Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70200
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李瑩英(Yng-Ing Lee)
dc.contributor.authorShu-Ting Huangen
dc.contributor.author黃書庭zh_TW
dc.date.accessioned2021-06-17T03:49:00Z-
dc.date.available2018-02-26
dc.date.copyright2018-02-26
dc.date.issued2018
dc.date.submitted2018-01-22
dc.identifier.citation[1] W. Ambrose and I. M. Singer. A theorem on holonomy. Transactions of the American Mathematical Society, 75(3):428–443, 1953.
[2] Marcel Berger. Sur les groupes d’holonomie homogenes des varietes a connexion affines et des varietes riemanniennes. Bulletin de la Societe Mathematique de France, 83:279–330, 1955.
[3] Robert Bryant. Some remarks on G2-structures.
[4] Robert Bryant. Metrics with exceptional holonomy. Annals of mathematics, 126(3): 525–576, 1987.
[5] Reesse Harvey and H. Blaine Lawson. Calibrated geometries. Acta Mathematica, 148(1):47–157, 1982.
[6] Dominic D. Joyce. Compact Manifolds with Special Holonomy. 2000.
[7] Dominic D. Joyce. Riemannian Holonomy Groups and Calibrated Geometry. 2007.
[8] Robert C. Mclean. Deformations of calibrated submanifold. Communications in Analysis and Geometry, 6(4):705–747, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70200-
dc.description.abstract本論文為將介紹帶有特殊和樂群G2與Spin(7)的流形,利用校準以及八元數對此主題進行深入探討,最後討論結合子流形、餘結合子流形、Cayley子流形的形變向量場。zh_TW
dc.description.abstractThis thesis is a brief survey of manifolds with exceptional holonomy groups G2 and Spin(7). These two holonomy groups come from Berger’s classification [2]. In chapter 2, I introduce some basic properties of the group G2 and
Spin(7), most of these results and proofs are from [4], [6], [7].
Chapter 3 is an introduction to the notion of calibration and octonions, and use octonion to discover more insights of the G2 and Spin(7) geometry. The examples of calibrated submanifolds we are going to study are associative, coassociative and Cayley submanifolds. Chapter 4 gives a discussion about the deformation vector fields of these calibrated submanifolds, which is from Mclean’s paper [8].
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:49:00Z (GMT). No. of bitstreams: 1
ntu-107-R01221009-1.pdf: 969451 bytes, checksum: 95a951b703e5f3551eb025bbffb4272c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Classification of Holonomy Groups . . . . . . . . . . . . . . . . . . . . . 1
2 Manifolds with Exceptional Holonomy Groups . . . . . . . . . . . . . . . . . 4
2.1 The G2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Spin(7) Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Calibrations in Manifolds with Exceptional Holonomy and Octonions . . . . . .19
3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.2 Octonion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Calibrated Submanifolds in Manifolds with Exceptional Holonomy . . . . . . . 25
4.1 Coassociative Submanifold . . . . . . . . . . . . . . . . . . . . . . . . .25
4.2 Associative Submanifold . . . . . . . . . . . . . . . . . . . . . . . . . .27
4.3 Cayley Submanifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A Clifford Algebras, Spinors and Dirac Operators . . . . . . . . . . . . . . . 33
A.1 Clifford Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
A.2 Dirac Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
A.3 Spin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B Homotopy Exact Sequence of a Fiber Bundle . . . . . . . . . . . . . . . . . .37
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
dc.language.isoen
dc.subject校準zh_TW
dc.subject八元數zh_TW
dc.subjectCayley 子流形zh_TW
dc.subjectSpin(7) 流形zh_TW
dc.subjectG2 流形zh_TW
dc.subject餘結合子流形zh_TW
dc.subject結合子流形zh_TW
dc.subjectCayley submanifolden
dc.subjectSpin(7) manifolden
dc.subjectcalibrationen
dc.subjectoctonionen
dc.subjectassociative submanifolden
dc.subjectcoassociative submanifolden
dc.subjectG2 manifolden
dc.title特殊和樂群流形及其校準子流形zh_TW
dc.titleManifolds with Exceptional Holonomy Groups and Their Calibrated Submanifoldsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee崔茂培(Mao-Pei Tsui),蔡忠潤(Chung-Jun Tsai),鄭日新(Jih-Hsin Cheng)
dc.subject.keywordG2 流形,Spin(7) 流形,校準,八元數,結合子流形,餘結合子流形,Cayley 子流形,zh_TW
dc.subject.keywordG2 manifold,Spin(7) manifold,calibration,octonion,associative submanifold,coassociative submanifold,Cayley submanifold,en
dc.relation.page38
dc.identifier.doi10.6342/NTU201800134
dc.rights.note有償授權
dc.date.accepted2018-01-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
946.73 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved