Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7012
Title: 肝癌病患文字病歷報告之錯別字辨識與更正方法
A method for detecting misspelled words in medical narrative reports: A case study on the patients with liver cancer
Authors: Tzu-Hua Liu
劉子華
Advisor: 賴飛羆
Keyword: 病歷資料,資訊擷取系統,錯別字,標準化,醫療資訊,
textual medical records,information extraction system,misspelling,normalization,medical informatics,
Publication Year : 2012
Degree: 碩士
Abstract: 病歷資料擁有豐富的疾病、醫療程序和治療結果等資訊。在之前的研究裡,我們實做一資訊擷取系統提取肝癌病人文字報告裡肝癌相關資訊。資訊擷取系統提取的結果將用於建立預測肝癌復發的模型。然而,由於這些文字的醫療報告為醫護人員手動輸入,其中難免會有錯別字,這些因素造成醫療擷取系統抽取資訊上的困難,而因此遺漏掉無法被抽取出的珍貴醫療資訊,所以如何減少報告中錯別字對於未來的研究是非常重要的。
本研究的目的在於提供一個有效率的方式去辨識醫療報告中之錯別字並加以更正,以幫助醫療擷取系統能抽取出更多醫療資訊。我們設計一套錯別字辨正與標準化系統,用於校正報告中之錯別字。透過這套方法,能在系統抽取資訊前,將文章中內之錯別字更正,以幫助醫療擷取系統能從中擷取到先前因錯別字與不同表示法的原因而無法被擷取出來之資訊,以提高系統之資訊抽取率。由於醫療報告過於龐大,使用人為方式尋找錯誤是非常耗費人力與時間的,透過這個方法,可有效減少醫療報告之錯別字,並改善病歷之品質。
Textual medical records contain valuable information about diseases, medical procedures and treatment results. In our previous work, we implemented the information extraction system for extracting the desired information from liver cancer patients’ textual reports. These extracted results produced by information extraction system are used for supporting the development of recurrence predictive model. However, these narrative reports are made by human manually. Therefore, improving the correctness of medical reports is very important for further research.
In the study, we already implemented the information extraction system which can extract medical information for liver cancer recurrence predicting model. But, detecting and correcting the misspelling words of all medical reports manually would be a time-consuming and labor-intensive task. Therefore, the aim of this study is to provide an efficient way for facilitating the process of checking and correcting the misspelling words. We implemented the error handling system for correcting the misspelled words of each medical report. After the preprocessing procedure executed by the error handling system, the information extraction system can extract out those information which cannot be found due to the misspelling words. In this way, it can highly promote the accuracy of the medical extracted results.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7012
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf3.79 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved