Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70025
Title: 利用隨機投影做維度縮減以及探討高斯混合模型
Random Projection for Dimension Reduction and Mixture of Gaussians
Authors: Meng-Hung Hsu
許孟弘
Advisor: 杜憶萍(I-Ping Tu)
Keyword: 隨機投影,縮減維度,Johnson-Lindenstrauss 引理,高斯混合模型,保距,
random projection,dimension reduction,Johnson-Lindenstrauss Lemma,mixtures of Gaussians,
Publication Year : 2018
Degree: 碩士
Abstract: 隨機投影是在高維度資料分析中縮減維度的方法之一。Johnson-Lindenstrauss 引理闡述在一群高維度的資料投影進入低維度空間中,這些投影資料的相對距離可以維持得很好。換句話說,這群資料的結構沒有因為隨機投影而被破壞到。由於高斯混合模型是最基本被廣泛使用的統計模型之一,所以我們想探討高斯混合模型在隨機投影下的表現。在這篇文章中,我們顯示在某些條件下,高斯混合模型可以通過隨機投影後仍維持著保距性質。然而,投影後資料共變異矩陣特徵值的比例會比起投影前的資料變小。這也許可以解釋高維度資料降維度的分群表現變好。最後,將展示一些關於高斯混合的數值實驗。
Random projection is a promising dimensional reduction technique for high-dimensional data analysis. Johnson-Lindenstrauss Lemma states that a set of points in a high-dimensional space can be embedded into a space of lower dimension in such a way that distances between the points are nearly preserved. In other words, the structure of datasets is not destroyed by random projection. Besides mixtures of Gaussian are among the most fundamental and widely used statistical models. In this article, we show that when a mixtures Gaussians which are separated are projected, the projected Gaussians would be separated through random projection under some conditions. Moreover, the ratio of the eigenvalues of the covariance matrix of projected data becomes little compared with the ratio of the eigenvalues of the covariance matrix of original data. Finally, some numerical experiments with Gaussian mixtures will be illustrated.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70025
DOI: 10.6342/NTU201800401
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
652.24 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved