Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69641
Title: 新聞文字隱含資訊與投資人情緒及實際波動度之關係
The Relationship between News Articles, Investors’ Sentiment, and Realized Volatility
Authors: "Ren-Jeng, Chung"
鍾任政
Advisor: 王耀輝(Yaw-Huei Wang)
Keyword: 文字探勘,機器學習,投資人情緒,恐慌指數,實際波動度,
Text mining,Machine learning,Investors’ sentiment,VIX,RV,
Publication Year : 2018
Degree: 碩士
Abstract: 本文參考Manela和Morierla (2017)所提出的論點:認為新聞資訊能當成投資人情緒之代理變數,進而透過文字探勘與機器學習演算法去探討新聞文字資訊與恐慌指數(VIX)和實際波動度(RV)之關聯性;本文擴充了Manela和Moreira (2017)的論點,除了將資料頻率由月資料改成日資料來探討之外,也將單一新聞資料源擴充成多個新聞資訊源,更改變了計算投資人情緒之方法,利用Loughran和McDonal於2014所提出的修正版分類辭典(LM words lists)將字詞的正負面性與其他三類情緒納入考量,再透過機器學習演算法建構出新聞文字隱含之波動度(NVIX),藉此希望能捕捉到更精確的投資人情緒、改善新聞文字資訊解釋VIX與預測RV之績效。實證結果顯示:當日新聞資訊利用LM分類詞典所形成的各類情緒變數對於當日VIX確實有顯著的解釋能力、不同的新聞資料源對於VIX的解釋能力也有顯著差異、多家新聞資料源對於VIX的解釋能力普遍高於單家新聞資料源;然而,無論是利用單一或多家新聞資料所建構成的NVIX,比起VIX,對於實際波動度(RV)的預測績效並沒有額外顯著的提升。
Referring to Manela and Morierla (2017), with the help of text mining techniques and machine learning algorithms, news articles can be linked to market investors’ sentiment; furthermore, we can use the news information as the proxy for investors’ sentiment, and use it to explain movements of the VIX index or to forecast the future realized volatility (RV). We further expand Manela and Morierla’s (2017) idea, adopting multiple sources of news articles instead of single source of data. Also, we modify the way to quantify investors’ sentiment, we utilize LM word lists provided by Loughran and McDonald in 2014, trying to precisely seize the market investors’ fear (i.e., VIX) and better predict the future RV. Finally, our empirical results show that: (1) Sentimental words derived from daily news articles do have significant power to explain VIX. (2) Multi-sources of daily news data generally have stronger explanatory power of VIX compared with the single-source of news data. (3) Neither single nor multi-sources of news data have additional forecasting power for the future RV compared with the VIX index.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69641
DOI: 10.6342/NTU201800707
Fulltext Rights: 有償授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
5.33 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved