
 

I 
 

國立臺灣大學電機資訊學院電機工程學系 

博士論文 

Department of Electrical Engineering 

College of Electrical Engineering and Computer Science 

National Taiwan University 

Doctoral Dissertation 

電腦輔助之帕金森步態辨識與量化-使用單一影像序列

Computer Vision-Aided Quantification and Recognition of 

Parkinsonian Gait - Using Monocular Image Sequences 

陳士維 

Shih-Wei Chen 

指導教授： 陳適卿 教授 

賴金鑫 教授 

郭德盛 教授 

    Advisors:  Shih-Ching Chen, Prof. 

   Jin-Shin Lai, Prof. 

    Te-Son Kuo, Prof. 

中華民國 101 年 3 月 

March 2012 

  



 

i 
 

口試委員會審定書

 



 

ii 
 



 

iii 
 

誌謝 

 本論文得以完成，首先得感謝郭德盛教授在我博士生涯中的啟迪與大大小小的幫

助。而陳適卿教授與賴金鑫教授在學術研究方面對我的耐心指導以及提點，實惠我良

多。恩師們的提攜之情，實難在寥寥數筆間盡述完畢，在此謹獻上最誠懇的敬意與謝

意。陳右穎教授在研究過程中提供的絕大助力，讓我無時感念在心。此外，感謝趙福

衫教授、陳友倫教授以及陸哲駒教授給予的指正與建議，本論文才得以完整面貌面世。 

 特別要感謝陳俊凡博士，在我博士生涯中屢屢為我指點迷津，增長我的學識，提

供及協助我取得許多寶貴的資源。林穎聰學友、侯政宏學弟、郭易軒學弟等人亦功不

可沒。由於有上述諸位的鼎力相助，我方能取得學位。 

 感謝國智與致良這兩位我最好的朋友，你們的適時鼓勵與支持，是讓我度過重重

難關的最大助力之一。 

 最後，謹將此論文獻給我敬愛的父母親，我親愛的女友以及我友愛的兩位妹妹。

因為擁有你們對我的愛與陪伴，我才能夠走過這段辛苦的歷程。 

  



 

iv 
 

 

 

  



 

v 
 

中文摘要 

 帕金森氏症是一種神經退化疾病，起因於中腦處黑質紋狀體中的多巴胺神經細胞

的逐漸退化或死亡。步態的失序為帕金森氏症為主要的臨床表徵之一，會出現於輕度

的帕金森患者身上。故而帕金森氏症患者的步態分析成為臨床醫師辨別患者與進行治

療的重要依據。現有的步態量測技術如 Vicon 動作分析系統是一個高精度與信效度的

步態量測工具，然而 Vicon 系統不易架設於一般診所或住家中，使得帕金森氏症步態

分析受到極大的限制。為解決此一問題，本論文提出兩個利用電腦輔助的單一影像序

列處理方法來協助分析輕度帕金森步態。 

 第一研究階段是用核心主成份分析法來量化與辨識穩定行走期的輕度帕金森步態。

實驗環境需要布置一與患者有強烈對比色差的背景及一 6 公尺長的步道；實驗設備為

一手持式數位單眼攝影機，從受試者側面拍攝步態啟動時與穩定行走狀態時的步行表

現。結果顯示核心主成份分析法在辨別健康受試者、輕度帕金森病患在接受左多巴治

療前、以及接受左多巴治療後的步態表現時，使用核心主成份分析法可以獲得高達

80.51%的敏感度；使用核心主成份分析法也可以輕易取得量化的步態參數。而步態在

頻譜上的能量分佈顯示接受左多巴治療前的輕度帕金森患者的步態能量頻譜主頻帶顯

著低於健康受試者及接受左多巴治療後的輕度帕金森患者兩個族群的的步態能量頻譜

主頻帶。量化的時域步態參數和由輕度帕金森氏症統一評分量表之三擷取出的五種動

作指標分數的關連性則顯示，量化的步態參數也可以反映出輕度帕金森患者的上肢動

作障礙嚴重程度。 

 步態啟動表現以及步態對稱性也是用來辨別與治療輕度帕金森患者的重要依據。

由於第一研究階段使用的方法仍有極大的空間限制，無法在某些僅能提供有限空間的

診所使用。因而在第二研究階段，中心追蹤演算法被用來量化健康受試者、輕度帕金

森病患在接受左多巴治療前、以及接受左多巴治療後的步態啟動表現以及步態對稱性。

希望藉由量化的步態啟動表現以及步態對稱性，能快速且準確的辨識出輕度帕金森病
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患，以及追蹤輕度帕金森病患的疾病進程。第二研究階段的實驗需要在受試者的腓骨

頭與腳踝側面各黏貼一與背景有強烈對比的彩色標誌；實驗設備仍為一手持式數位單

眼攝影機，用以從受試者側面拍攝步態啟動時與穩定行走狀態時的步行表現。結果顯

示，中心追蹤演算法可以協助研究人員量化受試者的步態啟動與穩定行走狀態期間的

步態表現與對稱性；量化數據則指出輕度帕金森患者在步態啟動與穩定行走期間的步

態對稱性均顯著劣於健康受試者。此發現顯示只要使用步態啟動期間的步態對稱性即

可辨識出輕度帕金森氏患者；此外，量化的步態表現數據亦可用於協助臨床人員區分

輕度帕金森患者的病情以及了解患者接受藥物或復健治療後的改善情形。在實驗設置

及演算法經過調整後，基於中心追蹤演算法的步態分析方法也可用於協助臨床醫師量

化與辨識如腦部損傷或脊髓損傷等其他神經肌肉病患的步態。 

 

關鍵字：電腦輔助、單一序列影像、帕金森氏症、步態分析、核心主成份分析法、統

一帕金森氏症評分量表之三、中心追蹤演算法、步態啟動、步態對稱性。 
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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disease of the central nervous system 

resulting from the death of dopamine-controlling cells in the substantia nigra within the 

mid-brain. Gait disorders present as cardinal motor symptoms and may be observed in early 

stages of the disease; therefore, the assessment of gait performance during walking has 

become an important reference for identification of people with PD and medical treatments. 

However, current available techniques for gait analysis, such as the Vicon motion analysis 

system with validity, reliability, and high precision, are not easily accessible in clinics or 

even at home for clinicians and researchers. Herein, we present two computer-aided gait 

analysis methods utilizing the monocular image sequences of walking to track and analyze 

the parkinsonian gait pattern.  

The first method uses kernel-based principal component analysis (KPCA) is developed 

to assist the recognition and quantification of mild parkinsonian gait during the steady-state 

walking. It requires a digital camcorder to capture the lateral view of each subject’s walking 

silhouette and a decorated corridor setup. The KPCA is verified to have higher sensitivity, 

80.51% in this study, than the traditional image area and principal component analysis 

(PCA) approaches for classifying non-PD subjects and patients with mild PD in the 

“Drug-Off/On” states. Quantitative gait parameters are obtained and the power spectrums of 

the patient’ gaits are analyzed. It is found that the patients with mild PD in the Drug-Off 

state show a lower main power spectral frequency than those of the non-PD subjects and 

patients with mild PD in the Drug-On state. In addition, the correlations between five 

subscores based on the unified Parkinson’s disease rating scale (UPDRS) part III motor 

scores and the extracted kinematic gait parameters are discussed. Results show the 

feasibility of using gait performance to evaluate the motor function of upper extremity of 
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patients with mild PD.  

The disordered gait initiation and walking asymmetry are instructors of postural 

instability and represent the major symptoms in the early stage of this disease except the 

affected gait performance. To provide the recognition and quantification of mild 

parkinsonian gait in clinics with too small space to deploy a corridor. The second method 

using the centroid tracking algorithm (CTA) is developed to quantify each subject’s gait 

parameters and the associated symmetry indexes during the gait initiation and steady-state 

walking periods. This method requires only a digital camcorder to capture the lateral view 

of each subject’s walking and two identifiers respectively secured at two palpable anatomic 

landmarks, the fibula head and lateral malleolus. The second method therefore becomes 

easier to install and use in clinics than the first one. 

Results in this study indicate that the method using the CTA can help clinicians and 

researchers quantify the gait performance and associated symmetry indexes among 

age-matched non-PD subjects and patients with mild PD in different states. Quantitative 

analysis reveals that the age-matched non-PD subjects presented superior gait performance 

and associated symmetry indexes to the patients with mild PD in the different states. The 

findings in this study suggest that the recognition of patients with mild PD can be easily 

attained using only the gait symmetry indexes during the gait initiation period, indicating 

the cost and effort for diagnosis of PD in the early stages can be reduced largely. Besides, 

the quantification of gait performance may assist the clinicians to rate the severity of and 

monitor the progression of PD, and evaluate the therapeutic effect brought about by drug 

management or rehabilitation programs. In addition to performing gait analysis for patients 

with mild PD, we believe that the proposed portable system has the potential to help 

clinicians and researchers assess the gait performance of patients with other neuromuscular 
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issues, such as traumatic brain injury and spinal cord injury. 

 

Keywords: computer-aided, monocular image sequence, Parkinson’s disease, gait analysis, 

kernel-based principal component analysis, unified Parkinson’s disease rating scale part III, 

centroid tracking algorithm, gait initiation, gait symmetry. 
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Chapter 1 Introduction 

1.1 Parkinson’s disease 

1.1.1 Pathophysiology 

Parkinson’s disease (PD) was first and foremost described as a disease that would bear his/her 

name. A British apothecary named James Parkinson published a scientific article: An Essay on the 

Shaking Palsy [1], to unveil the motor symptoms and different stages of the morbid progress in 

1817. However, the term “shaking palsy” has been vaguely employed by medical writers in general. 

The term “Parkinson’s disease” was coined in 1870s by a French neurologist, Jean-Martin Charcot, 

who brought Parkinson’s disease to international attention. At present, PD is the second most 

common neurodegenerative disorder after Alzheimer’s disease and is expected to impose an 

increasing social and economic burden on societies as people age [2]. Due to a selective and 

progressive loss of dopaminergic cells, the substantia nigra pars compacta within the ventral 

tegmental area (VTA) of the midbrain supplies the corpus striatum (located in the basal ganglia, 

responsible for balance, control of movements, and walking), , and frontal cortex (responsible for 

thought, memory or behavior) with depleted dopamine, a catecholamine neurotransmitter plays an 

important role in the regulation of reward and movement. As results, the acetylcholine output 

elevates and therefore the equilibrium between dopamine and acetylcholine disrupts to lead motor 

disorder, especially fine tuning, and a breakdown in cognitive control [3]. 
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Figure 1.1 Dopamine is manufactured in nerve cell bodies located within the ventral tegmental area 

(VTA) and is released in the striatum and the frontal cortex (modified from [4]). People with PD may 

suffer from the loss of dopamine.  

 

1.1.2 Clinical signs of Parkinson’s disease 

The diagnosis of PD is based on the presence of the classic clinical signs: resting tremor, 

rigidity, postural instability, and bradykinesia etc. [5, 6].  
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Figure 1.2 Clinical signs of Parkinson’s disease include tremor, stooped posture, masklike face, 

rigidity, impaired balance and coordination, and short shuffling steps. (from [7]) 

Resting tremor is an involuntary oscillation of a body part occurring at rest, with a rate of 4 to 

7 oscillations per second [8, 9]. Rigidity is a major clinical sign of PD and patients with PD often 

complain of “heaviness” and “stiffness” of their limbs [8]. Impaired balance reaction is also 

observed in PD patients. With the loss of balance and postural stability, PD patients typically 

experience difficulty in maintaining upright balance, walking, or turning around [10]. PD patients 

therefore fall easily [11, 12] and are threatened by fracture and consequent lengthy hospitalization 
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[13]. Bradykinesia means “slowness” of movement, PD patients frequently have difficulty in 

initiating movement [8]. Both the voluntary and automatic movements are reduced in speed, range, 

and amplitude, indicating termed “freezing” of movement [8].  

Because overall coordination is impaired, PD patients with bradykinesia cannot perform fine 

tuning in motor tasks such as writing or grasping small objects. Poverty of movement commonly 

affects PD patients and involves an overall decrease in the total number of movements. PD patients 

are often unable to perform two different movement tasks at the same time or to combine motor 

programs into complex sequences.  

1.1.3 Gait disorders as cardinal motor symptoms in early stages  

Although the clinical presentation and progression can be greatly variable, gait disturbance 

presents a cardinal motor symptom and may be observed in early stages of the disease. With a 

generalized lack of extension at hip, knee, and ankle joints, PD patients walk with a slow and 

shuffling gait [14-16], and reduced reciprocal arm swing [17]. A festination (propulsion) gait may 

occur due to a forward flexed or stooped posture when walking [18]. 

1.2 Gait analysis 

Gait analysis is the systematic study of human locomotion. Acquisitioned and augmented by 

instrumentation and sensors, kinetic and kinematic parameters, including joint angular velocity, 

acceleration, inertia force, ground reaction force, speed, gait cycle duration, and even muscle 

activity during locomotion, are quantified and analyzed to obtain productive information that helps 
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us understand the nature of gait. Clinically, gait analysis helps the medical staff (e.g. clinicians and 

physic therapists) to assess, plan, and treat patients with neural or physical injuries that affect their 

ability to keep balance and posture during walking. 

1.2.1 Computer-aided video gait analysis 

With the availability of video camera systems in the 1970s, the widespread application of gait 

analysis surged as a vigorous course [19-22].  Development of microelectronics speeds up the 

innovations of the modern computers. With the assistance of modern powerful computers, 

video-based motion analysis has become a popular solution for gait analysis [19-24] in the past 

decades. Researchers were able to observe and demonstrate the gait of patients with PD and other 

pathological conditions such as cerebral palsy, stroke, and neuromuscular disorders within realistic 

cost time constrains, definitely. Instead of traditional evaluations conducted by human inspectors, 

researchers currently use computer-aided video gait analysis for precise data collection, reliable 

quantitative measurements, and systematic data management. As natural body movements can be 

transformed into essential spatial-temporal parameters with video-image analysis, abnormalities in 

gait and posture can be captured and identified with precision [25-27]. 

1.2.2 Requirements of available computer-aided video gait analysis 

Commercial motion analysis systems, including the Vicon Motion Systems and BTS (Vicon 

Inc., Oxford, UK), which are performed using a setup consists of floor-mounted load transducers, 
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high-powered strobes, LED, and sensors placed onto particular body regions, facilitate clinical 

treatment regimes and follow-up monitoring. A typical modern gait lab is presented as Figure 1.2. 

 
Figure 1.3 A gait laboratory with lighting condition, passive infrared cameras, and embedded force 

platforms 

There are several cameras placed around a walkway or treadmill, which are connected to a 

console computer. Subjects participating in gait trials are asked to have single markers applied to 

palpable bony landmarks, such as the iliac spines of the pelvis, the malleoli of the ankle, and 

condyles of knee. The subjects then will be instructed to walks down the walkway or the treadmill 

and the console computer will record data from cameras to calculate the moving trajectories of 

single markers in three dimensions. A full breakdown of the motions at each joint is given through a 

model that is applied to compute the underlying motion of the bones. 
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1.3 Purpose of this study 

The recognition and evaluation of the progression of PD in the early stages are important 

issues in treatment and care for PD patients. The available commercial motion analysis methods 

provide accurate kinematic measurements of the parkinsonian gait [6] and other neuromuscular 

disorders [28-31]. However, an experimental setup consisting of a wide stage, force plates, multiple 

infrared cameras, reflective balls, light-emitting diodes (LED), or inertial sensors placed onto 

regions of the subject’s body are demanded [32]. Furthermore, dedicated manpower is required to 

calibrate the camera system, apply the reflective balls, and utilize the software. These properties of 

conventional gait analysis limit its application in many clinical settings, such as clinics with space 

or budgetary limitations. Thus a method for performing gait analysis that can be applied in clinics 

within a limited space to identify PD patients and determine the therapeutic effect of drug 

management on PD is required. To provide a solution that can be easily installed and used in a 

clinic or at home to monitor and quantify the spatial-temporal gait parameters, we propose a 

portable system to track and analyze parkinsonian gait in this study. 

1.4 The hypotheses of the proposed study 

 Herein, we introduce two hypotheses of the proposed study and thereby set the stages for the 

following research. The details of the two hypotheses will be reiterated in chapter 3 and 4, 

respectively. 
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 Hypothesis 1: The walking silhouette contributes to the identification of different gaits. 

Therefore the mild parkinsonian gait in the different states can be identified from the monocular 

image sequences using a feature-based method. 

 Hypthesis 2: The gait initiation and symmetry are deteriorated in the early stages of 

Parkinson’s disease. Thus, it is possible to identify the parkinsonian gait from the monocular image 

sequences using a method that analyzes the gait performance and symmetry during the gait 

initiation period. 

1.5 Overview of the dissertation 

The primary goal of this research is to provide a portable system to quantify the parkinsonian 

gait. Using the solution, researchers and clinicians with space or budgetary limitations are able to 

recognize the mild PD gait and quantify the improvement from medical treatment and care. This 

dissertation comprises chapters as follows: 

Chapter 1 provides a brief overview of Parkinson’s disease and the computer-aided video 

motion analysis method, and the demonstration of the incentive to begin the research. 

Chapter 2 provides descriptions of two methods developed to enhance the portable system 

utilizing the monocular image sequences of walking to acquire quantitative analysis of mild 

parkinsonian gait performance during the gait initiation and steady-state walking periods and 

associated symmetry indexes.  

Chapter 3 describes a video-based method with simple clinical setting uses the KPCA to 
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quantify and recognize mild parkinsonian gait during the steady-state walking period at clinics with 

space and budgetary limitations. We hereby prove the hypothesis 1. 

Chapter 4 presents the second gait analysis method, the centroid tracking algorithm (CTA), to 

provide an approach with demand for less space and budget. The CTA shows that the mild 

parkinsonian gait has more significant difference in the performance and walking symmetry during 

the gait initiation period than those during the steady-state walking period when comparing to the 

healthy subjects. We hereby prove the hypothesis 2. 

Chapter 5 provides a summary of the key findings, conclusions that were drawn, and follow-up 

recommendation for future studies. 
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Chapter 2 Parkinsonian gait analysis using monocular image 

sequences 

2.1 The silhouette-based parkinsonian gait analysis method 

To establish a portable system that can be easily installed and used in a clinic to do 

parkinsonian gait analysis, the quite simple clinical setting and the easy-to-use portable equipment 

are required. The silhouette method provides an economical solution for gait identification in 

clinical settings [33]. Requiring only a monocular digital camera to capture the silhouettes of the 

subjects walking, the method largely reduces the computational cost and storage size; the image 

processing procedures are also simplified [34]. As a lower-cost method that requires less space and 

less dedicated manpower than the Vicon motion analysis method based on model reconstruction, 

the existing approaches that utilize walking silhouettes perform well in recognizing different gaits 

[35-38]. However, the quantitative measurements of the gait parameters are not provided. To 

quantify the abnormalities in mild parkinsonian gait, the kernel-based principal component analysis 

(KPCA) [39] is developed in the 1st part of this research to enhance the simple and efficient 

silhouette method. 

2.2 The kernel principal component analysis 

The KPCA is an extension of known Principal Component Analysis (PCA) [37, 40] that is a 

powerful technique and widely utilized in image processing [41-45] and data classification [46-49]. 
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The PCA is an eigenvalue decomposition procedure that uses an orthogonal linear transformation to 

transform a set of possibly correlated input variables into a new coordinate system and acquire a set 

of uncorrelated variables called principal components. A simple and concise description of the PCA 

is as the following. 

The PCA procedure begins at acquiring the covariance matrix of a multi-dimensional dataset. 

For example, for a N dimensional dataset 1 2[ , ,..., ]nx x x=X , we can derive !/ (2( 2)!)n n −  different 

covariance values. The next step is to derive the eigenvalues of the covariance matrix and sorted 

them as 1λ … nλ , the highest to lowest, and the corresponding orthogonal eigenvectors 1... ne e once 

the covariance matrix is derived, wherein ' 1i ie e× =  and ' 0i je e× = . The N dimensional dataset X 

then can be decomposed into n orthogonal (uncorrelated) vectors as the following, 

 

'
1 1 2 2 ... 1,2,...,i i i i in ny e = e x e x e x i n= + + + =X       (2.1)   

wherein 1y … ny are principal components of the N dimensional dataset X, and therefore form a 

new coordinate system. To be noted, the number of principal components must be less than or equal 

to the number of original variables. The eigenvector corresponding to the greatest eigenvalue (also 

indicating the greatest covariance) by the orthogonal linear transformation of the N dimensional 

dataset comes to lie on the 1st coordinate (called the 1st principal component), the eigenvector with 

the 2nd greatest eigenvalue (also indicating the 2nd greatest covariance) on the 2nd coordinate, and so 

on. After all of the principal components are determined, we can keep the components 

corresponding to more significant eignevalues and leave out the ones corresponding to smaller 

eigenvalues, indicating that we can describe the original data with reduced dimensions. A 
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multi-dimensional dataset with the 1st and the 2nd principal components 1y  and 2y  are presented 

as 錯誤! 找不到參照來源。. 

 

Figure 2.1 The 1st and the 2nd principal components 1y  and 2y of a multi-dimensional dataset 

However, many data types implicitly contain non-linear structures and principal variable 

components, which are nonlinear and related to the input variables. KPCA is an extension of PCA 

that uses kernel methods [50] to extract the nonlinear components. In recent years, KPCA has been 

suggested for various image-processing tasks, such as image noise reduction and compression, as 

PCA is used to decompose linear combinations of data sets and does not reflect the generation 

process of natural images [51]. The following is a brief introduction to KPCA. 
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Figure 2.2 (a) a non-linear structure of dataset (b) a linear structure of dataset 

 Consider space X with a set of N vectors, Nxxx  , , , 21  , which encompasses a set of an 

N-dimensional vector (for example, N = 64 × 64 = 4096 from a trimmed binary silhouette captured 

in chapter 3). To analyze the nonlinear components of X, the covariance matrix C that contains the 

nonlinear principal components can be acquired by mapping X to a feature space, H. The mapping 

equation (2.2) is shown below. 

 

T
j

N

j j xx
N

C )(~)(~1
1 =

= ϕϕ                              (2.2)          

  
( ) ( )i ix x mφφ φ= −

                            
      (2.3) 

  
( )

1

1 N

i
i

m x
N

φ φ
=

=                                      (2.4) 

where ( )ixφ  is a nonlinear polynomial function that maps the vectors to H, xj is the j-th vector, N 

is the total number of vectors, T contains the centralized mapped data of the transposed matrix, mφ

 
is the mean, and ( )ixφ is the centralized mapped data with mφ . To acquire the eigenvector, v, and 

eigenvalue, λ, of the covariance matrix, C, the following equation must be solved:  

  Cvv =λ                                          (2.5) 



 

15 
 

 Because ( )ixϕ~  is a vector with approximately infinite dimensionality, it is difficult to solve the 

covariance matrix, C. Therefore, a new NN ×  centralized kernel matrix, K
~

, is defined to acquire 

the eigenvector and eigenvalue of C. 

 
( ) ( ) KllKlKlKxxK NNNji +−−=⋅= ϕϕ ~~~                        (2.6)

  

  
( ) ( ) ( ),ij i j i jK x x k x xφ φ= ⋅ =

  
      (2.7)

 

 
( ) ( ), , 1

d

i j i jk x x x x d= ⋅ >
      

                (2.8) 

 
( )

N
l ijN

1=                                    (2.9) 

where i and j are the indices of the row and column, respectively, of vector x, ( )ji xxk ,  is a 

polynomial kernel function for acquiring the dot product of the vectors from the original space and 

d > 1 because the result of KPCA is identical to that obtained from PCA, where d = 1. The 

relationship between the eigenvector, v~, of the kernel matrix, K
~

, and the eigenvector, v , of the 

covariance matrix, C, can be expressed as 

 

 m, ,2 ,1 ,~
~
1 == kvQv k

k

k
λ        

            (2.10) 

 ( ) ( ) ( )[ ]NxxxQ ϕϕϕ ~  ~ ~
21 =                      (2.11) 

where kλ~  is a nonzero set of eigenvalues of v~, m is the number of non-zero eigenvalues and Q  

is a centralized mapped data set. After projecting Q to the feature space constructed by 

mvvv  , , , 21  , the kth KPCA feature vector, ky , can be represented as 

 

KvQQvQvy T
k

k

TT
k

k

T
kk

~~
~
1~

~
1

λλ
===

         

        (2.12) 

where T refers to the transposed matrix.  
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  To summarize, the KPCA computation can be separated into three steps. The first step is to 

determine parameter d in (2.8) for the polynomial kernel function and derive kernel matrix K
~

 

according to equation (2.6). The second step is to derive the kth major eigenvector, kv , of the 

NN ×  centralized kernel matrix, K
~

, and acquire the kth coordinate vector, kv , using equation 

(2.10). The third step is to project the centralized mapped data set, Q, to the feature space using 

equation (2.12) and to acquire the kth KPCA feature vector, ky . 

2.3 The quantitative analysis of parkinsonian gait initiation and 

symmetry 

Amongst the clinical signs of parkinsonian gait pattern, the disordered gait initiation [6, 52, 53] 

and gait asymmetry [54, 55] represent the major symptoms in the early stages of this disease and 

are commonly used to identify the gait of and evaluate the gait performance of patients with mild 

PD besides the affected gait parameters during the steady-state walking. 

Gait initiation is defined as a task that challenges the balance control system by requiring a 

transition from motionless and stable standing to continuous unstable steady-state locomotion, also 

indicating from double- to single-leg stances [6]. Due to bradykinesia, PD patients require longer 

motor preparation time than healthy individuals and perform a hesitation and freezing when 

initiating gait. Their feet appear to be stuck on the floor, indicating that the ability to generate a 

normal gait pattern is impaired [56]. 

Gait symmetry is defined as a task to coordinate actions between the right and left lower limbs 

and behave the actions identically to produce rhythmical motion during walking [57]. Due to the 
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predominantly unilateral occurrence of tremor, rigidity, and bradykinesia, PD patients present the 

dysfunction at coordinating their lower limbs and motor deficiency [58]. As results, PD patients 

walk slowly and their steps are small. Their stride and step lengths [59, 60], velocity profiles [61, 

62], and ranges of joint motion [63] reduce because different behaviors between the two lower 

limbs. 

Although the KPCA that is proposed to enhance the silhouette-based method may provide 

quantitative analysis of mild parkinsonian gait during walking, the left and right sides of 

participants cannot be identified in binarized monocular image sequences. Therefore the 

information concerning the gait symmetry is not provided in the 1st part of this study. To acquire the 

quantification of gait symmetry during walking by a digital camera, in the 2nd part of this study, a 

method using the centroid tracking algorithm (CTA) is developed to track joint identifiers secured 

on palpable landmarks of left and right lower limbs during walking, by which a number of 

quantitative gait parameters and associated symmetry indexes during the gait initiation and 

steady-state walking periods are assessed for providing a complete evaluation of the mild PD gait 

performance. 

2.4 The centroid tracking algorithm (CTA) 

The centroid tracking algorithm (CTA) is a method used to track a moving object [64]. 

Basically, the CTA captures the centroid of a moving object of interest within an image frame 

sequence, and then records the centroid moving trajectory of the object of interest. The CTA is 
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independent of the size of targets and less sensitive to the intensity of the targets because the 

motion recognition characteristics of a target of interest are its location, velocity, and acceleration, 

which are obtained using data from successive image frames. If the target size is known, the CTA 

may set limits for removing the clusters that differ sufficiently from the size of the target cluster in 

a same image frame to reduce the computational complexity [65]. 

The flow chart of the CTA is illustrated in Figure 2.3 and the procedure details are the 

following. 
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Figure 2.3. The flow chart of the centroid tracking algorithm. 
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Step 1. Initializing variables 

Two important variables, the tolerating pixel value T and the bounding window size BW are 

initialized. T and BW are used to reduce the searching range and tolerate light influences on the 

tags depending on the size of two markers put on the fibula head and lateral malleolus. In this study, 

T and BW are set as constants 10 and 5 in all sequences, respectively. 

Step 2. Determining the object of interest 

The object is selected from the jth frame. The centroid location jC  is calculated from a set

( ) 1...{ }j i i nx = , where ( )j ix  represents the location of the chosen object, n is the number of pixels in the 

chosen object, and ( )jp C  is the pixel value of jC .  

Step 3. Constructing the bounding window 

A rectangular window ( )jW C  with a center jC  
is constructed as the searching region for 

the jth frame. The centroid jC  is defined as: 

 ( ) ( ) 1...{ ( ), ( )} { ( ( )), ( ( ))}j j j i j i i nC x C y median x x median x y ==  (2.13) 

The bounding window ( )jW C of frame j is defined as:  

 

{[ ( ) ],[ ( ) ]} {[ ( ) ],[ ( ) ]}
( )

{[ ( ) ],[ ( ) ]} {[ { } ],[ ( ) ]}
j j j j

j
j j j j

C x C y C x C y
W C

C x C y C x C y

− − − + 
∈ + − + + 

BW BW BW BW

BW BW BW BW
 (2.14) 

An orange cross presents the centroid jC and an orange rectangle presents the bounding window 

( )jW C  are shown in Figure 2.4(a). 
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Figure 2.4. The centroid tracking algorithm used to determine the centroid (color crosses) and the 

bounding window (color rectangle) in each frame. 

Step 4. Searching for the centroid location. 

As illustrated in Figure 2.4(b), all pixel values within the orange rectangle in (j+1)th frame 

subtract the ( )jp C  that is the pixel value of the jC , the centroid of the object of interest appears 

in the jth frame. If the subtraction is smaller than the tolerating pixel value T, these locations ( 1)j ix +  

are considered as candidates for the centroid location ( 1)( )j iC x +  in the (j+1)th frame, as 

represented by the following equation:  

 

( 1) ( 1) ( 1)

( 1) ( 1)

( ), if ( ) ( )

( ), otherwise

j i j i j i j

j i j i

x C x p x p C

x C x

+ + +

+ +

∈ − ≤

∉

T
 (2.15) 

Step 5. Calculating the new centroid. 

After the locations ( 1)j ix +  in ( 1)( )j iC x + are acquired, a new centroid location 1jC +  is 

calculated by averaging ( 1)j ix + . Subsequently, the new bounding window 1( )jW C +  with the new 

centroid location 1jC +  is determined. The centroid 1jC +  and the bounding window 1( )jW C + of 

the (j+1)th frame are presented as the cyan cross and cyan rectangle in Figure 2.4(b). Finally, steps 

3 to 5 were repeated to determine the centroids of the moving within all image frames and then 

determine a moving trajectory of the object of interest in an image frame sequence. The centroid 

2jC +  and the bounding window 2( )jW C + of (j+2)th frame are presented as the violet cross and 
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violet rectangle in Figure 2.4(c). 

The CTA adopts the concept of the kernel function to create a bounding window as a search 

region; the locations in which the searched pixel value is more similar to the pixel value of the 

region of interest are identified. A new centroid location is then computed to represent the current 

object. By adjusting the size of the bounding window according to different states, sudden changes 

in the direction of the object can be tolerated, resulting in a simple and accurate tracking method. 
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Chapter 3 Quantification and recognition of parkinsonian gait 

using kernel principal component analysis 

3.1 Background and motivation  

Hypothesis 1: The walking silhouette contributes to the identification of different gaits. Therefore the 

mild parkinsonian gait in the different states can be identified from the monocular image sequences 

using a feature-based method. 

 As gait disorders are symptoms of the early stages of PD, gait performance has become a 

specific and major hallmark in the recognition of patients with mild PD and the evaluation of the 

progression of the disease [28, 52, 66]. The Unified Parkinson’s Disease Rating Scale (UPDRS, 

please refer to Appendix A for a more detailed description) [67] is widely used to assess and track 

the longitudinal course of PD. It is also used to evaluate the level of motor impairment and 

response to medical treatment, such as levodopa (L-dopa, please refer to Appendix A for a more 

detailed description), for PD patients. However, such evaluations rely on the experience and/or the 

expertise of the clinician. Observations based on the UPDRS part III, for evaluation of motor 

impairment, tend to be subjective. In light of the issues mentioned, a quantitative measurement for 

parkinsonian gait is much needed. 

In order to provide a simple and efficient solution for the quantification and recognition of 

parkinsonian gait, a video-based silhouette method using kernel-based principal component 

analysis (KPCA) [39] is developed in this study. The aim of the approach is to provide clinicians 

and researchers with an easy-to-use and –install tool to recognize and quantify the gait performance 

of non-PD subjects and patients with mild PD in both “Drug-Off” and “Drug-On” states. 

Participants’ gait patterns during the steady-state walking period is captured using the proposed 

approach. Temporal and spectral analyses of gait patterns are investigated. The correlations 
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between the UPDRS part III scores used to assess motor impairment and the kinematic gait 

parameters extracted by the proposed method are also inspected. 

3.2 Methods 

3.2.1 The participants 

 Twelve patients with mild PD who scored an average rating of 2.33 on the Hoehn and Yahr 

(H&Y) scale (six scored 2.5, five scored 2, and one scored 3) and twelve healthy adults with no 

neurological history that might cause motor disorders within the past six months were recruited 

from Hualien Buddhist Tzu Chi General Hospital, Taiwan. The subjects volunteered to participate, 

and informed consent was obtained from all subjects in accordance with Buddhist Tzu Chi General 

Hospital’s Institutional Review Board (IRB 097-08) Committee on research involving human 

subjects. The biometric characteristics of the participants are listed in table 3.1. The healthy adults 

were denoted as non-PD subjects; the patients with mild PD given L-dopa at an equivalent daily 

dose for one hour were classified as “Drug-On”, whereas those that abstained from L-dopa 

treatment for at least 12 hours were classified as “Drug-Off”. For the patients with mild PD, the 

degree of motor function impairment was evaluated using part III of the UPDRS. 

Table 3.1 The basic biometric characteristics of categorized subjects. 
 PD group (9M/3F)  non-PD group (3M/9F) 
 Min Max Mean±SD  Min Max Mean±SD 
Age (years) 49.00 74.00 60.30±6.71  48.00 67.00 56.40±7.04 
Height (m) 1.50 1.82 1.52±0.46  1.49 1.80 1.60±0.08 
Weight (kg) 36.00 106.00 63.05±24.37  50.00 67.00 58.08±5.05 
Body mass index (kg/m2) 13.38 36.25 24.90±5.74  21.36 24.37 22.76±1.15 
Disease duration (years) 1.00 18.00 8.00±4.82  N/A N/A N/A 
Hoehn and Yahr stage  2 2.5 2.33±0.33  N/A N/A N/A 
SD = standard deviation 
 

3.2.2 Environmental setup and videotaping standard 

 A 6-m corridor decorated with a navy curtain was prepared for the walking trials. A commercial 

digital charge-coupled device (CCD) video camera (PV-GS400, Panasonic) was mounted on a 
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tripod and placed 4.1 m in front of the curtain, perpendicular to the walking pathway, to capture the 

lateral view of each participant’s walk. 

 All participants were asked to wear clothing of a much lighter color than the curtain to facilitate 

the filtration of noise during image post-processing. To reduce the variability of the gait 

performance, the participants were asked to perform three walking trials. All participants were 

asked to walk at their natural pace in order to naturally reflect their gait performance. Between 

trials, the participants were instructed to rest for at least five minutes until their strength was 

recovered. 

 The patients with mild PD were asked to abstain from L-dopa overnight for at least 12 hours 

prior to the gait measurements. They then performed three drug-off trials in the morning. 

Immediately following the completion of the drug-off trials, they were given L-dopa at an 

equivalent daily dose. Three drug-on trials were then assessed one hour after the administration of 

L-dopa. 

 In this study, we utilized the participant’s gait performance during the steady-state walking 

period to assist in the verification of the proposed method. Therefore, the participants were asked to 

begin walking 2 m from the left end of the corridor. Moreover, the last 1 m of each walking period 

was not videotaped so that patient deceleration did not affect the data.  

 The experimental setup and the flowchart of the data analyses are illustrated in Figures 3.1 and 

3.2, respectively.  
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Figure 3.1 A general schematic of the experimental setup used for video recording. The participant 

wears a light suit to enhance the contrast between the individual and the dark background. The 

participant walks along the course (approximately 6 m) in front of the video camera (located 

approximately 4.1 m away). To ensure that the captured data reflect the gait performance during the 

steady-state walking period, the camera videotapes only the middle 3 m of each walking trial. 
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Figure 3.2 A flow-chart of gait analysis and recognition. 
 

 All trials were videotaped using a sampling rate of 15 image frames per second and an image 

size of 320 × 240 pixels. The spatial resolution was approximately 1.06 pixel/cm. The video files 

were segmented and separated into sequential images. Using the method and equations presented in 

3.2.4 binary silhouettes collection, the background of the sequential images can be removed, and 

the processed sequential images can be transformed into binary images that represent the walking 
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silhouettes to facilitate image noise reduction. Each sequential binary image is then transformed 

into an encoded one-dimensional matrix containing the biometric features of the gait. KPCA is then 

applied to detect the biometric features. Using KPCA, the walking silhouettes can be decomposed, 

and the biometric features of the people walking can be extracted for gait analysis. The efficiency 

of the KPCA-based feature approach was compared with other competing methods, the area [68] 

feature approach and the principal component analyses (PCA) [37, 40]-based feature approach. To 

this end, the minimum distance classifier (MDC) [69, 70], a numerical approach, was used to 

classify the different gaits and determine the classification sensitivity. The discrete Fourier 

transform (DFT), which is used to transform a signal in the time domain into a representation in the 

frequency domain, was applied to transform the coefficients of the KPCA components to 

understand the spectral power distribution of the different gaits. The KPCA, MDC, and DFT 

algorithms and the data analysis were implemented using MATLAB (MathWorks, Natick, MA) on 

a personal computer. The details of implementing the KPCA, MDC, and DFT algorithms for 

parkinsonian gait analysis are described in KPCA-based feature extraction and heel strike 

determination, minimum distance classifier (MDC) for classification, and spectral analyses for 

temporal gait feature signals, respectively. In our preliminary experiments, the KPCA-based feature 

approach was tested on six healthy adults and compared to the GAITRite® system (CIR system, 

Inc., USA) for validation. The preliminary results showed that there was no difference in assessing 

the kinematic gait parameters of interest, indicating that the KPCA-based feature approach was an 

easy-to-use and inexpensive tool for measuring the selected kinematic gait parameters. We were 

convinced of the validity of the KPCA-based feature approach in assessing the gait performance of 

adults and continued to use it to assess the kinematic gait parameters of the participants in the 

present study. Detailed descriptions for the setup of the preliminary experiment and the translation 

of the results are presented in Appendix B. 
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3.2.3 Background Construction  

 Because we were interested in the silhouette data of a participant walking, the invariant 

background scene was unnecessary for further gait analyses and should be discarded. The intensity 

median value of each pixel, which is at the same location through an entire gait sequence, was 

utilized to construct the background image and is represented as the following: 

( ) ( ), median ( , )ti j i j= TNB I            (3.1) 

where It(i ,j) is the brightness at location (i ,j) in the specific image that corresponds to time instant 

t.  TN is the total number of images in the entire sequence, and B(i ,j) is the background pixel 

value. 

3.2.4 Binary silhouette collection 

 To separate the silhouettes from the image frames of the patient walking, the background images 

for each videotaped gait sequence are prepared using equation (1). A silhouette pixel of the patient 

walking is acquired by the difference method from [71], represented as equation (2). 
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where It(i ,j) is the brightness intensity of a pixel (i ,j) in a particular image frame at an instant t, 

B(i ,j) is the brightness intensity of a prepared background image pixel, M is the total number of the 

pixels within the prepared background image (in this case, M = 320 × 240) and THR is the 

threshold used to separate a walking silhouette from the original gait sequential image frame. 

According to equation (3.3), the brightness levels of all of the prepared background image pixels is 
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averaged and normalized to determine the threshold THR, ranging from [0, 1]. According to 

equation (3.4), if Ft(i,j), the brightness level of a silhouette pixel, > THR, Ft(i,j) = 1; if Ft(i,j) < 

THR, Ft(i,j) = 0. After the binarized procedure, 320 × 240 pixel binary silhouette image frames are 

acquired. The 320 × 240 pixel binary silhouette image frames are then trimmed to 64 × 64 pixels to 

preserve the walking silhouette, eliminate redundancies, and reduce the computational costs during 

image analyses. An example of gait image processing is represented in Figure 3.3. The trimmed 

binary silhouettes of the sequential walking image frames from the non-PD subject and mild PD 

patient in the “Drug-Off” and “Drug-On” states are illustrated in the top region and middle and 

bottom regions in Figure 3.4, respectively. 

 
Figure 3.3 An example of gait image processing: top: original color image frames, bottom: binary 

silhouette frames. 
 

 
Figure 3.4 The trimmed 64 × 64 pixel binary walking sequence silhouettes of a non-PD subject (top) 

and a patient with mild PD in the “Drug-Off” (middle) and “Drug-On” (bottom) states. 

 

3.2.5 KPCA-based feature extraction and heel strike determination  

Modern advances in computing power have greatly widened researchers’ scope in gathering 
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and investigating information from many variables, information which might have been ignored in 

the past. Yet to effectively scan a large pool of variables is not an easy task, although the ability of 

researchers to interact with data has been much enhanced by recent innovations in dynamic 

graphics. In this study, KPCA is used to reduce the dimensionality of image frames with multiple 

nonlinear components. After projecting the centralized mapped data set Q, the kth KPCA feature 

vector, ky can be derived using equation (2.12). The KPCA-based feature approach selects the 

primary components from a walking image sequence, forming a biometric feature vector to 

represent a given participant. The sequential gait image frames and the associated sequential 

primary KPCA components (1stKPC) of a non-PD subject are shown in Figures 3.5(a) and 3.5(b).  
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Figure 3.5 (a) Step image frames from a non-PD subject. The top panel is the original sequential 

walking image frames with 240 × 320 pixels. The bottom panel is the trimmed 64 × 64 pixels binary 

silhouettes of the top image frames. (b) The magnitudes of the associated sequential primary KPCA 

components. For simplicity, the primary KPCA component is denoted as 1stKPC. The green dots 

indicate the magnitudes of the sequential 1stKPCs. (c) The power spectrum of (b) using a 2048-point 

DFT and rectangular window with a length, L, of 64 points. 

 

 After comparing the gait sequences and associated 1stKPC waveforms, the 1stKPC value (fifth 

dot, Figure 3.5(b), B) reaches a local maximum value when a participant performs a mid-swing 

event (frame 5, Figure 3.5(a)). Moreover, a heel strike event (frame 1, Figure 3.5(a)) corresponds 

to a local minimum 1stKPC value (first dot, Figure 3.5(b), A). Similarly, in Figure 3.5(b), the 1stKPC 

values are at local maximums (fifth and thirteenth dot, Figure 3.5(b), B and D, respectively) and 

minimums (first and ninth dot, Figure 3.5(b), A and C, respectively) at the moment when the 

non-PD subject is performing mid-stances and heel strikes, respectively. 



 

33 
 

 Using the temporal 1stKPC waveforms, the moment of occurrence of the heel strike can be 

determined. The distance between two heel strikes can be estimated by the two locations of the heel 

in the binary 240 × 320 pixels image frames. As a result, the kinematic gait parameters, which 

depend on the time period and distance between two heel strikes that are performed with the same 

foot, gait cycle time, stride length, walking velocity and cadence can be estimated. The power 

spectrum of the temporally associated 1stKPC is plotted in Figure 3.5(c), and the main lobe 

frequency reflecting the step frequency of the non-PD subject is located at approximately 1.67 Hz.  

3.2.6 Minimum Distance Classifier (MDC) for classification 

 The MDC [69, 70] is a numerical approach used for classify unknown data to classes which 

minimize the distance between the data and the class in multi-feature space. Because the distance is 

defined as an index of similarity, the minimum distance is identical to the maximum similarity. In 

the current study, the efficiency of area, PCA-based, and KPCA-based feature approaches are 

compared by evaluating their classification sensitivity. An area feature vector is obtained by 

counting the number of pixels of a particular participant’s walking image sequence. On the other 

hand, the primary PCA and KPCA components per frame are used to form the PCA and KPCA 

feature vectors for a particular participant, respectively. Gait patterns are classified with a MDC, 

which is sufficient for the evaluation of feature efficiencies in this study. MDC is used in this study 

to classify a feature vector y to the to ith class I  whose mean im  has a minimum Euclidian 

distance to y. The minimum distance classifier can be expressed as 

 
{ }arg min ( ) ( )T

i i
i

= − −m mI y y   (3.5)
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where ( ) ( ))T
i i− −m my y is the Euclidian distance; T is the data of the  transposed matrix. 

3.2.7 Spectral analyses for temporal gait feature signals 

 The DFT is a specific method to transform a function in the time domain into the frequency 

domain for understanding the spectral power distribution of the function [72]. Discrete Fourier 

Transform (DFT), also called Finite Fourier Transform (FFT), is one of the specific forms of 

Fourier Transform which has discrete form and finite length in either time domain or frequency 

domain. It can be recognized as sampling in frequency domain of Discrete Time Fourier Transform 

(DTFT). For a input function [ ]ny  with 1,  1, ,0 −= Nn  , by DFT we can get 
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        (3.6)  

 The complex numbers [ ]kY  represents the amplitude and phase of the different sinusoidal 

components of the input signal [ ]ny . Formally, the transformed series in frequency is periodic and 

the frequency spectrum can be expressed in a finite duration. 

 For the spectral gait analyses, 1stKPC is transformed with DFT. The main lobe frequency 

(corresponding to H in Figure 3.5(c)) of the 1stKPC spectrum, representing the gait parameter of the 

step frequency for a participant, is then computed. Afterwards, the sums of the power within the 

main lobe between F and G in Figure 3.5(c) is calculated. The sums of the powers within the main 

lobe are denoted as EM,N, EM,OFF and EM,ON for a non-PD subject, a patient with mild PD in the 

“Drug-Off” and “Drug-On” states, respectively. The low- and high-frequency counterparts for a 

participant, denoted as EL,N, EL,OFF and EL,ON and EH,N, EH,OFF and EH,ON, respectively, are also 
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similarly calculated.  

 The study was designed to identify the gaits and quantify the gait parameters of the non-PD 

subjects and the patients with mild PD in the “Drug-On” (proper L-dopa treatment received one 

hour later) and “Drug-Off” (at least 12 hours after the withdrawal of L-dopa) states. A paired t-test 

was used to examine the differences among the non-PD, “Drug-Off” and “Drug-On” groups. To 

examine whether the BMI and age make impacts on recognizing the non-PD subject and “Drug-Off” 

gaits, an analysis of covariance (ANCOVA) test for measurements with covariates BMI and age 

was applied to evaluate the differences in gait parameters between the two groups. A value of p less 

than 0.05 is considered to be statistically significant. A least significant differences LSD post hoc 

test is performed.  

3.2.8 Correlations between the extracted gait parameters and the five sub-scores 
in the part III of UPDRS 

The extracted gait parameters of gait cycle time, stride length, walking velocity, cadence stride 

frequencies from the KPCA-based feature in temporal and frequency domains are correlated with 

the five sub-scores in part III of UPDRS. The correlation coefficient between the observation 

assessment and the image-based gait analysis is investigated with the Pearson product-moment 

correlation, shown as 

 
1
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           (3.7)  

where x and y  are two datasets of variable of interest, ix   and iy  are the ith data points of x 
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and y respectively, x  and y  are the sample means of datasets x and y, sx and sy are the sample 

standard deviation (S.D.) of x and y, N is the amount of data points of dataset, and r is the 

correlation coefficient. If the p-value < 0.05, which means our method has the expected and 

equivalent capability close to the five subscores in UPDRS part III and may describe the motor 

impairment. 

3.3 Results 

3.3.1 Five UPDRS part III subscores of the patients with mild PD in the “Drug 
Off” and “Drug On” states 

Five subscores—axial score (summation of UPDRS part III items 18, 22 with neck only, 27, 

28, 29, and 30), limb akinesia (summation of items 23, 24, 25, and 26), limb rigidity (item 22 with 

neck excluded), limb tremor (summation of items 20 and 21), and part III (summation of items 18 

to 31)—are computed according to the UPDRS part III motor scores (table 3.2) to describe the 

motor deviation of the patients with mild PD in different states (table 3.3). After the L-dopa 

treatment, the five subscores of all the patients with mild PD are improved; 10 patients with mild 

PD show an increase of less than 20 points on the Part III scores. 
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Table 3.2 UPDRS part III motor scores during the“Drug-Off” and“Drug-On” states. 
Patient 1 2 3 4 5 6 7 8 9 10 11 12 

Drug Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On

18 .speech 2/2 1/1 2/2 0/0 1/1 0/0 1/1 1/1 1/0 1/1 1/1 1/1 

 

19. Facial 

expression 

1/1 0/0 2/2 1/1 1/0 0/0 2/1 1/1 2/1 1/1 1/1 1/1 

 

20. Tremor at rest 
            

Face 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Hand R,L 1,0/1,0 3,1/1,0 0,3/0,3 2,1/2,0 0,0/0,0 1,0/1,0 1,1/0,0 2,0/0,0 0,1/0,0 0,3/0,3 0,0/0,0 0,0/0,0

Feet R,L 1,2/0,0 1,0/0,0 2,0/1,1 1,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 2,0/0,0 1,0/0,0 1,2/1,2 0,0/0,0 0,0/0,0

 

21. Action tremor 

R,L 

0,0/0,0 2,1/1,0 0,0/0,0 1,1/0,0 0,0/0,0 1,0/1,0 1,1/1,1 1,1/0,0 2,2/0,0 0,3/0,2 0,0/0,0 0,0/0,0

 

22. Rigidity  
            

Neck 2/1 2/2 2/2 2/2 0/0 0/0 2/1 2/1 2/0 1/0 1/1 2/2 

UE R,L 2,1/1,0 3,2/2,1 2,3/1,2 2,2/2,1 1,2/0,2 3,2/2,1 3,2/2,1 1,2/0,1 1,2/0,0 0,2/0,1 1,3/0,2 2,2/2,2

LE R,L 2,1/1,1 2,2/2,1 3,3/2,3 2,3/1,2 0,1/0,1 1,0/0,0 2,2/1,1 2,2/0,1 3,2/2,1 0,1/0,0 1,2/1,2 2,1/2,1

             

23. Finger taps 

R,L 
0,2/0,0 2,1/1,1 2,2/1,2 1,1/0,1 1,2/1,1 1,1/1,0 2,3/1,1 2,2/1,1 1,2/1,2 0,3/0,2 1,2/1,1 1,2/1,2

             

24. Hand grips 

R,L 
0,1/0,0 2,1/1,1 1,2/1,2 2,1/1,1 0,1/0,1 1,1/1,1 2,2/1,1 2,1/1,1 2,2/1,2 0,2/0,2 1,3/1,2 1,1/1,1

 

25. RAMH R,L 

 

0,2/0,2 3,1/1,0 2,3/1,3 2,2/2,2 1,2/0,0 1,0/1,0 2,2/1,1 2,2/2,2 1,2/1,1 0,3/0,2 1,3/1,3 1,2/1,1

26. Leg agility R,L 2,2/0,0 2,1/1,0 3,3/3,3 1,1/0,1 0,1/0,1 1,0/0,0 1,1/0,0 1,1/0,0 2,2/0,0 0,1/0,1 1,2/1,1 0,0/0,0

             

27. Arise from 

chair 
3/0 2/1 2/1 1/0 0/0 1/0 1/0 1/1 1/0 0/0 1/1 0/0 

             

28. Posture 1/1 1/1 1/1 1/1 1/1 1/1 3/2 2/2 1/1 0/0 1/1 0/0 

             

29. Gait 1/0 1/1 2/2 1/0 1/0 1/0 1/1 2/1 2/0 1/1 1/1 0/0 

 

30. Postural 

stability 

2/2 0/0 1/1 2/2 1/1 1/1 2/1 2/2 2/1 1/1 1/1 0/0 

 

31 .Body 

bradykinesia 

 

2/1 2/1 2/2 1/1 1/0 1/1 2/0 2/1 2/1 2/2 2/2 1/1 

Part III: total 33/14 39/21 48/42 35/23 18/10 19/12 42/20 39/20 41/14 28/22 30/25 20/19 

R: right; L: left; UE: upper extremity; LE: lower extremity; RAMH: rapid alternating movements of 
hands. 
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Table 3.3 Definition of the five subscores in the UPDRS part III. 
Subscores UPDRS part III motor items 
Axial score 18, 22 (neck only), 27, 28, 29, 30 
Limb akinesia 23, 24, 25, 26
Limb rigidity 22(without neck)
Limb Tremor 20, 21
Part Ⅲ 18 - 31

 

3.3.2 Comparison of the sensitivities of the approaches  

 Classification accuracies using MDC based on the area feature, PCA-based and KPCA-based 

features to identify different gaits are presented by confusion matrices in table 3.4. 

Table 3.4 The confusion matrices use the area feature, PCA and KPCA approaches to classify 

different gaits. 
 Area feature PCA KPCA 

 Non-PD Drug-Off Drug-On Non-PD Drug-Off Drug-On Non-PD Drug-Off Drug-On

Non-PD 9      0      3      10 1 1 10      0  2      
Drug-Off 1      8      3      2 7 3 2      10   0      
Drug-On 6      5      1      3 1 8 2      1      9      
Predicted(positive)/ 
actual(all) 

9/12 8/12 1/12 10/12 7/12 8/12 10/12 10/12 9/12 

sensitivity 75% 66.67% 8.33% 83.33% 58.33% 66.67% 83.33% 83.33% 75% 
Average sensitivity 50.16%   69.44%   80.51%   

 

  In identifying the non-PD subjects from the patients with mild PD in the “Drug-Off” and 

“Drug-On” states, the separation capabilities of area, PCA-based and KPCA-based features are 

similar. However, area feature is inadequate in identifying patients with mild PD in the “Drug-On” 

state. Only one of them is classified correctly, whereas the others are mis-classified as non-PD 

subjects or patients with mild PD in the “Drug-Off” state. On the other hand, results from the 

KPCA-based feature approach provide an average sensitivity of 80.51%.  

3.3.3 Kinematic gait parameters among different groups 

The KPCA-based method was used to extract the gait parameters from the sequential gait 

video frames from the non-PD subjects, the patients with mild PD in the “Drug-On” and “Drug-Off” 



 

39 
 

states. The average gait cycle times (s), stride lengths (cm), walking velocities (cm/s), and cadences 

(steps/min) of these groups are presented in Table 3.5. 

Table 3.5 Kinematic and spectral gait parameters (Mean±SD). 

 Non-PD (n=12) Drug-Off (n=12) Drug-On (n=12) BMI Age 

Gait cycle time (s) 1.21±0.08 1.16±0.15 1.15±0.12 N.S N.S 

Stride length (cm) 105.48±6.95 85.54±17.21 ξ105.94±22.90 N.S N.S 

Walking velocity (cm/s) 87.35±8.45 76.35±22.84 93.68±23.35 N.S N.S 

Cadence (steps/min) 99.33±6.04 106.45±15.09 105.88±12.33 N.S N.S 

Step frequency (Hz) 1.66±0.11 1.48±0.34 ξ1.74±0.18 N.S N.S 

EL (%) 9.55±7.84 16.21±9.60 ξ9.40±4.56 N.S N.S 

EM (%) *75.07±9.36 63.89±11.63 72.58±8.63 N.S N.S 

EH (%) 15.37±3.10 19.88±8.25 18.00±6.31 N.S N.S 
*, ξ are significant (p < 0.05) regarding the non-PD subject and patients with mild PD in the “Drug-Off” state, and the 

patients with mild PD in the “Drug-Off” and “Drug-On” states. EL, EM, and EH are the percent of energy distributed 

in the low-frequency band, main-frequency band, and high-frequency band, respectively. Interactions between factors 

(BMI and AGE) and Groups (Non-PD and Drug-Off) were assessed by ANCOVA. N.S is non-significant (p > 0.05). 

 

 The patients with mild PD showed improvements in all gait parameters after receiving L-dopa, 

but only stride length showed significant improvement. Compared to the patients with mild PD in 

the “Drug-Off” state, the non-PD subjects manifested better gait performance in terms of stride 

length and walking velocity, but their performance was worse than the patients with mild PD in the 

“Drug-On” state across all kinematic gait parameters. Moreover, the non-PD subjects showed no 

significant differences in the kinematic gait parameters compared to the patients with mild PD in 

the “Drug-Off” and “Drug-On” states. ANCOVA measurements were used to analyze the interaction 

between factors (BMI and age) and groups (Non-PD and Drug-Off). We find found that there were 

no significant differences in the interactions between the factors and groups.  

 Figure 3.6 presents examples of the 1stKPC waveforms from a non-PD subject, a patient with 

mild PD in the “Drug-Off” and “Drug-On” states. The 1stKPC waveforms of the patient with mild 

PD in the “Drug-On” state were similar to those of the non-PD subject, whereas the waveforms of 

patients with mild PD in the “Drug-Off” state tended to be rather irregular. 
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Figure 3.6 (a) The 1stKPC waveform of a selected non-PD subject. (b) The 1stKPC waveform of a 

selected patient with mild PD in the “Drug-Off” state. (c) The 1stKPC waveform of the same patient 

with mild PD in the “Drug-On” state. The red circles and black squares represent the local 

maximums and minimums, which reflect the occurrences of mid-swings and heel strikes, 

respectively. 

 

3.3.4 Power spectrum of temporal gait signals 

 The gait frequency spectra of the patients with mild PD in the “Drug-Off/On” states and the 

non-PD subjects are shown in Figure 3.7. The average step frequencies of the non-PD subjects and 

patients with mild PD in the “Drug-On” and “Drug-Off” states are 1.661, 1.743 and 1.543 Hz, 

respectively. The comparisons of the step frequency and spectrum power distributions among the 

three groups are shown in table 3.5. The results from a paired t-test indicate that patients with mild 

PD in the “Drug-On” state show significant improvement in step frequency. Moreover, EM,NON is 

significantly larger than EM,OFF, and EL,ON is significantly larger than EL,OFF. 
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Figure 3.7 The gait frequency spectra of (a) patients with mild PD in the “Drug-Off” state (red solid 

line) and the “Drug-On” state and (b) the non-PD subjects. 
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3.3.5 Correlations between the gait parameters and five UPDRS part III 
subscores 

 The correlation coefficients between the gait parameters extracted using the KPCA features and 

the five UPDRS part III subscores are presented in Table 3.6. It is shown that all gait parameters, 

except cadence, are significantly correlated to at least 3 subscores. 

Table 3.6. Correlation coefficients between the five subscores and the extracted gait parameters. 

 Axial score Limb akinesia Limb rigidity Limb tremor Part III 

Gait cycle time N.S. 0.470 0.462 N.S. 0.483 

Stride length 0.731 0.479 0.543 N.S. 0.625 

Walking velocity 0.686 0.538 0.559 0.413 0.661 

Cadence N.S. N.S. N.S. N.S. N.S. 

Stride frequency 0.693 0.667 0.558 0.438 0.742 

N.S. indicates “not significant” 

3.4 Discussions 

3.4.1 The sensitivity of the KPCA-based gait recognition method 

 As parkinsonian gait is commonly accompanied by not only slowness in walking and shuffling 

steps, but also a reduction in hand swing and a stooped posture; thus, information regarding upper 

extremities and trunk movements facilitate the identification of patients with mild PD [4, 51]. The 

silhouette approach proposed in this study aims to develop a parkinsonian gait recognition method. 

Two parkinsonian gait recognition algorithms, the KPCA-based and PCA-based, as well as the area 

feature approaches, were tested for their abilities to classify the gait of the “non-PD” subjects and 

the patients with mild PD in different states. The area feature approach is worst at identifying the 

patients with mild PD in the “Drug-On” state. Only one out of 12 patients with mild PD in the 

“Drug-On” state is correctly identified and classified; the rest are incorrectly identified as non-PD 

subjects or patients with mild PD in the “Drug-Off” state. The area feature approach calculates the 

area occupied by an object (in this case, a participant) in an image frame (i.e., the number of pixels), 

which may be similar under different conditions. Thus, the poor sensitivity of the area feature 
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approach is not surprising. The average sensitivity of the PCA-based feature approach is 69.44%, 

which is better than the area feature method. Nonetheless, the average sensitivity of the 

KPCA-based feature approach is the highest at 80.51%. Such results are expected; although PCA is 

appropriate in decomposing images with linear components, the spatiotemporal characteristics 

associated with abnormalities in gait and upper extremity and trunk movements contain nonlinear 

principal components.  

3.4.2 Gait parameter analysis 

 Quantitative gait performance is an important reference for early detection and diagnosis of PD 

and the improvement brought about by scheduled medical treatments. Our results show that the 

patients with mild PD who receive the L-dopa treatment show improvement in their gait cycle time, 

stride length, walking velocity, cadence, and step frequency. Such results are consistent with the 

findings in prior studies [73-75]. However, the patients with mild PD show significant 

improvements in only their stride length and step frequency in the “Drug-On” state. The 

improvements in gait cycle time, cadence, and walking velocity are not significant, whereas 

reductions in gait irregularity and motor symptoms were observed. The results show that the 

improvements in PD gait are not robust. Nevertheless, the proposed method presented a promising 

sensitivity in identifying the patients with mild PD in the “Drug-Off” and “Drug-On” states. 

 Besides, the PD patients in this study are in the mild stages of the disease and present no 

significant deficits or deterioration in motor functions, they move normally or with only a slight 

impairment after receiving L-dopa. In this study, the non-PD subjects recruited were healthy adults 

of nearly the same age and the similar BMI as the patients with mild PD. Given that the healthy and 

patient groups had similar physical conditions, there were no significant differences in gait 

performance between the two groups. As the patients with mild PD in the “Drug-On” state 

presented the nearly the same gait performance as the non-PD subjects, it becomes a big difficulty 
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to identify two groups. As shown in Figure 3.6 (a) and (b), the 1stKPC waveforms from walking 

cycles performed by a “non-PD” subject and a patient with mild PD during the “Drug On” state are 

similar, suggesting the difficulty in identifying the mild parkinsonian gait with inspection using 

eyes. However, the proposed method once again showed a promising sensitivity in identifying the 

non-PD subjects and the patients with mild PD in the “Drug-On” state. 

 In Figure 3.6(c), a longer gait cycle time and the freezing of gait and slowness in motion 

resulted from body bradykinesia can be identified from the irregular and gentle parts. Due to the 

slow and asymmetry and unstable walking of the patients with mild PD during the “Drug-Off” state, 

the 1stKPC waveforms appear to be irregular and different from the non-PD subject’s 1stKPC 

waveform. In fact, the slowness in the walking cycle shifts the main frequency of the 1stKPC 

waveform toward a lower frequency band. Compared with the patients with mild PD during the 

“Drug-On” state, approximately 8% of the energy is shifted from the main frequency (Drug On: 

73.86%, Drug Off: 66.10%) to a lower frequency band (Drug On: 8.34%, Drug Off: 16.95%) for 

the patients with mild PD in the “Drug-Off” state. The change in the power distribution causes the 

temporal 1stKPC waveform, resulting in a failure to form regular waveforms resembling those of 

non-PD subjects. Such results show that the lack of dopamine in the basal ganglia circuit in the 

brain may cause abnormalities and irregularities in the gait profile. 

3.4.3 Correlations between the five UPDRS III subscores and the extracted gait 

parameters  

The correlations between the extracted gait parameters and the five UPDRS part III subscores 

are calculated and all gait parameters are significantly correlated to at least three subscores, with 

the exception of cadence. It is worthwhile to note that limb akinesia, limb rigidity and limb tremor 

show significant correlations with some gait parameters, despite the lack of items used to evaluate 



 

45 
 

gait or posture. The findings are consistent with the results described in [76]; thus, it is possible for 

the therapists to evaluate the motor function of upper extremities of patients with mild PD through 

gait parameters. The results also support the findings in [77], which describes how the deterioration 

in upper extremity motor functions contributes to the identification of parkinsonian gait.  

 In addition, the proposed approach provides the power spectrums of the participant’s gait as 

additional information to analyze the irregularity of the motions of patients with mild PD. 

3.5 Conclusion  

The abilities to recognize the mild parkinsonian gait and monitor the disease’s progression are  

important clinical issues. However, previous research has been hindered due to the lack of a reliable 

tool that can be easily installed, provide prompt gait analysis, facilitate data collection and gait 

analysis, and lower a patient’s level of exertion during the examinations. In this study, a computer 

vision-based gait analysis approach that uses kernel-based principal component analysis is 

developed. It only requires a digital camera and a decorated corridor to facilitate the classification 

and quantification of specific gait patterns. Although there is a high similarity in the gait patterns 

between the patients with mild PD and non-PD subjects, the proposed method presents an 

encouraging classification sensitivity of 80.51%. Besides, the quantification of the mild 

parkinsonian gait can also be easy obtained and therefore the clinicians may evaluate the 

improvement brought about by scheduled medical treatments and monitor the progression of this 

disease. The significant correlations between the gait parameters and five UPDRS part III subscores 
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are also acquired and suggest that the gait parameters may also facilitate the assessment of motor 

deviations of patients with mild PD. 
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Chapter 4 Quantitative analysis of parkinsoian gait initiation 

and symmetry using centroid tracking algorithm 

4.1 Background and motivations 

Hypthesis 2: The gait initiation and symmetry are deteriorated in the early stages of Parkinson’s 

disease. Thus, it is possible to identify the parkinsonian gait from the monocular image 

sequences using a method that analyzes the gait performance and symmetry during the gait 

initiation period. 

In the previous chapter, we have introduced a KPCA-based method using monocular video 

image sequences to carry out the recognition and quantification of parkinsonian gait. The ease of 

use and installation of the previous proposed method provides clinicians and researchers a low cost 

solution to monitor the progression of and the treatment to PD. However, the demand for space was 

not well-addressed in the 1st part of this study due to an approximately 6-m decorated corridor 

required. 

Disorder gait initiation [6, 52, 53] and walking symmetry [54, 55, 57] are cardinal symptoms 

and are commonly used to monitor the progression of PD and estimate the postural instability of 

PD patients in the early stages. As the evaluation of gait initiation requires a relative small space 

and is much easier to carry out at clinics with spacious limitation, we are prompted to develop a 2nd 

method that recognizes the mild parkinsonian gait using the quantitative analysis of parkinsonian 

gait initiation and symmetry. 
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In this chapter, the centroid tracking algorithm (CTA) for object tracking is developed to 

enhance the proposed method in obtaining quantitative gait parameters and associated symmetry 

indexes during the gait initiation and steady-state walking periods for aiding clinicians to recognize 

the patients with mild PD, evaluate the improvement brought about by the levodopa, and monitor 

the progression of PD. 

4.2 Methods 

4.2.1 The participants 

 A total of 10 patients with mild PD (8 males and 2 females) with an average age of 59.6 years 

old (max = 68, min = 44, standard deviation [S.D.] = 6.78), an average weight of 67 kg (max = 76.5, 

min = 46, S.D. = 9.7), and an average L-dopa dose per treatment of 243.7 mg (max = 375, min = 

125, S.D. = 68.8) are recruited as a PD group from Buddhist Tzu Chi General Hospital, Hualien, 

Taiwan. Another 10 neurologically intact participants (6 males and 4 females) with an average age 

of 54.4 years old (max = 67, min = 48, S.D. = 5.8) and an average weight of 62.2 kg (max = 75.5, 

min = 51, S.D. = 9) are recruited into a non-PD group. All participants are giving informed written 

consent prior to participation. 

The patients with mild PD given L-dopa at an equivalent daily dose (LEDD) for one hour 

were classified as “Drug-On”, whereas those that abstained from L-dopa treatment for at least 12 

hours were classified as “Drug-Off”. The patients with mild PD were asked to abstain from L-dopa 

overnight for at least 12 hours prior to the gait measurements. They then performed drug-off trials 
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in the morning. Immediately following the completion of the drug-off trials, they were given 

L-dopa at an equivalent daily dose. Drug-on trials were then assessed one hour after L-dopa given. 

All patients with mild PD are physically independent. One patient was reported as having mild 

unilateral motor symptoms with axial involvement on his left side. Nine patients had mild bilateral 

motor symptoms disease, with recovery on pull test. Six of nine patients were predominantly 

diseased on their left sides. Three of nine patients were predominantly diseased on their right sides. 

In the “Drug-Off” state, the patients with mild PD scored an average rating 2.45 on the Hoehn 

& Yahr (H&Y) scale [78] (max = 3, min = 1.5, S.D. = 0.5); whereas the average rating was 2.35 

(max = 3, min = 1.5, S.D. = 0.4) in the “Drug-On” state. The clinical performances of all patients 

with mild PD both states are also estimated using part III of unified Parkinson’s disease rating scale 

(UPDRS) scores [67]. The patients with mild PD in the “Drug-On” state showed an average 

reduction of 7.8 on UPDRS part III score (max = 21, min = 2. S.D. = 6.8). The characteristics of the 

participants in both groups are presented in Table 4.1. 
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Table 4.1 The characteristics of patients with mild PD and non-PD subjects in this study 
patients with mild PD  non-PD subjects 

     H&Y stage UPDRS III total 
score 

 

Subject Age Sex Weight(kg) L-dopa 
(mg) 

Drug-Off Drug-On Drug-Off Drug-On  Age Sex Weight(kg)

1 44 M 73.5 125 1.5 1.5 10 8  52 M 52
2 61 F 74.7 375 3 2.5 44 26  50 M 71
3 67 M 71 187.5 2 2 46 35  57 M 54
4 65 M 72 250 2.5 2.5 25 23  48 M 72.5
5 57 M 61 250 3 3 52 49  67 F 56
6 59 M 71 187.5 2 2 21 16  57 F 65
7 57 M 56 250 2.5 2.5 28 24  48 F 51
8 68 M 68 250 2.5 2.5 26 18  51 F 60
9 59 F 46 312.5 3 2.5 47 26  57 M 65

10 59 M 76.5 250 2.5 2.5 13 9  57 M 75.5

The H&Y stage and UPDRS III total score refer to the “Drug-Off” and “Drug-On” states. 

 

 

4.2.2 Environmental setup and video recording standard 

The environmental setup is shown in Figure 4.1(a). A video camera (VPC-HD1010, Sanyo 

Corp., Ltd, Japan) is stationed approximately 4.5 m away from the pathway, perpendicular to the 

participants’ walking direction. Participants are asked to walk barefoot along a 4-m pathway at 

their pace to naturally reflect their gait performance after receiving a vocal instruction. Each 

participant is asked to perform four left-to-right walking trials, starting with the right leg, as well as 

four right-to-left walking trials, starting with the left leg, for a total of eight successful trials. 

Between trials, the participants were instructed to rest for at least five minutes until their strength 

was recovered. 
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Figure 4.1 (a) The environmental setup includes a camera at a distance of 4.5-m from the front end of 

the pathway and a 4-m pathway of participants’ walking direction. (b) The position of markers on a 

participant’s the fibula head and lateral malleolus. 

Referring to a prior study [31], gait initiation and steady-state walking periods are defined as 

the duration beginning from the vocal instruction for gait initiation to heel strike of the first swing 

leg in a gait sequence, and the duration starts from toe off of the first stance leg to the final heel 

strike in a gait sequence walking states, respectively. The descriptive stages during the gait 

initiation and steady-state walking periods are presented in Figure 4.2. The first step length is 

defined as the distance between heels of the first stance leg and the first swing leg at the moment 

when the first swing leg contacted the ground, indicating the proceeding distance during the gait 

initiation period. 
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Figure 4.2 Descriptive stages during the gait initiation and steady-state walking periods. 
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All captured walking dynamic data was sent to a host computer and clipped automatically with 

a sampling rate of 60 frames/sec. The resolution of each image is 640 × 480 pixels, with an image 

spatial resolution of 1.6 pixels/cm. As the video camera was not equipped with an excitation filter, 

the reflective markers cannot be detected. In addition, the image spatial resolution was too low to 

accurately identify the conventional small and spherical markers. Therefore, as shown in Figure 

4.1(b), two 5 × 5 cm square color tapes were used as tracking tags to mark the positions of the 

fibula head and lateral malleolus during all trials. They were attached to two anatomic bony 

landmarks, the fibula head and the lateral malleolus of the leg. Thereafter, the proposed 

camera-based gait tracking and analysis system, implemented with MATLAB R11 (Mathworks Inc., 

USA), was conducted for further signal processing. 

4.2.3 The centroid tracking algorithm to determine the heel strike and toe off 
events 

Heel strike and toe off events are necessary for reconstructing the gait pattern and quantifying 

gait parameters and further statistical analysis. In this study, the derivative of shank angle variation, 

the shank angular velocity, is used to determine the heel strike and toe off events during each gait 

sequence. Traditional methods record the moving trajectories of tags on hip, knee, and ankle and 

then compute the shank variation angle θ  (in degrees) during walking (as shown in Figure 4.3(a)). 

However, in this study, the determination of the shank angular velocity is different. The 

acquirement of shank angle variation uses two tracking tags attached on the fibula head and lateral 

malleolus to compute the variation angle θ̂  (in degrees) during walking (as shown in Figure 
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4.3(b)). A red solid line (a plumb line) perpendicular to the ground from the tracking tag on the 

fibula head is traced in each image frame. It is treated as a zero degree ( ˆ 0oθ = ) reference for 

calibration in image post-processing. Noted that hip flexion is not required for the determination of 

shank angle variation angle. 

 
Figure 4.3 The representation of how the proposed method uses two joint identifiers to calculate the 

shank angle variation. (a) The traditional method using three joint markers secured on hip, knee, and 

ankle joints. (b) The proposed method using two joint markers secured on knee and ankle joints, 

respectively. The red solid line is a plumb line and treated as a zero degree reference for calibration in 

image post-processing. The red dotted line is a line horizontal to the ground. The angle between the 

red solid and red dashed lines is the shank angle variation derived. 

In the present study, the CTA introduced in chapter 2 is used to detect the moving trajectories 

of the two tags, by which the knee and ankle joint movements during trials are recorded. Using the 

CTA, the shank angle variation during walking can be computed conveniently. According to a 

previous study [79], the heel strike and toe off events can be effortlessly determined through shank 

angular velocity. 

The quantitative gait parameters during the gait initiation and steady-state walking periods both 

can be derived once the heel strike and toe off events are determined. In Figure 4.4, the shank angle 
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variation in degrees and the associated angular velocity from a mild PD patient’s walking trial are 

shown as the top and bottom illustrations, respectively. 

 
Figure 4.4 The shank angle variation and associated angular velocity in a gait sequence performed by 

a patient with mild PD. The circles are the moments of the occurrences of heel strike and toe off 

events. TO and HS are toe off and heel strike events, respectively. 

The index of frame reflects time interval equivalent to the inverse of the clipping rate. An 

example of the variation of a mild PD patient’s shank angle is shown in Figure 4.4 and heel strike 

and toe off events are identified with circles, respectively. After the heel strike and toe off events 

are determined, the kinematic gait parameters during the gait initiation and steady-state walking 

periods of each walking sequence can be extracted to examine the differences in gait performance 

between different states in non-PD subjects and patients with mild PD. 

To verify the validity of the video-based gait tracking and analysis system, a commercial gait 

analysis technique, the Vicon system (Oxford Metrics Group; Oxford, UK), is selected for validity 

verification. Results indicate that there is no significant difference between the proposed system and 
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the compared techniques in providing gait parameters, including stance phase (% of gait cycle), 

walking velocity (cm/sec), and cadence (steps/min) for further gait parameter analysis (please refer 

to Appendix C for details). 

4.2.4 Gait symmetry index 

Gait symmetry information is another important indication of the severity of the loss of 

walking balance in people with neuromuscular issues, including PD. Robinson et al. proposed a 

symmetry index (SI) equation [80], which is reported in [81, 82] and defined below:  

                        
100%

0.5( )
R L

R L

X X

X X

−
= ×

+
SI            (4.4) 

where RX  and LX  are the values of any gait parameter measured from the right and left lower 

limbs, respectively. To avoid side (right/left) or paretic/non-paretic limb discrimination, the 

absolute value is applied for the subtraction item. The magnitude of SI indicates the degree of 

asymmetry, ranging from 0 to 200%. When SI = 0, the gait is at perfect symmetry; an increase in SI 

implies an increase in the asymmetry of the gait parameter. Notably, step length, swing time, and 

swing speed during gait initiation and steady-state walking periods are measured to derive gait 

symmetry index in different states. 

4.2.5 Data statistics 

The experiment was designed to quantitatively compare differences in gait parameters and 

symmetry indexes in non-PD subjects and patients with mild PD. A paired t-test is conducted to 

find the differences in the gait parameters and symmetry indexes between the patients with mild PD 
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in “Drug-On” and “Drug-Off” states. A two-sample t-test is used to compare the differences in gait 

parameters and symmetry indexes between the non-PD subjects and patients with mild PD. A value 

of p less than 0.05 is considered to be significant. 

4.3 Results 

4.3.1 Comparisons of gait parameters and symmetry indexes during the 
steady-state walking between non-PD subjects and patients with mild PD 

The averages of the gait parameters during the steady-state walking for non-PD subjects and 

patients with mild PD in the “Drug-Off” and “Drug-On” states are shown in Table 4.2. 

 

Table 4.2 Comparisons of the gait parameters and symmetry index during steady state walking 

period among non-PD subjects and patients with mild PD in different states. All values are 

presented as mean ± standard deviation. 

Gait Parameter Non-PD Drug-Off Drug-On

Gait Cycle Time (sec) 1.13 ± 0.15 1.07 ± 0.08 1.06 ± 0.11

Stance Phase (%GC) 62.20 ± 1.82 62.6 ± 2.65 62.03 ± 1.46

Walking Velocity (cm/sec) %LL *1.18 ± 0.20 0.94 ± 0.19 ξ1.19 ± 0.18

Cadence (steps/min) 107.93 ± 14.34 113.18 ± 8.41 114.84 ± 11.50

Step Length (cm) %LL *1.09 ± 0.11 0.92 ± 0.19 ξ1.08 ± 0.09

Swing Time (sec) *,λ0.44 ± 0.05 0.39 ± 0.03 0.39 ± 0.04

Step Speed (cm/sec) %LL *2.65 ± 0.34 2.20 ± 0.34 ξ2.71 ± 0.38

Symmetry Index Non-PD Drug-Off Drug-On

Gait Cycle Time (%) *1.44 ± 1.23 2.56 ± 1.16 2.06 ± 2.62

Stance Phase (%) λ1.21 ± 0.67 3.06 ± 3.06 3.13 ± 2.81

Step Length (%) *,λ0.99 ± 0.84 3.36 ± 1.93 2.75 ± 1.49

Swing Time (%) *,λ1.19 ± 1.10 6.03 ± 3.80 5.44 ± 4.59

Step Speed (%) *,λ0.77 ± 0.78 5.59 ± 3.26 3.52 ± 2.95

% LL is normalized by leg length. %GC is percent of gait cycle. 
*, λ, ξ represent significant differences (p < 0.05) between the non-PD subjects and patients with mild 

PD in the “Drug-Off” state, non-PD subjects and patients with mild PD in the “Drug-On” state, and 

patients with mild PD in the “Drug-Off” and “Drug-On” states. 
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The associated symmetry indexes are also shown in Table 4.2. In the “Drug-Off” state, the 

mean step length of patients with mild PD is significantly shorter than that of the non-PD subjects 

(0.92 ± 0.19 vs. 1.09 ± 0.11, p < 0.05). The mean swing time of patients with mild PD is 

significantly shorter than that of the non-PD subjects (0.39 ± 0.03 vs. 0.44 ± 0.05, p < 0.05). The 

mean walking velocity and step speed in patients with mild PD are significantly less than those of 

the non-PD subjects (0.94 ± 0.19 vs. 1.18 ± 0.20, p < 0.05 and 2.20 ± 0.34 vs. 2.65 ± 0.34, p < 0.01, 

respectively). The patients with mild PD in the “Drug-Off” state show a slight but non-significant 

increase in their cadence and stance phase and reduction in gait cycle time as compared to the 

non-PD subjects. The symmetry indexes of patients with mild PD in the “Drug-Off” state are 

significantly greater than those of the non-PD subjects, in terms of gait cycle time (2.56 ± 1.16 vs. 

1.44 ± 1.23, p < 0.05), step length (3.36 ± 1.93 vs. 0.99 ± 0.84, p < 0.01), swing time (6.03 ± 3.80 

vs. 1.19 ± 1.10, p < 0.01), and step speed (5.59 ± 3.26 vs. 0.77 ± 0.78, p < 0.01). However, no 

significant differences are observed in the stance phase (% of gait cycle). 

In the “Drug-On” state, patients with mild PD display significant increases in walking velocity 

(1.19 ± 0.18 vs. 0.94 ± 0.19, p < 0.05, paired t-test), step length (1.08 ± 0.09 vs. 0.92 ± 0.19, p < 

0.05, paired t-test), and step speed (2.71 ± 0.38 vs. 2.20 ± 0.34, p < 0.05, paired t-test), as compared 

to the patients with mild PD in the “Drug-Off” state. When compared to non-PD subjects, patients 

with mild PD in the “Drug-On” state show significant differences in swing time (0.39 ± 0.04 vs. 

0.44 ± 0.05, p < 0.05, paired t-test). However, no significant differences are observed in the other 
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gait parameters. The symmetry indexes of patients with mild PD in the “Drug-On” state are 

significantly larger than those of non-PD subjects in terms of the stance phase (3.13 ± 2.81 vs. 1.21 

± 0.67, p < 0.05), step length (2.75 ± 1.49 vs. 0.99 ± 0.84, p < 0.01), swing time (5.44 ± 4.59 vs. 

1.19 ± 1.1, p < 0.05), and step speed (3.52 ± 2.95 vs. 0.77 ± 0.78, p < 0.05). However, there is no 

significant improvement in the symmetry indexes observed for patients with mild PD in the 

“Drug-On” state. 

4.3.2 Comparisons of gait parameters and symmetry indexes during the gait 
initiation period between non-PD subjects and patients with mild PD 

The averages of the gait parameters of non-PD subjects and patients with mild PD in the 

“Drug-Off” or “Drug-On” states during the gait initiation period are presented in Table 4.3.  

 

Table 4.3. Comparisons of gait parameters and symmetry index during the gait initiation period 

among non-PD subjects and patients with mild PD in different states. All values are presented as 

mean ± standard deviation. 

Gait Parameter Non-PD Drug-Off Drug-On

First Step Length (cm) % LL  *0.55 ± 0.06 0.42 ± 0.11 ξ0.53 ± 0.07

First Swing Time (Sec) 0.47 ± 0.06 0.47 ± 0.06 0.49 ± 0.08

First Step Speed (cm/sec) %LL  *1.16 ± 0.27 0.90 ± 0.19 1.07 ± 0.29

Symmetry Index Non-PD Drug-Off Drug-On

First Step Length (%) *,λ2.98 ± 4.40 16.36 ± 5.19 13.58 ± 8.58

First Swing Time (%) *,λ2.24 ± 2.73 10.98 ± 6.93 12.41 ± 9.88

First Step Speed (%) *,λ3.81 ± 3.26 12.02 ± 6.92 16.81 ± 10.41

% LL is normalized by leg length. 
*, λ, ξ represent significant differences (p < 0.05) between the non-PD subjects and patients with mild 

PD in the “Drug-Off” state, non-PD subjects and patients with mild PD in the “Drug-On” state, and 

patients with mild PD in the “Drug-Off” and “Drug-On” states. 
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The associated symmetry indexes are also included in Table 4.3. In the “Drug-Off” state, the 

mean first step length of the patients with mild PD is significantly shorter than that of the non-PD 

subjects (0.42 ± 0.11 vs. 0.55 ± 0.06, p < 0.05). The mean first step speed of the patients with mild 

PD is significantly slower than that of the non-PD subjects (0.90 ± 0.19 vs. 1.16 ± 0.27, p < 0.05). 

When compared to the non-PD subjects, the patients with mild PD in the “Drug-Off” state show a 

slight but non-significant reduction in first swing time. The symmetry indexes of the patients with 

mild PD are significantly larger than those of the non-PD subjects in first step length (16.36 ± 5.19 

vs. 2.98 ± 4.40, p < 0.01), first swing time (10.98 ± 6.93 vs. 2.24 ± 2.73, p < 0.01), and first step 

speed (12.02 ± 6.92 vs. 3.81 ± 3.26, p < 0.05). 

In the “Drug-On” state, the patients with mild PD demonstrate significant improvement in first 

step length (0.53 ± 0.07 vs. 0.42 ± 0.11, p < 0.05) as compared to the “Drug-Off” state. There are 

slight but non-significant increases in first swing time and first step speed. The patients with mild 

PD in the “Drug-On” state show no significant differences in any of the gait parameters when 

compared to the non-PD subjects. The symmetry indexes of the patients with mild PD in the 

“Drug-On” state are significantly greater than those of non-PD subjects in first step length (13.58 ± 

8.58 vs. 2.98 ± 4.40, p < 0.01), first swing time (12.41 ± 9.88 vs. 2.24 ± 2.73, p < 0.01), and first 

step speed (16.81 ± 10.41 vs. 3.81 ± 3.26, p < 0.01). However, the patients with mild PD in the 

“Drug-On” state do not show significant improvement across all of the symmetry indexes when 

compared to the “Drug-Off” state. 
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4.4 Discussions 

4.4.1 Differences during the steady-state walking period among patients with 
mild PD in the different states and non-PD subjects 

Compared to the non-PD subjects, the patients with mild PD in the “Drug-Off” state during the 

steady-state walking period show significantly slower walking velocity, step speed and shorter step 

length. The quantitative outcomes obtained in this study are consistent with the findings of 

preceding studies [5, 15, 28, 83]. In the “Drug-On” state, the patients with mild PD show significant 

improvement in walking velocity and step speed; increases in step length are also observed as 

compared to the “Drug-Off” state. These results are also consistent with earlier studies [5, 74, 

83-86]. It has been reported that the patients with mild PD in the “Drug-Off” state might exhibit an 

increase in cadence to compensate for the reduction in step length caused by the shuffling gait with 

small steps [87]; the patients with mild PD in the “Drug-On” state exhibit reductions in the stance 

phase and gait cycle time and an increase in walking velocity [88, 89]. However, in this study, a 

non-significant increase in cadence is observed in the patients with mild PD in the “Drug-On” state. 

Because the length of the pathway was limited, the patients with mild PD in the “Drug-On” state 

may not have taken enough steps to allow the detection of a significant reduction in cadence 

compared to the “Drug-Off” state. During the steady-state walking period, the non-PD show 

significant differences in the symmetry indexes to the patients with mild PD. The differences are 

assumed to be the results of the motor impairments in the patients with mild PD. Although the 

patients with mild PD in the “Drug-On” state exhibit improvement in most symmetry indexes when 
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compared to the “Drug-Off" state, there is no significant difference. There may be two plausible 

explanations. Since only one camera is used to collect the kinematic data (lateral view), the gait 

parameters of the left and right sides of the same participant are obtained from separate trials. 

Therefore, each symmetry index is the average of two trials; it can be assumed that the differences 

are also averaged, hence reducing potential significance. Besides, the patients with mild PD with 

different severity of neurodegeneration do not exhibit similar improvement in posture and balance 

control. According to the H&Y scale, only two PD patients show conspicuous improvement (from 3 

to 2.5) in the “Drug-On” state, which is not sufficient to produce statistically significant 

improvements in the symmetry indexes. 

Although the differences in gait parameters during the steady-state walking period between the 

non-PD and PD patients are observed and consistent with the preceding studies, the results suggest 

that it is not easy to recognize patients with mild PD due to the lack of statistical significance. 

However, at least four of the defined five associated symmetry indexes of the healthy are 

significantly better than those of the patients with mild PD, suggesting that the associated symmetry 

indexes derived from the steady state walking may facilitate the early detection and diagnosis of 

PD. 

4.4.2 Differences during the gait initiation period among the patients with mild 
PD in the different states and non-PD subjects 

Due to stooped posture and forward leaning, patients with mild PD may exhibit the following 

behavior: a significant forward ankle shift to reduce the backward center of foot pressure (COP) 
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shift, an increase in the unloading phase, a reduction in the vertical height of the first step, and a 

shortening in the length of the first step [6]. Breniere et al. have demonstrated that the reduction in 

the backward COP shift may decrease the COP forward acceleration of PD patients, hence reducing 

first step speed and step length during the gait initiation period [90]. Results from the quantitative 

analysis are consistent with the demonstration. Patients with mild PD exhibit significantly shorter 

first step and slower first step speed during the gait initiation period than the non-PD subjects. 

When the patients with mild PD in different states are compared, the first step length in the 

“Drug-On” state is significantly increased. It has been reported that the proper levodopa dose can 

help the patients with mild PD increase their first step length and shorten the first swing phase by 

improving the performance in the unloading phase and the COP backward displacement [91]. The 

outcomes of this study are consistent with the previous findings, suggesting that the proposed 

system can provide useful information for identifying clinical improvement in gait initiation 

performance of patients with mild PD upon the administration of medication. 

The patients with mild PD in the “Drug-On” state exhibit slight but insignificant improvement 

in the symmetry index of the first step length; moreover, their symmetry indexes of the first swing 

time and first step speed are worse but insignificant than those of the patients with mild PD in the 

“Drug-Off” state. Results indicate that levodopa treatment seems not to improve the symmetry 

indexes during the gait initiation period. In clinical observations, some patients with mild PD in the 

“Drug-On” state exhibit hesitation and freezing at gait onset unilaterally. Their first swing time and 

first step speed on the affected side were increased and reduced, respectively. The observations are 
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consistent with the prior studies [92, 93] that demonstrate motor symptoms including hesitation and 

freezing at gait onset may occur as the side effects of levodopa treatment. Although the results 

suggest that the symmetry indexes are not responsive to the levodopa treatment, it is insufficient to 

rule out that levodopa treatment facilitates the symmetry in gait during the gait initiation period. 

Further research is required to explain the effects of levodopa on gait symmetry during gait 

initiation. 

During the gait initiation period, as compared to the patients with mild PD in both states, the 

non-PD subjects exhibit significantly greater performance in all of the symmetry indexes and few 

gait parameters. The results suggest that the identification of mild PD patient using the symmetry 

indexes during the gait initiation period may be easier than that using the gait parameters during the 

gait initiation period. 

Due to the special demand for a decorated corridor, the identification of mild parkinsonian gait 

using the method introduced in chapter 3 may be not applicable in some clinics with small space. 

The results in this part of study provide another solution for identification of mild PD patient. Using 

the gait symmetry derived from the gait initiation period, clinicians may recognize patients with 

mild PD and monitor the improvement brought about by the medical treatment quickly and 

precisely. Besides, the crucial gait performances, including first step length, first swing time, and 

first step speed, are determined using the quantitative gait analysis outcomes and may facilitate the 

treatment management such as rehabilitation programs or drug. 
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4.5 Conclusion 

The gait initiation and symmetry are indicators of gait performance and allow clinicians to 

comprehend contemporary gait performance of patients with Parkinson disease and to plan medical 

treatment or rehabilitation programs for them. In this study, a method using the CTA to track and 

analyze the gait initiation and symmetry of patients with mild PD is developed. 

Using the CTA-based method, a number of quantitative gait parameters and associated 

symmetry indexes during the gait initiation and the steady-state walking period are derived, and the 

characteristics of mild parkinsonian gait then can be identified. Results reveal that the recognition 

of patients with mild PD can be attained using the quantitative gait symmetry indexes during the 

gait initiation period except those during the steady-state walking period. Because only a digital 

camera, space for subjects to perform gait initiation, two joint identifiers secured on a participant’s 

the fibula head and lateral malleolus are required, this system presents promising portability and 

improved convenience for identification of patients with mild PD in clinics with small space or at 

home. 

This study aims to assess the quantitative analysis of gait initiation and symmetry in walking of 

patients with mild PD, and therefore aid clinicians may detect and diagnose PD early and monitor 

the therapeutic effect from medical treatment or rehabilitation programs in clinics with small space; 

however, clinical applications can be expanded to analyze the motor performance of patients with 

other neuromuscular disorders.
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Chapter 5 Conclusions & future studies 

5.1 Conclusions 

PD is a progressive neurodegenerative disease and the second most common 

neurodegenerative disorder after Alzheimer’s disease and is expected to impose an increasing social 

and economic burden on societies as people age. The diagnosis and treatment of PD in the early 

stages therefore becomes an important issue. The diagnosis of PD is based on the presence of the 

classic clinical signs: resting tremor, rigidity, postural instability, and bradykinesia. However, the 

clinical presentation and progression can be greatly variable. The identification of characteristics 

may be difficult thereby, especially in the early stages of PD. Gait disturbance presents a cardinal 

motor symptom and may be observed in early stages of the disease; therefore, the quick and precise 

recognition of mild PD patient, the quantification of the mild parkinsonian gait performance, and 

the improvements provided by the treatment regime or rehabilitation programs are important 

references and may aid the early diagnosis and the following treatment management. However, the 

recognition and quantification of mild parkinsonian gait have been hindered due to the lack of tools 

that can provide prompt gait analysis, facilitate data collection and gait analysis, and lower a 

patient’s level of exertion during the examinations, especially be installed in clinics or at home,. 

To address the demand, we attempted to develop solutions that require simple clinical settings 

and can be easily installed and used in a clinic or at home with limited space to quantify and 

recognize mild PD parkinsonian gait, and further evaluate the therapeutic effect of L-dopa on PD 
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patients. In this proposed research, two video-based gait analysis methods that are different from 

traditional sensor- or marker-based approaches are developed in the 1st and 2nd phases, respectively. 

During the 1st phase, a portable and convenient video-based method using KPCA to recognize 

and quantify mild parkinsonian gait during the steady-state walking period was developed and 

implemented. The method requires only a decorated corridor and a digital camera capturing 

people’s lateral silhouette during walking so that it can be easily deployed in clinics with space or 

budgetary limitations. The time and cost for data collection and gait analysis therefore become less 

than the conventional sensor- or marker-based approaches that request a user to wear sensors or a 

specific suit. 

The proposed method uses the KPCA to reduce the dimensionality of image frames and 

therefore the computational cost for post-processing can be effectively reduced. The kernel 

principal components from a walking image frame sequence are used to form a biometric feature 

vector to represent a given participant. After observation and comparison, we found that the 

moment of occurrence of the heel strike can be determined using the primary KPCA component (1st 

KPC) waveforms. We are able to reconstruct each participant’s gait profile for follow-up 

recognition and quantification thereby. 

The recognition sensitivity of the method was compared with other competing methods, the 

area feature and PCA-based feature approaches. Although there are few significant differences 

among the gait patterns, the proposed method using KPCA presents an encouraging sensitivity of 

80.51% in classifying subjects in different states, much better than the competing area feature 
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(50.16%) and PCA-based (69.44%) approaches. The quantitative results show that PD patients who 

receive the L-dopa treatment show improvement in their gait cycle time, stride length, walking 

velocity, cadence, and step frequency. The correlations between the five UPDRS part III sub-scores 

and the derived gait parameters show that four gait parameters are significantly correlated with at 

least limb akinesia, rigidity and tremor, indicating that it is possible to evaluate the motor deviation 

of the patients with mild PD through the derived gait parameters. In addition, the proposed 

approach provides the power spectrum of the participant’s gait as additional information to analyze 

the irregularity of the motions of patients with mild PD.  

It may be a problem for clinics with small space to deploy the 1st method requiring a decorated 

corridor. Therefore, during the 2nd phase, a video-based method using the CTA was developed and 

implemented to track and analyze the gait initiation and symmetry of patients with mild PD. The 

method use a digital camcorder and joint identifiers secured at palpable anatomic landmarks, the 

fibula head and lateral malleolus, to capture the knee and ankle joint movements by which the heel 

strike and toe off events can be determined. A participant’s gait pattern then can be reconstructed 

and the gait performance and associated symmetry indexes during the gait initiation and 

steady-state walking periods can be evaluated thereby. 

During both the gait initiation and steady-state walking periods, the PD patients who received 

L-dopa treatment show improvement in gait parameters, proving the therapeutic effect of the 

L-dopa treatment demonstrated in [91]. Same as the 1st phase, the improvement brought about by 

the L-dopa treatment was not robust on the patients with mild PD, resulting in a difficulty in 
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identifying differences between the patients with mild PD in the “Drug-Off” and “Drug-On” states. 

However, results show that the gait symmetry indexes derived from the gait initiation period may 

also facilitate the identification of patients with mild PD.  

Compared to the KPCA-based method, the CTA-based method provides a solution requiring a 

smaller space and a simpler clinical setting for early detection and diagnosis of PD. Besides, 

quantitative analysis of gait performance is also attained for monitoring the progression of PD and 

improvement brought about by the rehabilitation programs and drug administration.  

The study presents two techniques for clinicians and researchers with which to detect and 

diagnose PD early and assess the progression of PD using gait patterns recorded in monocular 

image frames. Although the proposed methods currently aim to recognize and quantify the mild 

parkinsonian gait, clinical applications can be expanded to analyze the gait performance of patients 

with other neuromuscular disorders in future. 

5.2 Recommendations for future studies 

This study is not perfect due to some intrinsic limitations. Therefore, here are some 

recommendations for future studies. An orientation or a pre-education program for clinical setting, 

safety, and identification of the palpable anatomic landmarks can facilitate the use of the 

CTA-based method without skilled personnel. Moreover, there is a lack of patients with advanced 

motor symptoms in this study, the therapeutic effect of prescribed L-dopa treatment on the PD 

patients seems to be not robust and thereby it resulted in insignificant improvement in walking 
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symmetry of the PD patients. Further researches are required to explain the effects of L-dopa 

treatment on the walking symmetry and gait performance of PD patients. 
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Abbreviations:  

PD is Parkinson's disease. 

VTA is ventral tegmental area. 

KPCA is kernel-based principal component analysis.  

UPDRS is Unified Parkinson’s Disease Rating Scale.  

L-dopa is levodopa.  

MDC is minimum distance classifier.  

DFT is discrete Fourier transform.  

PCA is principal component analysis. 

1stKPC is the magnitude of the first principal component. 

LSD is least significant difference. 

CTA is centroid tracking algorithm. 

LEDD is levodopa at an equivalent daily dose. 

H&Y is Hoehn & Yahr. 

SI is symmetry index. 
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Appendix A: Assessment of treatment of parkisonism 

A.1 Assessment of Parkinson’s disease 

Hand-writing samples, speech analysis, and questions that focus on developing 

symptomatology can be used in the preclinical stage to detect early manifestations of PD. An 

estimation of the stage and severity of the disease can be made using a staging scale. The two most 

widely used are the Hoehn and Yahr classification of disability scale (H&Y stage) and the unified 

Parkinson’s disease rating scale (UPDRS).  

A.1.1 Hoehn and Yahr scale  

The Hoehn and Yahr scale is a rating scale for describing how the symptoms of PD progress 

[94]. The current scale includes stages 0 through 5 to indicate the relative level of disability, and 

stages 1.5 and 2.5 are proposed to reflect the growing knowledge of PD-related impairments. 

• Stage 0: No signs of disease. 

• Stage 1: Unilateral symptoms only. 

• Stage 1.5: Unilateral and axial involvement. 

• Stage 2: Bilateral symptoms. No impairment of balance. 

• Stage 2.5: Mild bilateral disease with recovery on pull test. 

• Stage 3: Balance impairment. Mild to moderate disease. Physically independent. 

• Stage 4: Severe disability, but still able to walk or stand unassisted. 
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• Stage 5: Needing a wheelchair or bedridden unless assisted. 

A.1.2 Unified Parkinson’s Disease Rating Scale (UPDRS)  

Due to the disagreements in rating PD-related disability and impairment using different 

Parkinson’s disease rating scales such as intermediate scale for assessment of PD (ISAPD) and 

Schwab and England scale (SES), the UPDRS was developed to address the demand of 

incorporating elements from earlier scales to provide a compound but comprehensive scale to 

capture multiple aspects of PD [67, 95-97]. At present, the UPDRS is the most widely used clinical 

tool for the assessment of parkinsonian motor impairment and disability [98]. The UPDRS 

reviewed and modified by a consortium of movement disorders specialists comprises four main 

sections as the following: 

• Part I: evaluation of mentation, behavior, and mood. 

• Part II: self evaluation of the activities of daily life (ADLs) including speech, swallowing, 

handwriting, dressing, hygiene, falling, salivating, turning in bed, walking, cutting food. 

• Part III: clinician-scored motor evaluation; 

• Part IV: Complications of therapy. 

The UPDRS is often accompanied by and reported with such scales as the “Schwab and 

England scale” or the “Hoehn and Yahr scale”, whereas the latter scales are not parts of the UPDRS. 

The UPDRS strongly relies on the experience or the expertise of clinician and therefore the 

interpretation may vary due to individual subjective judgments or opinions. Richard et al. indicated 
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the disagreement between the UPDRS raters despite that the scale is the most common and uniform 

tool that captures multiple aspects of PD [99]. 

A.2 Treatment of Parkinson’s disease 

 Although the physician, therapist, and neurologist cooperatively institute medical program 

against PD, a cure for the progressive disease is currently not available. However, the effects of the 

disease and secondary impairments can be minimized using early and vigorous treatment. 

A.2.1 Levodopa 

 Levodopa (L-dopa) is the most preferred and effective drug treatment for PD and is 

administrated orally with carbidopa. It is a metabolic precursor of dopamine that can raise the level 

of striatal dopamine in the basal ganglia and maintain the equilibrium between dopamine and 

acetylcholine. The primary benefit is to alleviate bradykinesia and rigidity, but less effect on resting 

tremor. However, long-term use of L-dopa therapy may result in a deterioration of the drug’s overall 

therapeutic effectiveness. The depletion of the therapeutic effectiveness is most likely due to a 

progressive decrease in responsiveness of the dopamine receptors or to progressive loss of 

dopamine neurons in substantia nigra. The detailed description and efficacy of L-dopa can be found 

in [93, 100-102]. 

A.2.2 Deep brain stimulation (DBS) 

Deep brain stimulation (DBS) is a surgical procedure used to replace drug treatment and 
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alleviate the symptoms of PD, such as tremor, rigidity, stiffness, bradykinesia, and abnormal gait 

pattern. The detailed descriptions and efficacy can be found in [103]. DBS uses a neurostimulator, a 

battery-operated medical device that is surgically implanted into a deep brain region to deliver 

electrical stimulation to targeted areas in the brain that control movement, blocking the abnormal 

nerve signals that cause tremor and PD motor symptoms. Generally, these targets are the thalamus, 

subthalamic nucleus, and globus pallidus.  

The DBS system consists of three components:  the lead, the extension, and the 

neurostimulator. The lead (an electrode), which is a thin and insulated wire, is inserted through a 

small hole in the skull and implanted in the brain. The tip of the electrode is positioned within the 

targeted brain area. The extension is an insulated wire that is passed under the skin of the head, neck, 

and shoulder, connecting the lead to the neurostimulator. The neurostimulator is the third 

component and is usually implanted under the skin near the collarbone or lower in the chest, 

sometimes under the skin over the abdomen. Once the system is in place, electrical impulses are 

sent from the neurostimulator up along the extension wire and the lead and into the brain. These 

impulses interfere with and block the disordered neural signals that cause PD symptoms. 
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Appendix B: Comparing the KPCA-based feature approach 

with the GAITRite® method for validation 

 To evaluate the validity of the proposed KPCA-based method in quantifying gait performance to 

aid clinical diagnoses and further applications, the quantitative gait parameters from the proposed 

approach were compared with the outcomes of the GAITRite® system (CIR system, Inc., USA) 

prior to the actual experiment.  

 The GAITRite® system is an instrumented walkway system that has been validated as a reliable 

tool for the measurement of kinematic gait parameters [104]. Six healthy male volunteers with an 

average age of 54 years (max = 76.5 years, min = 46 years, S.D. = 9.7 years) were recruited, and 

they provided informed consent for participation. Using an identical experimental setup to that 

employed in the present study, these volunteers were asked to perform four walking trials at their 

natural pace, and a total of 24 trials were collected.  

 Figure B1 shows the equipment setup used to perform the concurrent gait analysis by the 

GAITRite- and KPCA-based methods.  
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Figure B1. Equipment setup used to measure the gait parameters with the GAITRite® mat and 

recording system along with the video methods. 

  

 Gait analysis was performed using an electrical spatial and temporal analysis system (GAITRite® 

system; CIR Systems Inc., Clifton, NJ, USA). The GAITRite® system is a 4.6-m-long electronic 

walkway that connects to the serial port (19,200 baud rate) of a windows XP computer. The 

walkway is 1/8 inch thick and contains 16,128 sensors sandwiched between a thin vinyl cover on 

top and a rubber bottom. The active senor area is 0.61 m wide by 3.66 m long. GAITRite® software 

(ver. 3.8) was used to process the footstep data and to provide quantified temporal and spatial 

parameters.  

 The Panasonic video camera (model PV-GS400) used to videotape the walking trials was 

mounted on a tripod and positioned midway between the start and finish lines of the walkway, with 

the camera’s field of view perpendicular to the long axis of the walkway. All trials were videotaped 
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using a sampling rate of 15 image frames per second and an image size of 320 × 240 pixels. The 

plane of the camera’s shutter was located 4.1 m from the centerline of the walkway. The size of the 

field of view ensured that two pairs of infrared sensors, which were aligned with the start and finish 

lines, could be seen in the camera’s viewfinder. One graphical programming utility was developed 

using the NI LabVIEW environment (LabVIEW 8.5, National Instruments, Austin, TX, U.S.A) and 

a 1394 video capture card (Model PXI-8252, National Instruments, Austin, TX, U.S.A) to 

synchronize the motion detection and gait video capture.  

 In a preliminary experiment, the participant stood at the starting line with his toes just behind the 

line. The participant was asked to walk through a 6-m corridor decorated with a navy curtain, and 

the 3-m GAITRite® walkway for steady-state gait was defined by two pairs of infrared sensors that 

were aligned with the start and finish lines. When the infrared beam was broken by the participant’s 

advancing lower leg, the infrared reflector transmitted a TTL logic signal to the LabVIEW utility on 

the PC side via a serial RS232 port, providing timestamps to determine the timing of the closest 

playback frame at the start and end of each walking trial. 

 The GAITRite® system and the Panasonic video camera (model PV-GS400) simultaneously 

collected footstep data during the steady-state walking period. The gait sequence image frame and 

the 1stKPC waveform of a healthy subject are shown in Figure B2 (a) and (b), respectively. 
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Figure B2. Sequential gait image frames from a healthy subject walking on the GAITRite walkway 

system. (s) The top panels are original sequential walking image frames containing 240 × 320 pixels. 

The bottom panels are trimmed 64 × 64 pixel binary silhouettes of the top panels. (b) The 1stKPC 

waveform of a selected non-PD subject participating in the preliminary experiment. The green dots 

indicate the magnitudes of the sequential 1stKPCs. 

  

 Results from the KPCA-based method were acquired using processing procedures identical to 

those used in the actual experiment. A paired Student’s t-test was conducted to examine the 

differences between the gait parameters (gait cycle time, stride length, walking velocity and 

cadence) measured by the GAITRite® system and the KPCA-based method. According to table B.1, 

there were no significant differences (p-value > 0.05) in the gait cycle time, stride length, walking 

velocity, or cadence detected using these two methods, indicating that the KPCA-based method and 

the GAITRite® system yielded comparative gait measurements. This finding was expected because 

the results of the two methods were also correlated with respect to the spatial measures recorded 
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concurrently during the subject’s walking trials. We are hence convinced of the validity of the 

KPCA-based method for acquiring adult gait cycle time, stride length, walking velocity, and 

cadence. 

Table B1 Comparison of gait parameters assessed by the GAITRite® system and the KPCA-based 

method 

Gait Parameters KPCA GAITRite® p-value 

Gait cycle time (s) 1.26±0.13 1.26±0.12 N.S.

Stride Length (cm) 116.81±6.55 116.48±6.68 N.S.

Walking Velocity (cm/sec) 92.95±10.55 92.97±10.59 N.S.

Cadence (steps/min) 95.90±9.99 95.79±9.97 N.S.

N.S is non-significant (p > 0.05). 
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Appendix C Comparing the CTA-based gait tracking and 

analysis system with the Vicon system for validation 

To evaluate whether the proposed video-based gait tracking and analysis system in chapter 3 is 

valid in assisting clinical diagnoses and further applications, the quantification of gait initiation and 

symmetry from the proposed video-based gait tracking and analysis system is compared with the 

quantification outcomes from a commercial system, the Vicon system (Vicon Inc, Oxford, UK). 

The Vicon system is a commercially available motion analysis technology that uses optical 

reflective markers to measure three dimensional movement for capturing and modeling human 

motion [105]. In the experiment comparing the proposed system to the Vicon system, five healthy 

volunteers (4 males and 1 female) with an average age of 23.8 years (max = 25, min = 23, S.D. = 

0.84) are recruited and given informed consent. The Vicon system and proposed video-based 

system are synchronized for the simultaneous collection of temporal-spatial gait parameters 

performed by the recruited subjects. Each volunteer was asked to perform four successful trials at 

their natural pace during the trials to naturally reflect their gait performance. Gait cycle time, stance 

phase, stride length, walking velocity, and cadence, were calculated to obtain comparison. 

 A two-sample (paired) t-test was conducted to examine the differences. According to table C1, 

p-values greater than 0.05 were obtained for all comparisons of temporal-spatial gait parameters 

across the two systems. There are no significant differences between the proposed system and the 

Vicon system; results obtained from the proposed system are comparable to those from the Vicon 
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system. Thus, the proposed system exhibits validity for acquiring temporal-spatial gait 

measurements of interest. 

 

Table C1.  Comparisons of several gait parameters with VICON System. 

Gait Parameters Our system VICON p-value

Gait cycle time (sec) 1.39±0.19 1.37±0.19 0.757

Stance Phase (%) 64.83±2.07 63.90±2.92 0.239

Stride Length (cm) 92.32±5.51 92.71±6.10 0.825

Walking Velocity (cm/sec) 67.70±10.35 68.93±10.47 0.706

Cadence (steps/min) 87.82±11.05 89.08±11.57 0.719

 

 


