Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7042
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅翊禎(Yi-Chen Lo)
dc.contributor.authorShin Yen Chongen
dc.contributor.author張舜延zh_TW
dc.date.accessioned2021-05-17T10:18:01Z-
dc.date.available2015-02-16
dc.date.available2021-05-17T10:18:01Z-
dc.date.copyright2012-02-16
dc.date.issued2011
dc.date.submitted2012-01-13
dc.identifier.citation黃丹妮。探討川陳皮素在酵母菌中對紫外線照射引起DNA受損反應的影響;國立台灣大學 食品科技研究所碩士論文:台北市,2010
姜欣怡。綠茶萃出物對維持酵母菌基因穩定性之影響;國立台灣大學 食品科技研究所碩士論文:台北市,2010
Abraham, R.T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & Development 15, 2177-2196.
Arafa, E.S.A., Zhu, Q., Barakat, B.M., Wani, G., Zhao, Q., El-Mahdy, M.A., and Wani, A.A. (2009). Tangeretin Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Downregulation of Phosphoinositide 3-Kinase/Akt Signaling Pathway. Cancer Research 69, 8910-8917.
Bachrati, C.Z., and Hickson, I.D. (2003). RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374, 577-606.
Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870.
Bassett, D.E., Jr., Boguski, M.S., and Hieter, P. (1996). Yeast genes and human disease. Nature 379, 589-590.
Bastin-Shanower, S.A., Fricke, W.M., Mullen, J.R., and Brill, S.J. (2003). The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23, 3487-3496.
Baynton, K., and Fuchs, R.P. (2000). Lesions in DNA: hurdles for polymerases. Trends Biochem Sci 25, 74-79.
Benaziz, A. (1967). Nobiletin Is Main Fungistat in Tangerines Resistant to Mal Secco. Science 155, 1026-1027.
Bennett, R.J., and Wang, J.C. (2001). Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: studies of fusion proteins. Proc Natl Acad Sci U S A 98, 11108-11113.
Bernstein, K.A., Shor, E., Sunjevaric, I., Fumasoni, M., Burgess, R.C., Foiani, M., Branzei, D., and Rothstein, R. (2009a). Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. The EMBO Journal 28, 915-925.
Bernstein, K.A., Shor, E., Sunjevaric, I., Fumasoni, M., Burgess, R.C., Foiani, M., Branzei, D., and Rothstein, R. (2009b). Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO J 28, 915-925.
Boddy, M.N., Gaillard, P.H., McDonald, W.H., Shanahan, P., Yates, J.R., 3rd, and Russell, P. (2001). Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537-548.
Bohr, V.A. (2008). Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33, 609-620.
Boone, C., Bussey, H., and Andrews, B.J. (2007). Exploring genetic interactions and networks with yeast. Nat Rev Genet 8, 437-449.
Bordone, L., and Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6, 298-305.
Botstein, D., Chervitz, S.A., and Cherry, J.M. (1997). Genetics - Yeast as a model organism. Science 277, 1259-1260.
Botstein, D., and Fink, G.R. (1988). Yeast: an experimental organism for modern biology. Science 240, 1439-1443.
Botstein, D., and Risch, N. (2003). Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics 33, 228-237.
Brosh, R.M., Jr., Li, J.L., Kenny, M.K., Karow, J.K., Cooper, M.P., Kureekattil, R.P., Hickson, I.D., and Bohr, V.A. (2000). Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J Biol Chem 275, 23500-23508.
Cejka, P., and Kowalczykowski, S.C. (2010). The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J Biol Chem 285, 8290-8301.
Cejka, P., Plank, J.L., Bachrati, C.Z., Hickson, I.D., and Kowalczykowski, S.C. (2010). Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. Nat Struct Mol Biol 17, 1377-1382.
Chan, R.K., and Otte, C.A. (1982). Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol 2, 11-20.
Chang, M., Bellaoui, M., Zhang, C., Desai, R., Morozov, P., Delgado-Cruzata, L., Rothstein, R., Freyer, G.A., Boone, C., and Brown, G.W. (2005). RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO J 24, 2024-2033.
Charames, G.S., and Bapat, B. (2003). Genomic instability and cancer. Curr Mol Med 3, 589-596.
Chen, C., and Kolodner, R.D. (1999). Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23, 81-85.
Chen, K., Weng, M., and Lin, J. (2007). Tangeretin suppresses IL-1β-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73, 215-227.
Cherry, J.M., Adler, C., Ball, C., Chervitz, S.A., Dwight, S.S., Hester, E.T., Jia, Y., Juvik, G., Roe, T., Schroeder, M., et al. (1998). SGD: Saccharomyces Genome Database. Nucleic Acids Res 26, 73-79.
Cobb, J.A., Bjergbaek, L., and Gasser, S.M. (2002). RecQ helicases: at the heart of genetic stability. FEBS Letters 529, 43-48.
Cobb, J.A., Bjergbaek, L., Shimada, K., Frei, C., and Gasser, S.M. (2003). DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22, 4325-4336.
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010). The genetic landscape of a cell. Science 327, 425-431.
Coulon, S., Gaillard, P.H., Chahwan, C., McDonald, W.H., Yates, J.R., 3rd, and Russell, P. (2004). Slx1-Slx4 are subunits of a structure-specific endonuclease that maintains ribosomal DNA in fission yeast. Mol Biol Cell 15, 71-80.
Courcelle, J., and Hanawalt, P.C. (1999). RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262, 543-551.
Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt, D.J., Sandler, S.J., and Marians, K.J. (2000). The importance of repairing stalled replication forks. Nature 404, 37-41.
Defossez, P.A., Prusty, R., Kaeberlein, M., Lin, S.J., Ferrigno, P., Silver, P.A., Keil, R.L., and Guarente, L. (1999). Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3, 447-455.
Doe, C.L., Ahn, J.S., Dixon, J., and Whitby, M.C. (2002). Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J Biol Chem 277, 32753-32759.
Doma, M.K., and Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561-564.
Downs, J.A., Lowndes, N.F., and Jackson, S.P. (2000). A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001-1004.
Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.
Fabre, F., Chan, A., Heyer, W.D., and Gangloff, S. (2002). Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 99, 16887-16892.
Fillingham, J., Recht, J., Silva, A.C., Suter, B., Emili, A., Stagljar, I., Krogan, N.J., Allis, C.D., Keogh, M.C., and Greenblatt, J.F. (2008). Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 28, 4342-4353.
Fishel, R., Lescoe, M.K., Rao, M.R., Copeland, N.G., Jenkins, N.A., Garber, J., Kane, M., and Kolodner, R. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027-1038.
Fricke, W.M., and Brill, S.J. (2003). Slx1-Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1-Top3. Genes Dev 17, 1768-1778.
Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L., and Rothstein, R. (1994). The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14, 8391-8398.
Gangloff, S., Soustelle, C., and Fabre, F. (2000). Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25, 192-194.
Gerik, K.J., Li, X., Pautz, A., and Burgers, P.M. (1998). Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273, 19747-19755.
German, J., Sanz, M.M., Ciocci, S., Ye, T.Z., and Ellis, N.A. (2007). Syndrome-causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat 28, 743-753.
Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R.A., Jr., Kastrinakis, N.G., Levy, B., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913.
Gray, M.D., Shen, J.C., Kamath-Loeb, A.S., Blank, A., Sopher, B.L., Martin, G.M., Oshima, J., and Loeb, L.A. (1997). The Werner syndrome protein is a DNA helicase. Nat Genet 17, 100-103.
Haber, J.E., and Heyer, W.D. (2001). The fuss about Mus81. Cell 107, 551-554.
Hanasaki, Y., Ogawa, S., and Fukui, S. (1994). The Correlation between Active Oxygens Scavenging and Antioxidative Effects of Flavonoids. Free Radical Bio Med 16, 845-850.
Hartwell, L. (2004). Genetics. Robust interactions. Science 303, 774-775.
Hashimoto, H., Morikawa, H., Yamada, Y., and Kimura, A. (1985). A Novel Method for Transformation of Intact Yeast-Cells by Electroinjection of Plasmid DNA. Appl Microbiol Biot 21, 336-339.
Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.
Huang, S., Lee, L., Hanson, N.B., Lenaerts, C., Hoehn, H., Poot, M., Rubin, C.D., Chen, D.F., Yang, C.C., Juch, H., et al. (2006). The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27, 558-567.
Hunter, N., and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59-70.
Ira, G., Malkova, A., Liberi, G., Foiani, M., and Haber, J.E. (2003). Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411.
Johnson, R.E., Prakash, S., and Prakash, L. (1999). Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283, 1001-1004.
Kaliraman, V., and Brill, S.J. (2002). Role of SGS1 and SLX4 in maintaining rDNA structure in Saccharomyces cerevisiae. Curr Genet 41, 389-400.
Karow, J.K., Wu, L., and Hickson, I.D. (2000). RecQ family helicases: roles in cancer and aging. Curr Opin Genet Dev 10, 32-38.
Kelley, R., and Ideker, T. (2005). Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23, 561-566.
Kelly, D.E., Lamb, D.C., and Kelly, S.L. (2001). Genome-wide generation of yeast gene deletion strains. Comp Funct Genomics 2, 236-242.
Khurana, V., and Lindquist, S. (2010). Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nature Reviews Neuroscience 11, 436-449.
Kikuma, T., Ohtsu, M., Utsugi, T., Koga, S., Okuhara, K., Eki, T., Fujimori, F., and Murakami, Y. (2004). Dbp9p, a member of the DEAD box protein family, exhibits DNA helicase activity. J Biol Chem 279, 20692-20698.
Kolodner, R.D., Putnam, C.D., and Myung, K. (2002). Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552-557.
Kuzminov, A. (1995). Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16, 373-384.
Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T., and Lansbury, P.T., Jr. (2002). Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291.
Lea, D.E., and Coulson, C.A. (1949). The Distribution of the Numbers of Mutants in Bacterial Populations. J Genet 49, 264-285.
Lee, S.K., Johnson, R.E., Yu, S.L., Prakash, L., and Prakash, S. (1999). Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339-2342.
Li, S., Lo, C.Y., and Ho, C.T. (2006). Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 54, 4176-4185.
Li, S.M., Pan, M.H., Lo, C.Y., Tan, D., Wang, Y., Shahidi, F., and Ho, C.T. (2009). Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods 1, 2-12.
Liberi, G., and Foiani, M. (2010). The double life of Holliday junctions. Cell Res 20, 611-613.
Lindahl, T., and Wood, R.D. (1999). Quality control by DNA repair. Science 286, 1897-1905.
Lo, Y.C., Paffett, K.S., Amit, O., Clikeman, J.A., Sterk, R., Brenneman, M.A., and Nickoloff, J.A. (2006). Sgs1 regulates gene conversion tract lengths and crossovers independently of its helicase activity. Mol Cell Biol 26, 4086-4094.
Maisnier-Patin, S., Nordstrom, K., and Dasgupta, S. (2001). Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity. Mol Microbiol 42, 1371-1382.
Mankouri, H.W., and Hickson, I.D. (2007). The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'? Trends Biochem Sci 32, 538-546.
McGlynn, P., and Lloyd, R.G. (2002). Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3, 859-870.
Michel, B., Flores, M.J., Viguera, E., Grompone, G., Seigneur, M., and Bidnenko, V. (2001). Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci U S A 98, 8181-8188.
Miyajima, A., Seki, M., Onoda, F., Ui, A., Satoh, Y., Ohno, Y., and Enomoto, T. (2000). Different domains of Sgs1 are required for mitotic and meiotic functions. Genes Genet Syst 75, 319-326.
Mohaghegh, P., and Hickson, I.D. (2001). DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum Mol Genet 10, 741-746.
Mohaghegh, P., Karow, J.K., Brosh, R.M., Jr., Bohr, V.A., and Hickson, I.D. (2001). The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29, 2843-2849.
Mora, A., Paya, M., Rios, J.L., and Alcaraz, M.J. (1990). Structure-Activity-Relationships of Polymethoxyflavones and Other Flavonoids as Inhibitors of Nonenzymatic Lipid-Peroxidation. Biochem Pharmacol 40, 793-797.
Morley, K., Ferguson, P., and Koropatnick, J. (2007). Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Letters 251, 168-178.
Morrow, D.M., Tagle, D.A., Shiloh, Y., Collins, F.S., and Hieter, P. (1995). TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82, 831-840.
Mullen, J.R., Kaliraman, V., and Brill, S.J. (2000). Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 154, 1101-1114.
Mullen, J.R., Nallaseth, F.S., Lan, Y.Q., Slagle, C.E., and Brill, S.J. (2005). Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol 25, 4476-4487.
Murray, J.M., Lindsay, H.D., Munday, C.A., and Carr, A.M. (1997). Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 17, 6868-6875.
Myung, K., Smith, S., and Kolodner, R.D. (2004). Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. P Natl Acad Sci USA 101, 15980-15985.
Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. (1996). Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272, 1646-1649.
Obrig, T.G., Culp, W.J., McKeehan, W.L., and Hardesty, B. (1971). The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246, 174-181.
Oh, J.Y., and Kim, J. (1999). ATP hydrolysis activity of the DEAD box protein Rok1p is required for in vivo ROK1 function. Nucleic Acids Research 27, 2753-2759.
Ooi, S.L., Shoemaker, D.D., and Boeke, J.D. (2003). DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35, 277-286.
Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1981). Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78, 6354-6358.
Outeiro, T.F., and Muchowski, P.J. (2004). Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 23, 49-60.
Pan, X., Ye, P., Yuan, D.S., Wang, X., Bader, J.S., and Boeke, J.D. (2006). A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069-1081.
Park, P.U., Defossez, P.A., and Guarente, L. (1999). Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol 19, 3848-3856.
Parsons, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W., Kane, P.M., Hughes, T.R., and Boone, C. (2004). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22, 62-69.
Perron, N.R., Hodges, J.N., Jenkins, M., and Brumaghim, J.L. (2008). Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 47, 6153-6161.
Qiu, P., Dong, P., Guan, H., Li, S., Ho, C.-T., Pan, M.-H., McClements, D.J., and Xiao, H. (2010). Inhibitory effects of 5-hydroxy polymethoxyflavones on colon cancer cells. Molecular Nutrition & Food Research 54, S244-S252.
Raynard, S., Bussen, W., and Sung, P. (2006). A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281, 13861-13864.
Rosenthal, G.A., Hughes, C.G., and Janzen, D.H. (1982). L-Canavanine, a Dietary Nitrogen Source for the Seed Predator Caryedes brasiliensis (Bruchidae). Science 217, 353-355.
Saffi, J., Feldmann, H., Winnacker, E.L., and Henriques, J.A. (2001). Interaction of the yeast Pso5/Rad16 and Sgs1 proteins: influences on DNA repair and aging. Mutat Res 486, 195-206.
Sanchez, Y., Desany, B.A., Jones, W.J., Liu, Q., Wang, B., and Elledge, S.J. (1996). Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357-360.
Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033-1042.
Stadler, W.M., and Ratain, M.J. (2000). Development of target-based antineoplastic agents. Invest New Drugs 18, 7-16.
Strand, M., Prolla, T.A., Liskay, R.M., and Petes, T.D. (1993). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274-276.
Struhl, K., Stinchcomb, D.T., Scherer, S., and Davis, R.W. (1979). High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A 76, 1035-1039.
Svendsen, J.M., and Harper, J.W. (2010). GEN1/Yen1 and the SLX4 complex: Solutions to the problem of Holliday junction resolution. Genes Dev 24, 521-536.
Tercero, J.A., and Diffley, J.F.X. (2001). Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553-557.
Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004). Global mapping of the yeast genetic interaction network. Science 303, 808-813.
Van Slambrouck, S., Parmar, V.S., Sharma, S.K., Bondt, B.D., Foré, F., Coopman, P., Vanhoecke, B.W., Boterberg, T., Depypere, H.T., and Leclercq, G. (2005). Tangeretin inhibits extracellular-signal-regulated kinase (ERK) phosphorylation. FEBS Letters 579, 1665-1669.
Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182.
Versini, G., Comet, I., Wu, M., Hoopes, L., Schwob, E., and Pasero, P. (2003). The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J 22, 1939-1949.
Walle, T. (2009). Methylation of Dietary Flavones Increases Their Metabolic Stability and Chemopreventive Effects. Int J Mol Sci 10, 5002-5019.
Watt, P.M., Hickson, I.D., Borts, R.H., and Louis, E.J. (1996). SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935-945.
Watt, P.M., Louis, E.J., Borts, R.H., and Hickson, I.D. (1995). Sgs1 - a Eukaryotic Homolog of Escherichia-Coli Recq That Interacts with Topoisomerase-Ii in-Vivo and Is Required for Faithful Chromosome Segregation. Cell 81, 253-260.
Weinert, T.A., Kiser, G.L., and Hartwell, L.H. (1994). Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8, 652-665.
Weitao, T., Budd, M., and Campbell, J.L. (2003). Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability. Mutat Res 532, 157-172.
Wellman, A.M., and Stewart, G.G. (1973). Storage of Brewing Yeasts by Liquid-Nitrogen Refrigeration. Appl Microbiol 26, 577-583.
Wen, X., and Walle, T. (2006). Methylated Flavonoids Have Greatly Improved Intestinal Absorption and Metabolic Stability. Drug Metabolism and Disposition 34, 1786-1792.
Wu, L., Davies, S.L., Levitt, N.C., and Hickson, I.D. (2001). Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276, 19375-19381.
Wu, L., and Hickson, I.D. (2003). The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870-874.
Yan, H., Chen, C.Y., Kobayashi, R., and Newport, J. (1998). Replication focus-forming activity 1 and the Werner syndrome gene product. Nat Genet 19, 375-378.
Yang, M., Jarrett, S.G., Craven, R., and Kaetzel, D.M. (2009). YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res 660, 74-78.
Yin, J., Sobeck, A., Xu, C., Meetei, A.R., Hoatlin, M., Li, L., and Wang, W. (2005). BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO J 24, 1465-1476.
Youds, J.L., and Boulton, S.J. (2011). The choice in meiosis - defining the factors that influence crossover or non-crossover formation. J Cell Sci 124, 501-513.
Zou, H., and Rothstein, R. (1997). Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87-96.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7042-
dc.description.abstract多氧甲基黃酮 (polymethoxyflavones, PMFs) 為柑橘類果皮中含多氧甲基的酚類物質,目前已知其具有廣泛的生理活性,包括抗癌與抗發炎等。先前有許多研究探討PMFs與水解PMFs的抗癌活性,唯目前為止,其在細胞中的作用目標仍不明確。因此,我們利用化合物-基因協調作用的概念,以酵母菌作為研究平台,發掘PMFs在細胞中的可能作用目標。研究顯示,PMFs維持基因穩定上無顯著作用,顯示PMFs不是透過提升細胞的DNA修復因子來達到其生理活性。利用化合物對酵母菌DNA修復基因缺失的突變株作篩選,我們發現sgs1基因突變株在色胺酸被限制的情況下對PMFs成員之一- 橘皮素 (tangeretin) 敏感,無論是在生長速度或是存活率被顯著被抑制。另外,sgs1突變菌株在橘皮素的介入下,其細胞週期會停滯在G1 / S phase,並提升了γH2A的量。透過基因晶片,我們發現橘皮素會抑制sgs1突變株之RNA合成相關的基因的表現量,並提高其含氮化合物與胺基酸的合成基因之表現。透過sgs1突變株對放射菌酮的測試,發現橘皮素並無直接抑制蛋白質合成的效果,反而卻拯救了sgs1與slx4為主的雙股修復相關基因突變株在色氨酸酸剔除或橘皮素介入下的敏感性。結果推測,橘皮素可能是透過抑制sgs1突變株的rRNA的形成,在色胺酸被限制的情況下,間接導致蛋白質合成不利,進而促使菌株死亡。此研究顯示橘皮素在抗癌途徑的可能機制,並發現胺基酸與DNA雙股斷裂修復過程可能存在某種互動關係,唯需進一步實驗驗證。zh_TW
dc.description.abstractPolymethoxyflavones (PMFs) is a dietary phytochemical and they have been widely investigated in the field of inflammatory and anti-carcinogenic with proven bioactivities but they actual functioning target in cells remain unclear. Here, we used the model of chemical-genetic interaction model, with budding yeast as platform, to screen the potential targets or pathways involved by PMFs. We found out that SGS1 gene deleted yeast is sensitive to tangeretin, one of a member of PMFs. sgs1 defective yeast showed lower growth rate, survival rate, delayed G1 and S phase and elevated γH2A level in cell cycle under tryptophan drop-out condition. Through microarray, we found out that tangeretin is potential to inhibit expression of RNA progression related genes and up-regulated nitrogen compounds and amino acid synthesis pathways of sgs1 defective cells. Data also showed that tangeretin is incapable to inhibit protein synthesis directly as cycloheximide do. Interestingly, cycloheximide rescued the sensitive- phenotype of sgs1 and slx4 defective cells under tryptophan depletion and tangeretin involved condition. Our results showed tangeretin is potential to suppress rRNA precession of sgs1 defective cells and resulting improper protein synthesis under tryptophan depletion condition. This result demonstrated the potential pathway of anti-carcinogenic effect played by tangeretin. Additionally, we also observed the potential of availability of relationship between amino acid balances and DNA double strains break repair pathways. However, further investigation is required for this observation.en
dc.description.provenanceMade available in DSpace on 2021-05-17T10:18:01Z (GMT). No. of bitstreams: 1
ntu-100-R98641038-1.pdf: 3719824 bytes, checksum: 1a4c02f912856231176e1fe62c2db80a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 序論 1
第二章 文獻回顧 3
2.1 多氧甲基黃酮 3
2.1.1 多氧甲基黃酮家族與結構 3
2.1.2多氧甲基黃酮的生理活性 4
2.1.3橘皮素 5
2.2 酵母菌 6
2.2.1 酵母菌為一探討真核生物的實驗模式生物 6
2.2.2 酵母菌為模式生物對人類生命科學的重要性 8
2.2.3 酵母菌為便捷、強大的模式生物 10
2.4 酵母菌SGS1基因 11
2.4.1 酵母菌Sgs1簡介 11
2.4.2 Sgs1與基因的穩定性 13
2.5 DNA複製 15
2.5.1 DNA複製障礙 15
2.5.2 應對複製障礙的機制 17
2.5.3 酵母菌Sgs1與複製叉重啟 20
2.5.4 Sgs1在DNA複製叉與同源重組的功能對細胞的意義 22
2.6 以酵母菌作為探討基因穩定性的平台 25
2.6.1 基因穩定性 25
2.6.2 酵母菌RDKY3615 25
2.7 基因相互作用的關係為一藥物作用目標探索的策略 27
2.7.1 酵母菌基因互動網絡 27
2.7.2 利用基因互動的概念探討藥物的作用目標 28
第三章 研究動機與架構 30
3.1 研究動機 30
3.2 研究架構 30
第四章 材料與方法 32
4.1 實驗藥品與材料 32
4.1.1 酵母菌菌株 32
4.1.2 藥品與培養基 34
4.2 實驗方法 36
4.2.1 酵母菌培養方法 36
4.2.2 酵母菌生長曲線 36
4.2.3 PMFs的介入與酵母菌CAN1基因突變率試驗 36
4.2.4 斑點法 38
4.2.5 酵母菌存活率試驗 38
4.2.6 細胞週期試驗 39
4.2.7 西方墨點法 40
4.2.8 RNA萃取與基因晶片資料分析 43
第五章 結果與討論 45
5.1 橘皮素、川陳皮素與5-去甲基橘皮素不影響野生型菌株的生長 45
5.2 多氧甲基黃酮不能抑制野生型菌株CAN1基因自發性與UV誘導突變 47
5.3 橘皮素能抑制酵母菌sgs1突變株生長 49
5.4 sgs1∆ 酵母菌在YPD與SC-Leu培養基中失去對橘皮素的敏感性 53
5.5 橘皮素促使sgs1∆ 停滯在細胞週期的G1與S期 57
5.6 橘皮素增加sgs1∆ 組蛋白2A的磷酸化 62
5.7 橘皮素影響sgs1∆ RNA合成之功能 66
5.7 橘皮素不具有抑制蛋白質轉譯的功能 74
5.8 綜合討論 76
第六章 結論 79
第七章 參考文獻 80
附錄1 90
附錄2 91
附錄3 94
dc.language.isozh-TW
dc.title利用酵母菌之化合物-基因交互作用探討橘皮素作用路徑zh_TW
dc.titleInvestigating Tangeretin Targeted Pathway by Chemical-Genetic Interaction in Yeasten
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee高承福(Cheng-Fu Kao),謝淑貞(Shu-Chen Hsieh),何其儻(Chi-Tang Ho)
dc.subject.keyword酵母菌,多氧甲基黃酮,橘皮素,SGS1,化合物-基因協同作用,zh_TW
dc.subject.keywordyeast,polymethoxyflavones,tangeretin,SGS1,chemical-gene interaction,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-01-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved