Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69904
Title: 使用多任務網路串聯於個人化臉部動作單元偵測之研究
Personalized Facial Action Unit Detection Using Multi-task Network Cascades
Authors: Cheng-Hao Tu
屠政皓
Advisor: 許永真
Keyword: 機器學習,
Machine Learning,
Publication Year : 2018
Degree: 碩士
Abstract: Facial action unit detection, which aims to detect facial muscle activities from face images, is an important task to enable the emotion recognition from facial movements. By coding facial muscle activities into a system of facial Action Units (AUs), facial expressions can be clearly described. However, it is still challenging to predict the AUs from fine-grained facial appearances, and one of the challenges lies in handling various appearances from different subjects.
In this thesis, we address the problem by introducing an auxiliary neutral face image to produce person-specific transformations for various subjects. With the help of neutral faces, our method extracts effective features of facial muscle activities despite the divergent individual appearances. We propose to combine an additional face clustering task on top of the AU detection task to form a multi-task network cascades and train the cascades jointly. First, to train the face clustering networks for producing person-specific transformations, we utilize identity-annotated datasets which contain numerous subjects to alleviate a common problem that existing AU-annotated datasets contain only a few subjects. Second, we transform the facial features using the person-specific transformations to reduce individual differences for predicting AU labels. As a result, the proposed network cascades exploit not only the visual but also the identity information and thus more effectively detect AUs based on the personalized appearance normalization.
Our experimental results on the BP4D dataset show that our method outperforms state-of-the-art ones. Experiments under cross-dataset and cross-group scenarios also show the advantage of our method in terms of robustness.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69904
DOI: 10.6342/NTU201800419
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
3.9 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved