.8 Microscopic observation of the bilayer particle ……………………………… 31
5.9 Effect of ethanol and chitosan ratio on stability of Taylor cone ……………… 32
5.10 Particle size and encapsulation efficiency of different ratio of curcumin and chitosan ………………………………………………………………………….. 32
5.11 Properties of curcumin loaded chitosan/alginate nanoparticles …………….. 33
Chapter 6 Conclusion …………………………………………………………………. 35
Chapter 7 Tables ………………………………………………………………………. 37
Chapter 8 Figures ……………………………………………………………………… 47
References …………………………………………………………………………….. 75
dc.language.isoen
dc.title利用同軸電噴灑技術製備包覆薑黃素之雙層膜奈米載體zh_TW
dc.titleEncapsulating curcumin into bilayer nanocarrier by coaxial electrosprayen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞碧,沈賜川,林哲安,李晉甫
dc.subject.keyword同軸電噴灑,奈米顆粒,雙層膜系統,薑黃素,反應曲面法,zh_TW
dc.subject.keywordcoaxial electrospray,nanoparticle,bilayer system,curcumin,RSM,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201802820
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved