Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69904
標題: 使用多任務網路串聯於個人化臉部動作單元偵測之研究
Personalized Facial Action Unit Detection Using Multi-task Network Cascades
作者: Cheng-Hao Tu
屠政皓
指導教授: 許永真
關鍵字: 機器學習,
Machine Learning,
出版年 : 2018
學位: 碩士
摘要: Facial action unit detection, which aims to detect facial muscle activities from face images, is an important task to enable the emotion recognition from facial movements. By coding facial muscle activities into a system of facial Action Units (AUs), facial expressions can be clearly described. However, it is still challenging to predict the AUs from fine-grained facial appearances, and one of the challenges lies in handling various appearances from different subjects.
In this thesis, we address the problem by introducing an auxiliary neutral face image to produce person-specific transformations for various subjects. With the help of neutral faces, our method extracts effective features of facial muscle activities despite the divergent individual appearances. We propose to combine an additional face clustering task on top of the AU detection task to form a multi-task network cascades and train the cascades jointly. First, to train the face clustering networks for producing person-specific transformations, we utilize identity-annotated datasets which contain numerous subjects to alleviate a common problem that existing AU-annotated datasets contain only a few subjects. Second, we transform the facial features using the person-specific transformations to reduce individual differences for predicting AU labels. As a result, the proposed network cascades exploit not only the visual but also the identity information and thus more effectively detect AUs based on the personalized appearance normalization.
Our experimental results on the BP4D dataset show that our method outperforms state-of-the-art ones. Experiments under cross-dataset and cross-group scenarios also show the advantage of our method in terms of robustness.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69904
DOI: 10.6342/NTU201800419
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.9 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved