Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70200
標題: 特殊和樂群流形及其校準子流形
Manifolds with Exceptional Holonomy Groups and Their Calibrated Submanifolds
作者: Shu-Ting Huang
黃書庭
指導教授: 李瑩英(Yng-Ing Lee)
關鍵字: G2 流形,Spin(7) 流形,校準,八元數,結合子流形,餘結合子流形,Cayley 子流形,
G2 manifold,Spin(7) manifold,calibration,octonion,associative submanifold,coassociative submanifold,Cayley submanifold,
出版年 : 2018
學位: 碩士
摘要: 本論文為將介紹帶有特殊和樂群G2與Spin(7)的流形,利用校準以及八元數對此主題進行深入探討,最後討論結合子流形、餘結合子流形、Cayley子流形的形變向量場。
This thesis is a brief survey of manifolds with exceptional holonomy groups G2 and Spin(7). These two holonomy groups come from Berger’s classification [2]. In chapter 2, I introduce some basic properties of the group G2 and
Spin(7), most of these results and proofs are from [4], [6], [7].
Chapter 3 is an introduction to the notion of calibration and octonions, and use octonion to discover more insights of the G2 and Spin(7) geometry. The examples of calibrated submanifolds we are going to study are associative, coassociative and Cayley submanifolds. Chapter 4 gives a discussion about the deformation vector fields of these calibrated submanifolds, which is from Mclean’s paper [8].
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70200
DOI: 10.6342/NTU201800134
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
946.73 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved