Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69456
標題: 基於期望往返時間之馬可夫鏈蒙地卡羅法收斂速率分析
On the Convergence Rate of Markov Chain Monte Carlo through Mean Commute Time
作者: Chi-Hao Wu
吳其豪
指導教授: 陳定立
關鍵字: 馬可夫鏈,馬可夫過程,收斂速率,漸進變異數,往返時間,
Markov chain,Markov process,convergence rate,asymptotic variance,commute time,
出版年 : 2018
學位: 碩士
摘要: 馬可夫鏈蒙地卡羅法被廣泛運用於高維度分佈之抽樣,並且至今已經有大量的研究被投入於優化此演算法;無論是基於經驗法則或是理論證明,學界已經發現加速此演算法收斂速度的關鍵之一,是令演算法快速地漫步於抽樣空間裡。在這篇論文裡,我們算出演算法的漸進變異數與期望往返時間的關係;基於此我們證明了樹狀馬可夫鏈無法被均勻加速的猜法、提供了一個新的方法推導離散時間最優馬可夫鏈,並且更進一步推導出連續時間最優馬可夫過程。
Markov chain Monte Carlo(MCMC) is a popular strategy for sampling high dimensional distribution, and researches have been devoted to optimize the sampler. It has been known both heuristically and theoretically that a good sampler should travel fast among states in order to attain better convergence. In this thesis, the relation between the asymptotic variance of the sampler and the mean commute time is derived explicitly. Based on this relation, the conjecture in Chen and Hwang(2013) is shown rigorously; also, an alternative derivation of the optimal Markov chain presented in Chen et al.(2012) is given, and is further extended to construct the optimal Markov process under the average case criterion.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69456
DOI: 10.6342/NTU201801291
全文授權: 有償授權
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
374.31 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved