Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69617
Title: 利用斑馬魚模式動物探討經缺氧回復後參與脊髓神經修復的特殊細胞群
Subtypes of Hypoxia-responsive Cells Differentiate into Neurons in Spinal Cord of Zebrafish Embryos after Hypoxic Stress
Authors: Zeng Chih-Wei
曾志維
Advisor: 蔡懷楨
Co-Advisor: 王致恬
Keyword: 神經再生,脊髓受損,逆境反應,斑馬魚,
Neuronal regeneration,Spinal cord injury,Stress resistance,Transgenic zebrafish,
Publication Year : 2018
Degree: 博士
Abstract: Following hypoxic stress, neuron stem/progenitor cells (NSPCs) and other uncharacterized cells of zebrafish central nervous system (CNS) thrive during recovery. To characterize the remaining cell population, we employed a zebrafish transgenic line, huORFZ, which harbors an inhibitory upstream open reading frame of human chop (huORFchop) fused with GFP reporter and driven by cytomegalovirus promoter. When huORFZ embryos were treated with hypoxic stress, followed by oxygen recovery, the appearance of GFP indicated that some CNS cells survived and successfully repressed the translational inhibition caused by huORFchop. These GFP-(+) cells, termed hypoxia-responsive recovering cells, or HrRCs, were primarily some NSPCs and reactive radial glia cells (RGs), along with some oligodendrocyte progenitor cells (OLPs) and oligodendrocytes (OLs). By in vitro assay, we demonstrated that these cultured HrRCs were able to differentiate into mature unipolar neurons. By in vivo examination, we found that (1) GFP-(+) HrRCs did not undergo apoptosis, while GFP-(-) neurons did. (2) HrRCs were able to migrate; (3) among HrRCs, only GFP-(+) NSPCs and GFP-(+) RGs proliferated and differentiated into mature functional neurons after oxygen recovery; (4) prolonged recovery time after hypoxic stress correlated with higher proportions of GFP-(+) NSPCs and GFP-(+) RGs that had differentiated into neurons, in contrast to lower proportions of proliferating/differentiating GFP-(-) NSPCs and GFP(-) RGs; (5) the number of NSPCs and RGs differentiating into neurons was low in unstressed embryos, suggesting that embryonic development is not associated with the differentiation of HrRCs into neurons; and (6) specific ablation of 15 HrRCs in the spinal cord of each stress-treated huORFZ embryo severely impaired its swimming performance. Therefore, we demonstrated that type-specific cell populations which respond sensitively to hypoxic stress play an important role during the process of neuronal regeneration of zebrafish spinal cord.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69617
DOI: 10.6342/NTU201801008
Fulltext Rights: 有償授權
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
15.14 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved