請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭德盛(Te-Son Kuo) | |
| dc.contributor.author | Shih-Wei Chen | en |
| dc.contributor.author | 陳士維 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:20:39Z | - |
| dc.date.available | 2017-04-24 | |
| dc.date.available | 2021-05-17T09:20:39Z | - |
| dc.date.copyright | 2012-04-24 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-03-16 | |
| dc.identifier.citation | [1] J. Parkinson, 'An essay on the shaking palsy,' Journal of Neuropsychiatry and Clinical Neurosciences, vol. 14, pp. 223-236, 2002.
[2] L. M. L. de Lau and M. Breteler, 'Epidemiology of Parkinson's disease,' The Lancet Neurology, vol. 5, pp. 525-535, 2006. [3] R. Spehlmann and S. M. Stahl, 'Dopamine acetyllcholine imbalance in Parkinson's disease: possible regenerative overgrowth of cholinergic axon terminals,' The Lancet, vol. 307, pp. 724-726, 1976. [4] M. Hong, G. Earhart, D. Damiano, and J. Perlmutter, 'Decreased Arm Swing At Fast Walking Speed in Mild Parkinson Disease (Pd),' Journal of Neurologic Physical Therapy, vol. 29, pp. 209-210, 2005. [5] A. Salarian, H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y. Blanc, P. R. Burkhard, and K. Aminian, 'Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring,' IEEE Transactions on Biomedical Engineering, vol. 51, pp. 1434-1443, 2004. [6] S. E. Halliday, D. A. Winter, J. S. Frank, A. E. Patla, and F. Prince, 'The initiation of gait in young, elderly, and Parkinson's disease subjects,' Gait & posture, vol. 8, pp. 8-14, 1998. [7] http://medchrome.com. [8] J. Jankovic, 'Pathophysiology and clinical assessment of motor symptoms in Parkinson’s disease,' Handbook of Parkinson’s disease, vol. 2, pp. 129-157, 1987. [9] P. Krack, A. Benazzouz, P. Pollak, P. Limousin, B. Piallat, D. Hoffmann, J. Xie, and A. L. Benabid, 'Treatment of tremor in Parkinson's disease by subthalamic nucleus stimulation,' Movement disorders, vol. 13, pp. 907-914, 1998. [10] M. H. Sharpe, S. A. Cermak, and D. S. Sax, 'Motor planning in Parkinson patients,' Neuropsychologia, vol. 21, pp. 455-462, 1983. [11] W. C. Roller, S. Glatt, B. Vetere-Overfield, and R. Hassanein, 'Falls and Parkinson's disease,' Clinical neuropharmacology, vol. 12, pp. 98-105, 1989. [12] Y. A. M. Grimbergen, M. Munneke, and B. R. Bloem, 'Falls in Parkinson's disease,' Current opinion in neurology, vol. 17, pp. 405-415, 2004. [13] L. Coughlin and J. Templeton, 'Hip fractures in patients with Parkinson's disease,' Clinical Orthopaedics and Related Research, vol. 148, pp. 192-195, 1980. [14] O. Blin, A. M. Ferrandez, and G. Serratrice, 'Quantitative analysis of gait in Parkinson patients: increased variability of stride length,' Journal of the neurological sciences, vol. 98, pp. 91-97, 1990. [15] E. Knutsson, 'An analysis of parkinsonian gait,' Brain, vol. 95, p. 475, 1972. [16] M. Murray, S. Sepic, G. Gardner, and W. Downs, 'Walking patterns of men with parkinsonism,' American journal of physical medicine, vol. 57, p. 278, 1978. [17] M. E. Morris, F. Huxham, J. McGinley, K. Dodd, and R. Iansek, 'The biomechanics and motor control of gait in Parkinson disease,' Clinical Biomechanics, vol. 16, pp. 459-470, 2001. [18] J. Jankovic, 'Parkinson’s disease: clinical features and diagnosis,' Journal of Neurology, Neurosurgery & Psychiatry, vol. 79, p. 368, 2008. [19] R. N. Stauffer, E. Chao, and A. Gyory, 'Biomechanical gait analysis of the diseased knee joint,' Clin Orthop, vol. 126, pp. 246-255, 1977. [20] J. E. Cutting and L. T. Kozlowski, 'Recognizing friends by their walk: Gait perception without familiarity cues,' Bulletin of the Psychonomic Society, vol. 9, pp. 353-356, 1977. [21] J. E. Cutting, D. R. Proffitt, and L. T. Kozlowski, 'A biomechanical invariant for gait perception,' Journal of Experimental Psychology: Human Perception and Performance, vol. 4, pp. 357-372, 1978. [22] L. T. Kozlowski and J. E. Cutting, 'Recognizing the sex of a walker from a dynamic point-light display,' Attention, Perception, & Psychophysics, vol. 21, pp. 575-580, 1977. [23] J. P. Hubble, R. Pahwa, D. K. Michalek, C. Thomas, and W. C. Koller, 'Interactive video conferencing: a means of providing interim care to Parkinson's disease patients,' Movement disorders, vol. 8, pp. 380-382, 1993. [24] A. Lozano, A. Lang, N. Galvez-Jimenez, J. Miyasaki, J. Duff, W. Hutchison, and J. Dostrovsky, 'Effect of GPi pallidotomy on motor function in Parkinson's disease,' The Lancet, vol. 346, pp. 1383-1387, 1995. [25] T. Kepple, S. Stanhope, K. Lohmann, and N. Roman, 'A video-based technique for measuring ankle--subtalar motion during stance,' Journal of biomedical engineering, vol. 12, pp. 273-280, 1990. [26] M. Swider, 'The application of video image processing to quantitative analysis of extremity tremor in humans,' Journal of Neuroscience Methods, vol. 84, pp. 167-172, 1998. [27] L. G. Chang, JA Burne, R., 'An automated form of video image analysis applied to classification of movement disorders,' Disability & Rehabilitation, vol. 22, pp. 97-108, 2000. [28] Y. R. Yang, Y. Y. Lee, S. J. Cheng, P. Y. Lin, and R. Y. Wang, 'Relationships between gait and dynamic balance in early Parkinson's disease,' Gait & posture, vol. 27, pp. 611-615, 2008. [29] R. Okuno, S. Fujimoto, J. Akazawa, M. Yokoe, S. Sakoda, and K. Akazawa, 'Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease,' in 30th Annual International Conference of the IEEE Vancouver, BC 2008, pp. 1765-1768. [30] M. Benedetti, F. Catani, A. Leardini, E. Pignotti, and S. Giannini, 'Data management in gait analysis for clinical applications,' Clinical Biomechanics, vol. 13, pp. 204-215, 1998. [31] H. Chang, T. Chuang, S. Lee, S. Liao, H. Lee, Y. Shih, and H. Cheng, 'Temporal differences in relative phasing of gait initiation and first step length in patients with cervical and lumbosacral spinal cord injuries,' Spinal cord, vol. 42, pp. 281-289, 2004. [32] C. Cho, Y. Osaki, M. Kunin, B. Cohen, C. W. Olanow, and T. Raphan, 'A Model-Based Approach for Assessing Parkinsonian Gait and Effects of Levodopa and Deep Brain Stimulation,' in Proceedings of the 28th IEEE EMBS Annual International Conference, Nwe York City, 2006, pp. 1228-1231. [33] P. S. Huang, C. J. Harris, and M. S. Nixon, 'Human gait recognition in canonical space using temporal templates,' IEE Proceedings of Vision, Image and Signal Processing, vol. 146, pp. 93-100, 1999. [34] M. S. Nixon, J. N. Carter, M. G. Grant, L. Gordon, and J. B. Hayfron-Acquah, 'Automatic recognition by gait: progress and prospects,' Sensor Review, vol. 23, pp. 323-331, 2003. [35] J. Little and J. Boyd, 'Recognizing people by their gait: the shape of motion,' Videre: Journal of Computer Vision Research, vol. 1, pp. 1-32, 1998. [36] S. A. Niyogi and E. H. Adelson, 'Analyzing and recognizing walking figures in XYT,' in IEEE Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'94), 1994, pp. 469-474. [37] H. Murase and R. Sakai, 'Moving object recognition in eigenspace representation: gait analysis and lip reading,' Pattern recognition letters, vol. 17, pp. 155-162, 1996. [38] P. S. Huang, C. J. Harris, and M. S. Nixon, 'Recognising humans by gait via parametric canonical space,' Artificial Intelligence in Engineering, vol. 13, pp. 359-366, 1999. [39] B. Scholkopf, A. Smola, and K. R. Muller, 'Nonlinear component analysis as a kernel eigenvalue problem,' Neural computation, vol. 10, pp. 1299-1319, 1998. [40] K. Polat and S. Gunes, 'Automatic determination of diseases related to lymph system from lymphography data using principles component analysis (PCA), fuzzy weighting pre-processing and ANFIS,' Expert Systems with Applications, vol. 33, pp. 636-641, 2007. [41] J. Yang, D. Zhang, and A. F. Frangi, 'Two-dimensional PCA: a new approach to appearance-based face representation and recognition,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, pp. 131-137, 2004. [42] H. Kong, L. Wang, E. K. Teoh, X. Li, J. G. Wang, and R. Venkateswarlu, 'Generalized 2D principal component analysis for face image representation and recognition,' Neural Networks, vol. 18, pp. 585-594, 2005. [43] Q. Du and J. E. Fowler, 'Hyperspectral image compression using JPEG2000 and principal component analysis,' Geoscience and Remote Sensing Letters, IEEE, vol. 4, pp. 201-205, 2007. [44] N. Kambhatla and T. K. Leen, 'Dimension reduction by local principal component analysis,' Neural computation, vol. 9, pp. 1493-1516, 1997. [45] W. Zhao, R. Chellappa, and A. Krishnaswamy, 'Discriminant analysis of principal components for face recognition,' 1998, pp. 336-341. [46] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin, 'The COG database: new developments in phylogenetic classification of proteins from complete genomes,' Nucleic acids research, vol. 29, pp. 22-28, 2001. [47] T. Sato, 'Application of principal-component analysis on near-infrared spectroscopic data of vegetable oils for their classification,' Journal of the American Oil Chemists' Society, vol. 71, pp. 293-298, 1994. [48] J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, and C. Peterson, 'Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,' Nature medicine, vol. 7, pp. 673-679, 2001. [49] A. Krauze and R. I. Zalewski, 'Classification of honeys by principal component analysis on the basis of chemical and physical parameters,' Zeitschrift für Lebensmitteluntersuchung und-Forschung A, vol. 192, pp. 19-23, 1991. [50] M. Turk and A. Pentland, 'Eigenfaces for recognition,' Journal of cognitive neuroscience, vol. 3, pp. 71-86, 1991. [51] D. L. Ruderman, 'Origins of scaling in natural images,' Vision research, vol. 37, pp. 3385-3398, 1997. [52] R. Rosin, H. Topka, and J. Dichgans, 'Gait initiation in Parkinson's disease,' Movement disorders, vol. 12, pp. 682-690, 1997. [53] S. T. Moore, H. G. MacDougall, and W. G. Ondo, 'Ambulatory monitoring of freezing of gait in Parkinson's disease,' Journal of Neuroscience Methods, vol. 167, pp. 340-348, 2008. [54] L. Fuyuan, W. Jue, and H. Ping, 'Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis,' Med Eng Phys, vol. 30, pp. 299-310, 2008. [55] D. J. Gelb, E. Oliver, and S. Gilman, 'Diagnostic criteria for Parkinson disease,' Archives of neurology, vol. 56, pp. 33-39, 1999. [56] A. Burleigh Jacobs, F. B. Horak, J. G. Nutt, and J. A. Obeso, 'Step initiation in Parkinson's disease: influence of levodopa and external sensory triggers,' Movement disorders, vol. 12, pp. 206-215, 1997. [57] W. Herzog, B. M. Nigg, L. J. Read, and E. Olsson, 'Asymmetries in ground reaction force patterns in normal human gait,' Medicine and science in sports and exercise, vol. 21, pp. 110-114, 1989. [58] P. Meir, G. Nir, B. Yacov, and P. Chava, 'Is freezing of gait in Parkinson’s disease related to asymmetric motor function?,' Ann Neurol, vol. 57, pp. 656-663, 2005. [59] J. Chodera, 'Analysis of gait from footprints,' Physiotherapy, vol. 60, pp. 179-181, 1974. [60] J. Chodera and R. Levell, 'Footprint patterns during walking,' Perspectives in biomedical engineering, pp. 81–90, 1973. [61] H. Law, 'Microcomputer-based low-cost method for measurement of spatial and temporal parameters of gait,' Journal of biomedical engineering, vol. 9, pp. 115-120, 1987. [62] P. Allard, R. Lachance, R. Aissaoui, and M. Duhaime, 'Simultaneous bilateral 3-D able-bodied gait,' Human Movement Science, vol. 15, pp. 327-346, 1996. [63] D. J. STEFANYSHYN and J. R. ENGSBERG, 'Right to left differences in the ankle joint complex range of motion,' Medicine & Science in Sports & Exercise, vol. 26, pp. 551-555, 1994. [64] E. Oron, A. Kumar, and Y. Bar-Shalom, 'Precision tracking with segmentation for imaging sensors,' IEEE Transactions on Aerospace and Electronic Systems, vol. 29, pp. 977-987, 1993. [65] V. Naidu, G. Girija, and J. Raol, 'Centroid Tracking and Target Identity Estimation using Image Sensor Data,' National Aerospace Laboratories2005. [66] A. Lang and A. Lozano, 'Parkinson's disease. Second of two parts,' The New England journal of medicine, vol. 339, pp. 1130-1143, 1998. [67] P. Martinez Martin, A. Gil Nagel, L. M. Gracia, J. B. Gomez, J. Martinez Sarries, and F. Bermejo, 'Unified Parkinson's disease rating scale characteristics and structure,' Movement disorders, vol. 9, pp. 76-83, 1994. [68] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, 'The human ID gait challenge problem: Data sets, performance, and analysis,' IEEE transactions on pattern analysis and machine intelligence, pp. 162-177, 2005. [69] S.-T. Bow, Pattern Recognition and Image Preprocessing, 2nd ed.: Marcel Dekker, Inc. New York, NY, USA, 2002. [70] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed.: New York: John Wiley & Sons, 2000. [71] L. Wang, T. Tan, H. Ning, and W. Hu, 'Silhouette analysis-based gait recognition for human identification,' IEEE transactions on pattern analysis and machine intelligence, pp. 1505-1518, 2003. [72] E. O. Brigham, The fast Fourier transform and its applications.: Englewood Cliffs, N.J.: Prentice Hall., 1988. [73] J. D. O'Sullivan, C. M. Said, L. C. Dillon, M. Hoffman, and A. J. Hughes, 'Gait analysis in patients with Parkinson's disease and motor fluctuations: influence of levodopa and comparison with other measures of motor function,' Mov Disord, vol. 13, pp. 900-6, 1998. [74] M. Vokaer, N. A. Azar, and D. Z. de Beyl, 'Effects of levodopa on upper limb mobility and gait in Parkinson’s disease,' Journal of Neurology, Neurosurgery & Psychiatry, vol. 74, p. 1304, 2003. [75] S. Lubik, W. Fogel, V. Tronnier, M. Krause, J. Konig, and W. Jost, 'Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation,' Journal of neural transmission, vol. 113, pp. 163-173, 2006. [76] A. Salarian, H. Russmann, F. J. Vingerhoets, C. Dehollain, Y. Blanc, P. R. Burkhard, and K. Aminian, 'Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring,' IEEE Trans Biomed Eng, vol. 51, pp. 1434-1443, Aug 2004. [77] C. W. Cho, W. H. Chao, S. H. Lin, and Y. Y. Chen, 'A vision-based analysis system for gait recognition in patients with Parkinson's disease,' Expert Systems with Applications, vol. 36, pp. 7033-7039, 2009. [78] M. M. Hoehn and M. D. Yahr, 'Parkinsonism: Onset, progression and mortality,' Neurology, 2001. [79] J. M. Jasiewicz, J. H. J. Allum, J. W. Middleton, A. Barriskill, P. Condie, B. Purcell, and R. C. T. Li, 'Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals,' Gait & posture, vol. 24, pp. 502-509, 2006. [80] R. O. Robinson, W. Herzog, and B. M. Nigg, 'Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry,' J Manip Physiol Ther, vol. 10, pp. 172-176, 1987. [81] E. B. Titianova and I. M. Tarkka, 'Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction,' J Rehabil Res Dev, vol. 32, pp. 236-244, 1995. [82] C. M. Kim and J. J. Eng, 'Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke,' Gait & posture, vol. 18, pp. 23-28, 2003. [83] M. Ferrarin, L. Lopiano, M. Rizzone, M. Lanotte, B. Bergamasco, M. Recalcati, and A. Pedotti, 'Quantitative analysis of gait in Parkinson's disease: a pilot study on the effects of bilateral sub-thalamic stimulation,' Gait & posture, vol. 16, pp. 135-148, 2002. [84] P. Krystkowiak, J.-L. Blatt, J.-L. Bourriez, A. Duhamel, M. Perina, S. Blond, J.-D. Guieu, A. Destee, and L. Defebvre, 'Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease,' Arch Neurol, vol. 60, pp. 80-84, 2003. [85] S. Lubik, W. Fogel, V. Tronnier, M. Krause, J. König, and W. H. Jost, 'Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation,' J Neural Transm, vol. 113, pp. 163-173, 2006. [86] J. D. O'Sullivan, C. M. Said, L. C. Dillon, M. Hoffman, and A. J. Hughes, 'Gait analysis in patients with Parkinson's disease and motor fluctuations: influence of levodopa and comparison with other measures of motor function,' Movement disorders, vol. 13, pp. 900-906, 1998. [87] M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, 'The pathogenesis of gait hypokinesia in Parkinson's disease,' Brain, vol. 117, pp. 1169-1181, 1994. [88] K. L. Siegel and L. V. Metman, 'Effects of bilateral posteroventral pallidotomy on gait of subjects with Parkinson disease,' Arch Neurol, vol. 57, pp. 198-204, 2000. [89] M. Ferrarin, M. Rizzone, L. Lopiano, M. Recalcati, and A. Pedotti, 'Effects of subthalamic nucleus stimulation and L-dopa in trunk kinematics of patients with Parkinson's disease,' Gait & posture, vol. 19, pp. 164-171, 2004. [90] Y. Breniere, M. C. Do, and S. Bouisset, 'Are dynamic phenomena prior to stepping essential to walking?,' J Mot Behav, vol. 19, pp. 62-76, 1987. [91] P. Crenna, I. Carpinella, M. Rabuffetti, M. Rizzone, L. Lopiano, M. Lanotte, and M. Ferrarin, 'Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson’s disease,' Exp Brain Res, vol. 172, pp. 519-532, 2006. [92] N. Giladi, D. McMahon, S. Przedborski, E. Flaster, S. Guillory, V. Kostic, and S. Fahn, 'Motor blocks in Parkinson's disease,' Neurology, vol. 42, pp. 333-339, 1992. [93] L. M. Ambani and M. H. Van Woert, 'Start hesitation-a side effect of long-term levodopa therapy,' New England Journal of Medicine, vol. 288, pp. 1113-1115, 1973. [94] M. M. Hoehn and M. D. Yahr, 'Parkinsonism: Onset, progression and mortality,' Neurology, vol. 57, pp. S11-S26, 2001. [95] G. C. e. al., 'The Unified Parkinson's Disease Rating Scale (UPDRS): Status and recommendations,' Movement disorders, vol. 18, pp. 738-750, 2003. [96] S. Fahn, R. Elton, and U. D. Committee, 'Unified Parkinson’s disease rating scale,' Recent developments in Parkinson’s disease, vol. 2, pp. 153-163, 1987. [97] P. Martinez-Martin, A. Gil-Nagel, L. Morlan Gracia, J. Balseiro Gomez, J. Martinez-Sarries, and F. Bermejo, 'Unified Parkinson's disease rating scale characteristics and structure,' Movement disorders, vol. 9, pp. 76-83, 1994. [98] C. Ramaker, J. Marinus, A. M. Stiggelbout, and B. J. van Hilten, 'Systematic evaluation of rating scales for impairment and disability in Parkinson's disease,' Movement disorders, vol. 17, pp. 867-876, 2002. [99] M. Richards, K. Marder, L. Cote, and R. Mayeux, 'Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination,' Mov Disord, vol. 9, pp. 89-91, 1994. [100] K. Shaw, A. Lees, and G. Stern, 'The impact of treatment with levodopa on Parkinson's disease,' QJM, vol. 49, p. 283, 1980. [101] A. Rajput, B. Rozdilsky, A. Rajput, and L. Ang, 'Levodopa efficacy and pathological basis of Parkinson syndrome,' Clinical neuropharmacology, vol. 13, pp. 553-558, 1990. [102] M. Stacy and A. G. DO, 'Optimizing long-term therapy for Parkinson disease: levodopa, dopamine agonists, and treatment-associated dyskinesia,' Clinical neuropharmacology, vol. 31, p. 51, 2008. [103] F. J. G. Vingerhoets, J. G. Villemure, P. Temperli, C. Pollo, E. Pralong, and J. Ghika, 'Subthalamic DBS replaces levodopa in Parkinson’s disease,' Neurology, vol. 58, pp. 396-401, 2002. [104] H. B. Menz, M. D. Latt, A. Tiedemann, M. Mun San Kwan, and S. R. Lord, 'Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people,' Gait & posture, vol. 20, pp. 20-25, 2004. [105] R. Baker, 'Gait analysis methods in rehabilitation,' Journal of NeuroEngineering and Rehabilitation, vol. 3, pp. 4-13, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6898 | - |
| dc.description.abstract | 帕金森氏症是一種神經退化疾病,起因於中腦處黑質紋狀體中的多巴胺神經細胞的逐漸退化或死亡。步態的失序為帕金森氏症為主要的臨床表徵之一,會出現於輕度的帕金森患者身上。故而帕金森氏症患者的步態分析成為臨床醫師辨別患者與進行治療的重要依據。現有的步態量測技術如Vicon動作分析系統是一個高精度與信效度的步態量測工具,然而Vicon系統不易架設於一般診所或住家中,使得帕金森氏症步態分析受到極大的限制。為解決此一問題,本論文提出兩個利用電腦輔助的單一影像序列處理方法來協助分析輕度帕金森步態。
第一研究階段是用核心主成份分析法來量化與辨識穩定行走期的輕度帕金森步態。實驗環境需要布置一與患者有強烈對比色差的背景及一6公尺長的步道;實驗設備為一手持式數位單眼攝影機,從受試者側面拍攝步態啟動時與穩定行走狀態時的步行表現。結果顯示核心主成份分析法在辨別健康受試者、輕度帕金森病患在接受左多巴治療前、以及接受左多巴治療後的步態表現時,使用核心主成份分析法可以獲得高達80.51%的敏感度;使用核心主成份分析法也可以輕易取得量化的步態參數。而步態在頻譜上的能量分佈顯示接受左多巴治療前的輕度帕金森患者的步態能量頻譜主頻帶顯著低於健康受試者及接受左多巴治療後的輕度帕金森患者兩個族群的的步態能量頻譜主頻帶。量化的時域步態參數和由輕度帕金森氏症統一評分量表之三擷取出的五種動作指標分數的關連性則顯示,量化的步態參數也可以反映出輕度帕金森患者的上肢動作障礙嚴重程度。 步態啟動表現以及步態對稱性也是用來辨別與治療輕度帕金森患者的重要依據。由於第一研究階段使用的方法仍有極大的空間限制,無法在某些僅能提供有限空間的診所使用。因而在第二研究階段,中心追蹤演算法被用來量化健康受試者、輕度帕金森病患在接受左多巴治療前、以及接受左多巴治療後的步態啟動表現以及步態對稱性。希望藉由量化的步態啟動表現以及步態對稱性,能快速且準確的辨識出輕度帕金森病患,以及追蹤輕度帕金森病患的疾病進程。第二研究階段的實驗需要在受試者的腓骨頭與腳踝側面各黏貼一與背景有強烈對比的彩色標誌;實驗設備仍為一手持式數位單眼攝影機,用以從受試者側面拍攝步態啟動時與穩定行走狀態時的步行表現。結果顯示,中心追蹤演算法可以協助研究人員量化受試者的步態啟動與穩定行走狀態期間的步態表現與對稱性;量化數據則指出輕度帕金森患者在步態啟動與穩定行走期間的步態對稱性均顯著劣於健康受試者。此發現顯示只要使用步態啟動期間的步態對稱性即可辨識出輕度帕金森氏患者;此外,量化的步態表現數據亦可用於協助臨床人員區分輕度帕金森患者的病情以及了解患者接受藥物或復健治療後的改善情形。在實驗設置及演算法經過調整後,基於中心追蹤演算法的步態分析方法也可用於協助臨床醫師量化與辨識如腦部損傷或脊髓損傷等其他神經肌肉病患的步態。 | zh_TW |
| dc.description.abstract | Parkinson’s disease (PD) is a neurodegenerative disease of the central nervous system resulting from the death of dopamine-controlling cells in the substantia nigra within the mid-brain. Gait disorders present as cardinal motor symptoms and may be observed in early stages of the disease; therefore, the assessment of gait performance during walking has become an important reference for identification of people with PD and medical treatments. However, current available techniques for gait analysis, such as the Vicon motion analysis system with validity, reliability, and high precision, are not easily accessible in clinics or even at home for clinicians and researchers. Herein, we present two computer-aided gait analysis methods utilizing the monocular image sequences of walking to track and analyze the parkinsonian gait pattern.
The first method uses kernel-based principal component analysis (KPCA) is developed to assist the recognition and quantification of mild parkinsonian gait during the steady-state walking. It requires a digital camcorder to capture the lateral view of each subject’s walking silhouette and a decorated corridor setup. The KPCA is verified to have higher sensitivity, 80.51% in this study, than the traditional image area and principal component analysis (PCA) approaches for classifying non-PD controls and “Drug-Off/On” mild PD patients. Quantitative gait parameters are obtained and the power spectrums of the patient’ gaits are analyzed. It is found that the Drug-Off mild PD patients show a lower main power spectral frequency than those of the non-PD controls and Drug-On mild PD patients. In addition, the correlations between five subscores based on the unified Parkinson’s disease rating scale (UPDRS) part III motor scores and the extracted kinematic gait parameters are discussed. Results show the feasibility of using gait performance to evaluate the motor function of mild PD patient’s upper extremity. The disordered gait initiation and walking asymmetry are instructors of postural instability and represent the major symptoms in the early stage of this disease except the affected gait performance. To provide the recognition and quantification of mild parkinsonian gait in clinics with too small space to deploy a corridor. The second method using the centroid tracking algorithm (CTA) is developed to quantify each subject’s gait parameters and the associated symmetry indexes during the gait initiation and steady-state walking periods. This method requires only a digital camcorder to capture the lateral view of each subject’s walking and two identifiers respectively secured at two palpable anatomic landmarks, the fibula head and lateral malleolus. The second method therefore becomes easier to install and use in clinics than the first one. Results in this study indicate that the method using the CTA can help clinicians and researchers quantify the gait performance and associated symmetry indexes among age-matched non-PD controls and mild PD patients in different states. Quantitative analysis reveal that the age-matched non-PD controls presented superior gait performance and associated symmetry indexes to the mild PD patients in the different states. The findings in this study suggest that the recognition of mild PD patients can be easily attained using only the gait symmetry indexes during the gait initiation period, indicating the cost and effort for diagnosis of PD patients in the early stages can be reduced largely. Besides, the quantification of gait performance may assist the clinicians to rate the severity of and monitor the progression of PD, and evaluate the therapeutic effect brought about by drug management or rehabilitation programs. In addition to performing gait analysis for patients with mild PD, we believe that the proposed portable system has the potential to help clinicians and researchers assess the gait performance of patients with other neuromuscular issues, such as traumatic brain injury and spinal cord injury. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:20:39Z (GMT). No. of bitstreams: 1 ntu-101-D94921026-1.pdf: 3760486 bytes, checksum: f50496459b7439a05ab43f3dc93e0240 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 2
1.1 Parkinson’s disease 2 1.1.1 Pathophysiology 2 1.1.2 Clinical signs of Parkinson’s disease 3 1.1.3 Gait disorders as cardinal motor symptoms in early stages 5 1.2 Gait analysis 5 1.2.1 Computer-aided video gait analysis 6 1.2.2 Requirements of available computer-aided video gait analysis 6 1.3 Purpose of this study 8 1.4 The hypotheses of the proposed study 8 1.5 Overview of the dissertation 9 Chapter 2 Parkinsonian gait analysis using monocular image sequences 12 2.1 The silhouette-based parkinsonian gait analysis method 12 2.2 The kernel principal component analysis 12 2.3 The quantitative analysis of parkinsonian gait initiation and symmetry 17 2.4 The centroid tracking algorithm (CTA) 18 Chapter 3 Quantification and recognition of parkinsonian gait using kernel principal component analysis 24 3.1 Background and motivation 24 3.2 Methods 25 3.2.1 The participants 25 3.2.2 Environmental setup and videotaping standard 25 3.2.3 Background Construction 30 3.2.4 Binary silhouette collection 30 3.2.5 KPCA-based feature extraction and heel strike determination 31 3.2.6 Minimum Distance Classifier (MDC) for classification 34 3.2.7 Spectral analyses for temporal gait feature signals 35 3.2.8 Correlations between the extracted gait parameters and the five sub-scores in the part III of UPDRS 36 3.3 Results 37 3.3.1 Five UPDRS part III subscores of the patients with mild PD in the “Drug Off” and “Drug On” states 37 3.3.2 Comparison of the sensitivities of the approaches 39 3.3.3 Kinematic gait parameters among different groups 39 3.3.4 Power spectrum of temporal gait signals 41 3.3.5 Correlations between the gait parameters and five UPDRS part III subscores 43 3.4 Discussions 43 3.4.1 The sensitivity of the KPCA-based gait recognition method 43 3.4.2 Gait parameter analysis 44 3.4.3 Correlations between the five UPDRS III subscores and the extracted gait parameters 45 3.5 Conclusion 46 Chapter 4 Quantitative analysis of parkinsoian gait initiation and symmetry using centroid tracking algorithm 48 4.1 Background and motivations 48 4.2 Methods 49 4.2.1 The participants 49 4.2.2 Environmental setup and video recording standard 51 4.2.3 The centroid tracking algorithm to determine the heel strike and toe off events 54 4.2.4 Gait symmetry index 57 4.2.5 Data statistics 57 4.3 Results 58 4.3.1 Comparisons of gait parameters and symmetry indexes during the steady-state walking between non-PD subjects and patients with mild PD 58 4.3.2 Comparisons of gait parameters and symmetry indexes during the gait initiation period between non-PD subjects and patients with mild PD 60 4.4 Discussions 62 4.4.1 Differences during the steady-state walking period among patients with mild PD in the different states and non-PD subjects 62 4.4.2 Differences during the gait initiation period among the patients with mild PD in the different states and non-PD subjects 63 4.5 Conclusion 66 Chapter 5 Conclusions & future studies 68 5.1 Conclusions 68 5.2 Recommendations for future studies 71 Abbreviations: 74 References: 76 Appendix A: Assessment of treatment of parkisonism 84 A.1 Assessment of Parkinson’s disease 84 A.1.1 Hoehn and Yahr scale 84 A.1.2 Unified Parkinson’s Disease Rating Scale (UPDRS) 85 A.2 Treatment of Parkinson’s disease 86 A.2.1 Levodopa 86 A.2.2 Deep brain stimulation (DBS) 86 Appendix B: Comparing the KPCA-based feature approach with the GAITRite® method for validation 88 Appendix C Comparing the CTA-based gait tracking and analysis system with the Vicon system for validation 94 | |
| dc.language.iso | en | |
| dc.title | 電腦視覺輔助之帕金森步態辨識與量化-使用單一影像序列 | zh_TW |
| dc.title | Computer Vision-Aided Quantification and Recognition of Parkinsonian Gait - Using Monocular Image Sequences | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 賴金鑫(Jin-Shin Lai),陳適卿(Shih-Ching Chen) | |
| dc.contributor.oralexamcommittee | 陳右穎(You-Yin Chen),趙福衫(Fu-Shan Jaw),陳友倫(Yu-Luen Chen),陸哲駒(Jer-Junn Luh) | |
| dc.subject.keyword | 電腦輔助,單一序列影像,帕金森氏症,步態分析,核心主成份分析法,統一帕金森氏症評分量表之三,中心追蹤演算法,步態啟動,步態對稱性, | zh_TW |
| dc.subject.keyword | computer-aided,monocular image sequence,Parkinson’s disease,gait analysis,kernel-based principal component analysis,unified Parkinson’s disease rating scale part III,centroid tracking algorithm,gait initiation,gait symmetry, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-03-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 3.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
