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Abstract

Parkinson’s disease (PD) is a neurodegenerative disease of the central nervous system
resulting from the death of dopamine-controlling cells in the substantia nigra within the
mid-brain. Gait disorders present as cardinal motor symptoms and may be observed in early
stages of the disease; therefore, the assessment of gait performance during walking has
become an important reference for identification of people with PD and medical treatments.
However, current available techniques for gait analysis, such as the Vicon motion analysis
system with validity, reliability, and high precision, are not easily accessible in clinics or
even at home for clinicians and researchers. Herein, we present two computer-aided gait
analysis methods utilizing the monocular image sequences of walking to track and analyze
the parkinsonian gait pattern.

The first method uses kernel-based principal component analysis (KPCA) is developed
to assist the recognition and quantification of mild parkinsonian gait during the steady-state
walking. It requires a digital camcorder to capture the lateral view of each subject’s walking
silhouette and a decorated corridor setup. The KPCA is verified to have higher sensitivity,
80.51% in this study, than the traditional image area and principal component analysis
(PCA) approaches for classifying non-PD subjects and patients with mild PD in the
“Drug-Off/On” states. Quantitative gait parameters are obtained and the power spectrums of
the patient’ gaits are analyzed. It is found that the patients with mild PD in the Drug-Off
state show a lower main power spectral frequency than those of the non-PD subjects and
patients with mild PD in the Drug-On state. In addition, the correlations between five
subscores based on the unified Parkinson’s disease rating scale (UPDRS) part III motor
scores and the extracted kinematic gait parameters are discussed. Results show the

feasibility of using gait performance to evaluate the motor function of upper extremity of
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patients with mild PD.

The disordered gait initiation and walking asymmetry are instructors of postural
instability and represent the major symptoms in the early stage of this disease except the
affected gait performance. To provide the recognition and quantification of mild
parkinsonian gait in clinics with too small space to deploy a corridor. The second method
using the centroid tracking algorithm (CTA) is developed to quantify each subject’s gait
parameters and the associated symmetry indexes during the gait initiation and steady-state
walking periods. This method requires only a digital camcorder to capture the lateral view
of each subject’s walking and two identifiers respectively secured at two palpable anatomic
landmarks, the fibula head and lateral malleolus. The second method therefore becomes
easier to install and use in clinics than the first one.

Results in this study indicate that the method using the CTA can help clinicians and
researchers quantify the gait performance and associated symmetry indexes among
age-matched non-PD subjects and patients with mild PD in different states. Quantitative
analysis reveals that the age-matched non-PD subjects presented superior gait performance
and associated symmetry indexes to the patients with mild PD in the different states. The
findings in this study suggest that the recognition of patients with mild PD can be easily
attained using only the gait symmetry indexes during the gait initiation period, indicating
the cost and effort for diagnosis of PD in the early stages can be reduced largely. Besides,
the quantification of gait performance may assist the clinicians to rate the severity of and
monitor the progression of PD, and evaluate the therapeutic effect brought about by drug
management or rehabilitation programs. In addition to performing gait analysis for patients
with mild PD, we believe that the proposed portable system has the potential to help

clinicians and researchers assess the gait performance of patients with other neuromuscular
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issues, such as traumatic brain injury and spinal cord injury.

Keywords: computer-aided, monocular image sequence, Parkinson’s disease, gait analysis,
kernel-based principal component analysis, unified Parkinson’s disease rating scale part III,

centroid tracking algorithm, gait initiation, gait symmetry.
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Chapter 1 Introduction

1.1 Parkinson’s disease
1.1.1 Pathophysiology

Parkinson’s disease (PD) was first and foremost described as a disease that would bear his/her
name. A British apothecary named James Parkinson published a scientific article: An Essay on the
Shaking Palsy [1], to unveil the motor symptoms and different stages of the morbid progress in
1817. However, the term “shaking palsy” has been vaguely employed by medical writers in general.
The term “Parkinson’s disease’ was coined in 1870s by a French neurologist, Jean-Martin Charcot,
who brought Parkinson’s disease to international attention. At present, PD is the second most
common neurodegenerative disorder after Alzheimer’s disease and is expected to impose an
increasing social and economic burden on societies as people age [2]. Due to a selective and
progressive loss of dopaminergic cells, the substantia nigra pars compacta within the ventral
tegmental area (VTA) of the midbrain supplies the corpus striatum (located in the basal ganglia,
responsible for balance, control of movements, and walking), , and frontal cortex (responsible for
thought, memory or behavior) with depleted dopamine, a catecholamine neurotransmitter plays an
important role in the regulation of reward and movement. As results, the acetylcholine output
elevates and therefore the equilibrium between dopamine and acetylcholine disrupts to lead motor

disorder, especially fine tuning, and a breakdown in cognitive control [3].
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Figure 1.1 Dopamine is manufactured in nerve cell bodies located within the ventral tegmental area
(VTA) and is released in the striatum and the frontal cortex (modified from [4]). People with PD may

suffer from the loss of dopamine.

1.1.2 Clinical signs of Parkinson’s disease

The diagnosis of PD is based on the presence of the classic clinical signs: resting tremor,

rigidity, postural instability, and bradykinesia etc. [5, 6].
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Figure 1.2 Clinical signs of Parkinson’s disease include tremor, stooped posture, masklike face,

rigidity, impaired balance and coordination, and short shuffling steps. (from [7])

Resting tremor is an involuntary oscillation of a body part occurring at rest, with a rate of 4 to
7 oscillations per second [8, 9]. Rigidity is a major clinical sign of PD and patients with PD often
complain of “heaviness” and “stiffness” of their limbs [8]. Impaired balance reaction is also
observed in PD patients. With the loss of balance and postural stability, PD patients typically
experience difficulty in maintaining upright balance, walking, or turning around [10]. PD patients

therefore fall easily [11, 12] and are threatened by fracture and consequent lengthy hospitalization

3



[13]. Bradykinesia means ‘“slowness” of movement, PD patients frequently have difficulty in
initiating movement [8]. Both the voluntary and automatic movements are reduced in speed, range,
and amplitude, indicating termed “freezing” of movement [8].

Because overall coordination is impaired, PD patients with bradykinesia cannot perform fine
tuning in motor tasks such as writing or grasping small objects. Poverty of movement commonly
affects PD patients and involves an overall decrease in the total number of movements. PD patients
are often unable to perform two different movement tasks at the same time or to combine motor

programs into complex sequences.

1.1.3 Gait disorders as cardinal motor symptomsin early stages

Although the clinical presentation and progression can be greatly variable, gait disturbance
presents a cardinal motor symptom and may be observed in early stages of the disease. With a
generalized lack of extension at hip, knee, and ankle joints, PD patients walk with a slow and
shuffling gait [14-16], and reduced reciprocal arm swing [17]. A festination (propulsion) gait may

occur due to a forward flexed or stooped posture when walking [18].

1.2 Gait analysis

Gait analysis is the systematic study of human locomotion. Acquisitioned and augmented by
instrumentation and sensors, kinetic and kinematic parameters, including joint angular velocity,
acceleration, inertia force, ground reaction force, speed, gait cycle duration, and even muscle

activity during locomotion, are quantified and analyzed to obtain productive information that helps
4



us understand the nature of gait. Clinically, gait analysis helps the medical staff (e.g. clinicians and

physic therapists) to assess, plan, and treat patients with neural or physical injuries that affect their

ability to keep balance and posture during walking.

1.2.1 Computer-aided video gait analysis

With the availability of video camera systems in the 1970s, the widespread application of gait

analysis surged as a vigorous course [19-22]. Development of microelectronics speeds up the

innovations of the modern computers. With the assistance of modern powerful computers,

video-based motion analysis has become a popular solution for gait analysis [19-24] in the past

decades. Researchers were able to observe and demonstrate the gait of patients with PD and other

pathological conditions such as cerebral palsy, stroke, and neuromuscular disorders within realistic

cost time constrains, definitely. Instead of traditional evaluations conducted by human inspectors,

researchers currently use computer-aided video gait analysis for precise data collection, reliable

quantitative measurements, and systematic data management. As natural body movements can be

transformed into essential spatial-temporal parameters with video-image analysis, abnormalities in

gait and posture can be captured and identified with precision [25-27].

1.2.2 Requirements of available computer-aided video gait analysis

Commercial motion analysis systems, including the Vicon Motion Systems and BTS (Vicon

Inc., Oxford, UK), which are performed using a setup consists of floor-mounted load transducers,



high-powered strobes, LED, and sensors placed onto particular body regions, facilitate clinical

treatment regimes and follow-up monitoring. A typical modern gait lab is presented as Figure 1.2.

Figure 1.3 A gait laboratory with lighting condition, passive infrared cameras, and embedded force

platforms

There are several cameras placed around a walkway or treadmill, which are connected to a

console computer. Subjects participating in gait trials are asked to have single markers applied to

palpable bony landmarks, such as the iliac spines of the pelvis, the malleoli of the ankle, and

condyles of knee. The subjects then will be instructed to walks down the walkway or the treadmill

and the console computer will record data from cameras to calculate the moving trajectories of

single markers in three dimensions. A full breakdown of the motions at each joint is given through a

model that is applied to compute the underlying motion of the bones.
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1.3 Purpose of this study

The recognition and evaluation of the progression of PD in the early stages are important
issues in treatment and care for PD patients. The available commercial motion analysis methods
provide accurate kinematic measurements of the parkinsonian gait [6] and other neuromuscular
disorders [28-31]. However, an experimental setup consisting of a wide stage, force plates, multiple
infrared cameras, reflective balls, light-emitting diodes (LED), or inertial sensors placed onto
regions of the subject’s body are demanded [32]. Furthermore, dedicated manpower is required to
calibrate the camera system, apply the reflective balls, and utilize the software. These properties of
conventional gait analysis limit its application in many clinical settings, such as clinics with space
or budgetary limitations. Thus a method for performing gait analysis that can be applied in clinics
within a limited space to identify PD patients and determine the therapeutic effect of drug
management on PD is required. To provide a solution that can be easily installed and used in a
clinic or at home to monitor and quantify the spatial-temporal gait parameters, we propose a

portable system to track and analyze parkinsonian gait in this study.

1.4 The hypotheses of the proposed study

Herein, we introduce two hypotheses of the proposed study and thereby set the stages for the
following research. The details of the two hypotheses will be reiterated in chapter 3 and 4,

respectively.



Hypothesis 1. The walking silhouette contributes to the identification of different gaits.

Therefore the mild parkinsonian gait in the different states can be identified from the monocular

image sequences using a feature-based method.

Hypthesis 2: The gait initiation and symmetry are deteriorated in the early stages of

Parkinson’s disease. Thus, it is possible to identify the parkinsonian gait from the monocular image

sequences using a method that analyzes the gait performance and symmetry during the gait

initiation period.

1.5 Overview of the dissertation

The primary goal of this research is to provide a portable system to quantify the parkinsonian

gait. Using the solution, researchers and clinicians with space or budgetary limitations are able to

recognize the mild PD gait and quantify the improvement from medical treatment and care. This

dissertation comprises chapters as follows:

Chapter 1 provides a brief overview of Parkinson’s disease and the computer-aided video

motion analysis method, and the demonstration of the incentive to begin the research.

Chapter 2 provides descriptions of two methods developed to enhance the portable system

utilizing the monocular image sequences of walking to acquire quantitative analysis of mild

parkinsonian gait performance during the gait initiation and steady-state walking periods and

associated symmetry indexes.

Chapter 3 describes a video-based method with simple clinical setting uses the KPCA to
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quantify and recognize mild parkinsonian gait during the steady-state walking period at clinics with

space and budgetary limitations. We hereby prove the hypothesis 1.

Chapter 4 presents the second gait analysis method, the centroid tracking algorithm (CTA), to

provide an approach with demand for less space and budget. The CTA shows that the mild

parkinsonian gait has more significant difference in the performance and walking symmetry during

the gait initiation period than those during the steady-state walking period when comparing to the

healthy subjects. We hereby prove the hypothesis 2.

Chapter 5 provides a summary of the key findings, conclusions that were drawn, and follow-up

recommendation for future studies.






Chapter 2 Parkinsonian gait analysis using monocular image

sequences
2.1 The silhouette-based parkinsonian gait analysis method

To establish a portable system that can be easily installed and used in a clinic to do
parkinsonian gait analysis, the quite simple clinical setting and the easy-to-use portable equipment
are required. The silhouette method provides an economical solution for gait identification in
clinical settings [33]. Requiring only a monocular digital camera to capture the silhouettes of the
subjects walking, the method largely reduces the computational cost and storage size; the image
processing procedures are also simplified [34]. As a lower-cost method that requires less space and
less dedicated manpower than the Vicon motion analysis method based on model reconstruction,
the existing approaches that utilize walking silhouettes perform well in recognizing different gaits
[35-38]. However, the quantitative measurements of the gait parameters are not provided. To
quantify the abnormalities in mild parkinsonian gait, the kernel-based principal component analysis
(KPCA) [39] is developed in the 1% part of this research to enhance the simple and efficient

silhouette method.

2.2 Thekernel principal component analysis

The KPCA is an extension of known Principal Component Analysis (PCA) [37, 40] that is a

powerful technique and widely utilized in image processing [41-45] and data classification [46-49].
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The PCA is an eigenvalue decomposition procedure that uses an orthogonal linear transformation to
transform a set of possibly correlated input variables into a new coordinate system and acquire a set
of uncorrelated variables called principal components. A simple and concise description of the PCA
is as the following.
The PCA procedure begins at acquiring the covariance matrix of a multi-dimensional dataset.
For example, for a N dimensional dataset X =[X, X,,..., X,], we can derive n!/(2(n-2)!) different
covariance values. The next step is to derive the eigenvalues of the covariance matrix and sorted
them as A, ... A, the highest to lowest, and the corresponding orthogonal eigenvectors €,...e, once
the covariance matrix is derived, wherein ¢'xg =1 and @ xe =0. The N dimensional dataset X
then can be decomposed into n orthogonal (uncorrelated) vectors as the following,
y,=eX=eX+e,X+.+6%  i=12..,n (2.1)
wherein Y, ... Y, are principal components of the N dimensional dataset X, and therefore form a
new coordinate system. To be noted, the number of principal components must be less than or equal
to the number of original variables. The eigenvector corresponding to the greatest eigenvalue (also
indicating the greatest covariance) by the orthogonal linear transformation of the N dimensional
dataset comes to lie on the 1* coordinate (called the 1* principal component), the eigenvector with
the 2™ greatest eigenvalue (also indicating the 2™ greatest covariance) on the 2™ coordinate, and so
on. After all of the principal components are determined, we can keep the components
corresponding to more significant eignevalues and leave out the ones corresponding to smaller

eigenvalues, indicating that we can describe the original data with reduced dimensions. A
12



multi-dimensional dataset with the 1% and the 2™ principal components y, and Y, are presented

as S FTEIREIR -

J

Figure 2.1 The 1% and the 2™ principal components Y, and Y, of a multi-dimensional dataset
However, many data types implicitly contain non-linear structures and principal variable
components, which are nonlinear and related to the input variables. KPCA is an extension of PCA
that uses kernel methods [50] to extract the nonlinear components. In recent years, KPCA has been
suggested for various image-processing tasks, such as image noise reduction and compression, as
PCA is used to decompose linear combinations of data sets and does not reflect the generation

process of natural images [51]. The following is a brief introduction to KPCA.
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(a)

Figure 2.2 (a) a non-linear structure of dataset (b) a linear structure of dataset

Consider space X with a set of N vectors, X, X,,::, Xy, which encompasses a set of an

N-dimensional vector (for example, N = 64 x 64 = 4096 from a trimmed binary silhouette captured

in chapter 3). To analyze the nonlinear components of X, the covariance matrix C that contains the

nonlinear principal components can be acquired by mapping X to a feature space, H. The mapping

equation (2.2) is shown below.

1 NS
C= 2P0

(2.2)

(2.3)

2.4)

where ¢(x) is a nonlinear polynomial function that maps the vectors to H, X;is the j-th vector, N

is the total number of vectors, T contains the centralized mapped data of the transposed matrix, nv

is the mean, and ¢(x)is the centralized mapped data with nf. To acquire the eigenvector, v, and

eigenvalue, A, of the covariance matrix, C, the following equation must be solved:

Av=Cv

14
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Because (ﬁ(xl ) is a vector with approximately infinite dimensionality, it is difficult to solve the

covariance matrix, C. Therefore, anew NXN centralized kernel matrix, K , 1s defined to acquire

the eigenvector and eigenvalue of C.

K =3(x)-¢(x,)= K=1,K =Kl +1 Kl (2.6)
Ky =0(x)-8(x ) =k(x.%) (2.7)
K(x:x)=(x-x)", d>1 2.3)

(2.9)

(lN)ij A

1
N
where | and | are the indices of the row and column, respectively, of vector X, k(Xi»Xj) is a

polynomial kernel function for acquiring the dot product of the vectors from the original space and

d > 1 because the result of KPCA is identical to that obtained from PCA, where d = 1. The

relationship between the eigenvector, V, of the kernel matrix, K , and the eigenvector, v, of the

covariance matrix, C, can be expressed as

1 3
v, =—=— Q. k
\/7

Q=[a(x)@(x,)--@(xy)] (2.11)

©,m (2.10)

where A, is a nonzero set of eigenvalues of V, mis the number of non-zero eigenvalues and Q

is a centralized mapped data set. After projecting Q to the feature space constructed by

V,V,, -+, V,,, the K" KPCA feature vector, Y, , can be represented as

1 ~
Y =ViQ=—=Q'Q=—¥K 12
A

where T refers to the transposed matrix.
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To summarize, the KPCA computation can be separated into three steps. The first step is to
determine parameter d in (2.8) for the polynomial kernel function and derive kernel matrix K

according to equation (2.6). The second step is to derive the k™ major eigenvector, V., of the

NxN centralized kernel matrix, K , and acquire the K" coordinate vector, Vi, using equation

(2.10). The third step is to project the centralized mapped data set, Q, to the feature space using

equation (2.12) and to acquire the K" KPCA feature vector, Yy -

2.3 The quantitative analysis of parkinsonian gait initiation and

symmetry

Amongst the clinical signs of parkinsonian gait pattern, the disordered gait initiation [6, 52, 53]
and gait asymmetry [54, 55] represent the major symptoms in the early stages of this disease and
are commonly used to identify the gait of and evaluate the gait performance of patients with mild
PD besides the affected gait parameters during the steady-state walking.

Gait initiation is defined as a task that challenges the balance control system by requiring a
transition from motionless and stable standing to continuous unstable steady-state locomotion, also
indicating from double- to single-leg stances [6]. Due to bradykinesia, PD patients require longer
motor preparation time than healthy individuals and perform a hesitation and freezing when
initiating gait. Their feet appear to be stuck on the floor, indicating that the ability to generate a
normal gait pattern is impaired [56].

Gait symmetry is defined as a task to coordinate actions between the right and left lower limbs

and behave the actions identically to produce rhythmical motion during walking [57]. Due to the
16



predominantly unilateral occurrence of tremor, rigidity, and bradykinesia, PD patients present the
dysfunction at coordinating their lower limbs and motor deficiency [58]. As results, PD patients
walk slowly and their steps are small. Their stride and step lengths [59, 60], velocity profiles [61,
62], and ranges of joint motion [63] reduce because different behaviors between the two lower
limbs.

Although the KPCA that is proposed to enhance the silhouette-based method may provide
quantitative analysis of mild parkinsonian gait during walking, the left and right sides of
participants cannot be identified in binarized monocular image sequences. Therefore the
information concerning the gait symmetry is not provided in the 1% part of this study. To acquire the
quantification of gait symmetry during walking by a digital camera, in the 2" part of this study, a
method using the centroid tracking algorithm (CTA) is developed to track joint identifiers secured
on palpable landmarks of left and right lower limbs during walking, by which a number of
quantitative gait parameters and associated symmetry indexes during the gait initiation and
steady-state walking periods are assessed for providing a complete evaluation of the mild PD gait

performance.

2.4 The centroid tracking algorithm (CTA)

The centroid tracking algorithm (CTA) is a method used to track a moving object [64].
Basically, the CTA captures the centroid of a moving object of interest within an image frame

sequence, and then records the centroid moving trajectory of the object of interest. The CTA is

17



independent of the size of targets and less sensitive to the intensity of the targets because the

motion recognition characteristics of a target of interest are its location, velocity, and acceleration,

which are obtained using data from successive image frames. If the target size is known, the CTA

may set limits for removing the clusters that differ sufficiently from the size of the target cluster in

a same image frame to reduce the computational complexity [65].

The flow chart of the CTA is illustrated in Figure 2.3 and the procedure details are the

following.
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Figure 2.3. The flow chart of the centroid tracking algorithm.
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Step 1. Initializing variables

Two important variables, the tolerating pixel value T and the bounding window size BW are
initialized. T and BW are used to reduce the searching range and tolerate light influences on the
tags depending on the size of two markers put on the fibula head and lateral malleolus. In this study,
T and BW are set as constants 10 and 5 in all sequences, respectively.

Step 2. Determining the object of interest

The object is selected from the jth frame. The centroid location C, is calculated from a set
{Xj) }i-1.n» Where x . represents the location of the chosen object, n is the number of pixels in the
chosen object, and p(C,) is the pixel value of C,.

Step 3. Constructing the bounding window

A rectangular window W(C,) with a center C, is constructed as the searching region for
the jth frame. The centroid C, is defined as:

{C(%),C;(y)} = {median(X,;, (X)), median(X;,; (¥))}i-;..n (2.13)
The bounding window W (C,)of frame j is defined as:

{[C; (X0 -BWLI[C;(y)-BW]} {[C,(X)-BWLIC(y)+BW];

W(C.
( ’)e[{[C,-<x)+BW],[C,-<y>—BW]} {[C, £} + BWL,[C, (y) + BW]}

] (2.14)

An orange cross presents the centroid C;and an orange rectangle presents the bounding window

W(C,) are shown in Figure 2.4(a).
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frame j frame j+1 frame j+2

(b) (c)

Figure 2.4. The centroid tracking algorithm used to determine the centroid (color crosses) and the

bounding window (color rectangle) in each frame.

Step 4. Searching for the centroid location.

As illustrated in Figure 2.4(b), all pixel values within the orange rectangle in (j+1)th frame

subtract the p(C,) that is the pixel value of the C,, the centroid of the object of interest appears
in the jth frame. If the subtraction is smaller than the tolerating pixel value T, these locations x .,

are considered as candidates for the centroid location C(x,,,)

in the (j+1)th frame, as
represented by the following equation:

X isni € COX )5 if p(X )= PC) ST 2.15)
X isni & CX i )s otherwise '
Step 5. Calculating the new centroid.

After the locations x . in C(x

(i) are acquired, a new centroid location C, is

calculated by averaging x,,,. Subsequently, the new bounding window W(C,,;) with the new

centroid location C,, is determined. The centroid C,,, and the bounding window W(C,,,)of

the (j+1)th frame are presented as the cyan cross and cyan rectangle in Figure 2.4(b). Finally, steps
3 to 5 were repeated to determine the centroids of the moving within all image frames and then

determine a moving trajectory of the object of interest in an image frame sequence. The centroid

C.., and the bounding window W(C,,,)of (j*+2)th frame are presented as the violet cross and

21
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violet rectangle in Figure 2.4(c).

The CTA adopts the concept of the kernel function to create a bounding window as a search

region; the locations in which the searched pixel value is more similar to the pixel value of the

region of interest are identified. A new centroid location is then computed to represent the current

object. By adjusting the size of the bounding window according to different states, sudden changes

in the direction of the object can be tolerated, resulting in a simple and accurate tracking method.
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Chapter 3 Quantification and recognition of parkinsonian gait

using kernel principal component analysis

3.1 Background and motivation

Hypothesis 1: The walking silhouette contributes to the identification of different gaits. Therefore the
mild parkinsonian gait in the different states can be identified from the monocular image sequences
using a feature-based method.

As gait disorders are symptoms of the early stages of PD, gait performance has become a
specific and major hallmark in the recognition of patients with mild PD and the evaluation of the
progression of the disease [28, 52, 66]. The Unified Parkinson’s Disease Rating Scale (UPDRS,
please refer to Appendix A for a more detailed description) [67] is widely used to assess and track
the longitudinal course of PD. It is also used to evaluate the level of motor impairment and
response to medical treatment, such as levodopa (L-dopa, please refer to Appendix A for a more
detailed description), for PD patients. However, such evaluations rely on the experience and/or the
expertise of the clinician. Observations based on the UPDRS part III, for evaluation of motor
impairment, tend to be subjective. In light of the issues mentioned, a quantitative measurement for
parkinsonian gait is much needed.

In order to provide a simple and efficient solution for the quantification and recognition of
parkinsonian gait, a video-based silhouette method using kernel-based principal component
analysis (KPCA) [39] is developed in this study. The aim of the approach is to provide clinicians
and researchers with an easy-to-use and —install tool to recognize and quantify the gait performance
of non-PD subjects and patients with mild PD in both “Drug-Off” and “Drug-On” states.
Participants’ gait patterns during the steady-state walking period is captured using the proposed

approach. Temporal and spectral analyses of gait patterns are investigated. The correlations
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between the UPDRS part III scores used to assess motor impairment and the kinematic gait

parameters extracted by the proposed method are also inspected.

3.2 Methods

3.2.1 The participants

Twelve patients with mild PD who scored an average rating of 2.33 on the Hoehn and Yahr
(H&Y) scale (six scored 2.5, five scored 2, and one scored 3) and twelve healthy adults with no
neurological history that might cause motor disorders within the past six months were recruited
from Hualien Buddhist Tzu Chi General Hospital, Taiwan. The subjects volunteered to participate,
and informed consent was obtained from all subjects in accordance with Buddhist Tzu Chi General
Hospital’s Institutional Review Board (IRB 097-08) Committee on research involving human
subjects. The biometric characteristics of the participants are listed in table 3.1. The healthy adults
were denoted as non-PD subjects; the patients with mild PD given L-dopa at an equivalent daily
dose for one hour were classified as “Drug-On”, whereas those that abstained from L-dopa
treatment for at least 12 hours were classified as “Drug-Off”. For the patients with mild PD, the

degree of motor function impairment was evaluated using part I1I of the UPDRS.

Table 3.1 The basic biometric characteristics of categorized subjects.

PD group (9M/3F) non-PD group (3M/9F)

Min Max Mean+SD Min Max Mean+SD
Age (years) 49.00 74.00 60.30+6.71 48.00 67.00 56.40+7.04
Height (m) 1.50 1.82 1.52+0.46 1.49 1.80 1.60+0.08
Weight (kg) 36.00 106.00 63.054+24.37 50.00 67.00 58.08+5.05
Body mass index (kg/m?) 13.38 36.25 24.90+5.74 21.36 24.37 22.76+1.15
Disease duration (years) 1.00 18.00 8.00+4.82 N/A N/A N/A
Hoehn and Yahr stage 2 2.5 2.33+0.33 N/A N/A N/A

SD = standard deviation

3.2.2 Environmental setup and videotaping standard
A 6-m corridor decorated with a navy curtain was prepared for the walking trials. A commercial

digital charge-coupled device (CCD) video camera (PV-GS400, Panasonic) was mounted on a
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tripod and placed 4.1 m in front of the curtain, perpendicular to the walking pathway, to capture the
lateral view of each participant’s walk.

All participants were asked to wear clothing of a much lighter color than the curtain to facilitate
the filtration of noise during image post-processing. To reduce the variability of the gait
performance, the participants were asked to perform three walking trials. All participants were
asked to walk at their natural pace in order to naturally reflect their gait performance. Between
trials, the participants were instructed to rest for at least five minutes until their strength was
recovered.

The patients with mild PD were asked to abstain from L-dopa overnight for at least 12 hours
prior to the gait measurements. They then performed three drug-off trials in the morning.
Immediately following the completion of the drug-off trials, they were given L-dopa at an
equivalent daily dose. Three drug-on trials were then assessed one hour after the administration of
L-dopa.

In this study, we utilized the participant’s gait performance during the steady-state walking
period to assist in the verification of the proposed method. Therefore, the participants were asked to
begin walking 2 m from the left end of the corridor. Moreover, the last 1 m of each walking period
was not videotaped so that patient deceleration did not affect the data.

The experimental setup and the flowchart of the data analyses are illustrated in Figures 3.1 and

3.2, respectively.

25



Curtain

* 2m I < Field OAf VIEW : 31— e ] [7) e

Video camera

Figure 3.1 A general schematic of the experimental setup used for video recording. The participant
wears a light suit to enhance the contrast between the individual and the dark background. The
participant walks along the course (approximately 6 m) in front of the video camera (located
approximately 4.1 m away). To ensure that the captured data reflect the gait performance during the
steady-state walking period, the camera videotapes only the middle 3 m of each walking trial.
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Figure 3.2 A flow-chart of gait analysis and recognition.

All trials were videotaped using a sampling rate of 15 image frames per second and an image

size of 320 x 240 pixels. The spatial resolution was approximately 1.06 pixel/cm. The video files

were segmented and separated into sequential images. Using the method and equations presented in

3.2.4 binary silhouettes collection, the background of the sequential images can be removed, and

the processed sequential images can be transformed into binary images that represent the walking
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silhouettes to facilitate image noise reduction. Each sequential binary image is then transformed
into an encoded one-dimensional matrix containing the biometric features of the gait. KPCA is then
applied to detect the biometric features. Using KPCA, the walking silhouettes can be decomposed,
and the biometric features of the people walking can be extracted for gait analysis. The efficiency
of the KPCA-based feature approach was compared with other competing methods, the area [68]
feature approach and the principal component analyses (PCA) [37, 40]-based feature approach. To
this end, the minimum distance classifier (MDC) [69, 70], a numerical approach, was used to
classify the different gaits and determine the classification sensitivity. The discrete Fourier
transform (DFT), which is used to transform a signal in the time domain into a representation in the
frequency domain, was applied to transform the coefficients of the KPCA components to
understand the spectral power distribution of the different gaits. The KPCA, MDC, and DFT
algorithms and the data analysis were implemented using MATLAB (MathWorks, Natick, MA) on
a personal computer. The details of implementing the KPCA, MDC, and DFT algorithms for
parkinsonian gait analysis are described in KPCA-based feature extraction and heel strike
determination, minimum distance classifier (MDC) for classification, and spectral analyses for
temporal gait feature signals, respectively. In our preliminary experiments, the KPCA-based feature
approach was tested on six healthy adults and compared to the GAITRite® system (CIR system,
Inc., USA) for validation. The preliminary results showed that there was no difference in assessing
the kinematic gait parameters of interest, indicating that the KPCA-based feature approach was an
easy-to-use and inexpensive tool for measuring the selected kinematic gait parameters. We were
convinced of the validity of the KPCA-based feature approach in assessing the gait performance of
adults and continued to use it to assess the kinematic gait parameters of the participants in the
present study. Detailed descriptions for the setup of the preliminary experiment and the translation

of the results are presented in Appendix B.
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3.2.3 Background Construction

Because we were interested in the silhouette data of a participant walking, the invariant
background scene was unnecessary for further gait analyses and should be discarded. The intensity
median value of each pixel, which is at the same location through an entire gait sequence, was

utilized to construct the background image and is represented as the following:

B(i, j) =median, (I, j)) (3.1)
where (i ,j) is the brightness at location (i ,J) in the specific image that corresponds to time instant
t. TN is the total number of images in the entire sequence, and B(i ,j) is the background pixel

value.

3.2.4 Binary silhouette collection
To separate the silhouettes from the image frames of the patient walking, the background images
for each videotaped gait sequence are prepared using equation (1). A silhouette pixel of the patient

walking is acquired by the difference method from [71], represented as equation (2).

2><\/(It(i, D+1)(B(G, j)+1) X2x\/(256—lt(i, 1))(256-B(, |))

L ) T ) A S ) P =T
_ 1 ¢ B(,))
THiSS M 2 256 e
{Ft(?,J:):l, i_f Ft(i., j_)>THR (3.4)
F@d,j)=0, if K@, j)<THR

where I¢(i ,j) is the brightness intensity of a pixel (i ,j) in a particular image frame at an instant t,
B(i ,j) is the brightness intensity of a prepared background image pixel, M is the total number of the
pixels within the prepared background image (in this case, M = 320 x 240) and THR is the
threshold used to separate a walking silhouette from the original gait sequential image frame.

According to equation (3.3), the brightness levels of all of the prepared background image pixels is
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averaged and normalized to determine the threshold THR, ranging from [0, 1]. According to
equation (3.4), if F(i,j), the brightness level of a silhouette pixel, > THR, F(i,j) = 1; if Fy(i,}) <
THR, F(i,j) = 0. After the binarized procedure, 320 x 240 pixel binary silhouette image frames are
acquired. The 320 x 240 pixel binary silhouette image frames are then trimmed to 64 x 64 pixels to
preserve the walking silhouette, eliminate redundancies, and reduce the computational costs during
image analyses. An example of gait image processing is represented in Figure 3.3. The trimmed
binary silhouettes of the sequential walking image frames from the non-PD subject and mild PD
patient in the “Drug-Off” and “Drug-On” states are illustrated in the top region and middle and

bottom regions in Figure 3.4, respectively.

Figure 3.3 An example of gait image processing: top: original color image frames, bottom: binary

silhouette frames.
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Figure 3.4 The trimmed 64 X 64 pixel binary walking sequence silhouettes of a non-PD subject (top)
and a patient with mild PD in the “Drug-Off” (middle) and “Drug-On” (bottom) states.

3.2.5 KPCA-based featur e extraction and heel strike deter mination

Modern advances in computing power have greatly widened researchers’ scope in gathering
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and investigating information from many variables, information which might have been ignored in
the past. Yet to effectively scan a large pool of variables is not an easy task, although the ability of
researchers to interact with data has been much enhanced by recent innovations in dynamic
graphics. In this study, KPCA is used to reduce the dimensionality of image frames with multiple
nonlinear components. After projecting the centralized mapped data set Q, the K™ KPCA feature
vector, Y, can be derived using equation (2.12). The KPCA-based feature approach selects the
primary components from a walking image sequence, forming a biometric feature vector to
represent a given participant. The sequential gait image frames and the associated sequential

primary KPCA components (**KPC) of a non-PD subject are shown in Figures 3.5(a) and 3.5(b).
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Figure 3.5 (a) Step image frames from a non-PD subject. The top panel is the original sequential
walking image frames with 240 x 320 pixels. The bottom panel is the trimmed 64 x 64 pixels binary
silhouettes of the top image frames. (b) The magnitudes of the associated sequential primary KPCA
components. For simplicity, the primary KPCA component is denoted as **KPC. The green dots

indicate the magnitudes of the sequential **KPCs. (c) The power spectrum of (b) using a 2048-point
DFT and rectangular window with a length, L, of 64 points.

After comparing the gait sequences and associated “*KPC waveforms, the **KPC value (fifth
dot, Figure 3.5(b), B) reaches a local maximum value when a participant performs a mid-swing
event (frame 5, Figure 3.5(a)). Moreover, a heel strike event (frame 1, Figure 3.5(a)) corresponds
to a local minimum **KPC value (first dot, Figure 3.5(b), A). Similarly, in Figure 3.5(b), the **KPC
values are at local maximums (fifth and thirteenth dot, Figure 3.5(b), B and D, respectively) and

minimums (first and ninth dot, Figure 3.5(b), A and C, respectively) at the moment when the

non-PD subject is performing mid-stances and heel strikes, respectively.

32



Using the temporal *KPC waveforms, the moment of occurrence of the heel strike can be
determined. The distance between two heel strikes can be estimated by the two locations of the heel
in the binary 240 x 320 pixels image frames. As a result, the kinematic gait parameters, which
depend on the time period and distance between two heel strikes that are performed with the same
foot, gait cycle time, stride length, walking velocity and cadence can be estimated. The power
spectrum of the temporally associated KPC is plotted in Figure 3.5(c), and the main lobe

frequency reflecting the step frequency of the non-PD subject is located at approximately 1.67 Hz.

3.2.6 Minimum Distance Classifier (MDC) for classification

The MDC [69, 70] is a numerical approach used for classify unknown data to classes which
minimize the distance between the data and the class in multi-feature space. Because the distance is
defined as an index of similarity, the minimum distance is identical to the maximum similarity. In
the current study, the efficiency of area, PCA-based, and KPCA-based feature approaches are
compared by evaluating their classification sensitivity. An area feature vector is obtained by
counting the number of pixels of a particular participant’s walking image sequence. On the other
hand, the primary PCA and KPCA components per frame are used to form the PCA and KPCA
feature vectors for a particular participant, respectively. Gait patterns are classified with a MDC,
which is sufficient for the evaluation of feature efficiencies in this study. MDC is used in this study
to classify a feature vector y to the to ith class | whose mean M has a minimum Euclidian

distance to y. The minimum distance classifier can be expressed as

| :argmiin{(y -m)" (y -m)] (3.5)
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where (Y —m,)'(y —m)is the Euclidian distance; T is the data of the transposed matrix.

3.2.7 Spectral analysesfor temporal gait feature signals

The DFT is a specific method to transform a function in the time domain into the frequency
domain for understanding the spectral power distribution of the function [72]. Discrete Fourier
Transform (DFT), also called Finite Fourier Transform (FFT), is one of the specific forms of
Fourier Transform which has discrete form and finite length in either time domain or frequency
domain. It can be recognized as sampling in frequency domain of Discrete Time Fourier Transform

(DTFT). For a input function y[n] with n=0,1,---,N =1, by DFT we can get

N R
YIk]=) yinle M, k=1, 2, -, N-1 (3.6)
n=0

The complex numbers Y[k] represents the amplitude and phase of the different sinusoidal
components of the input signal y[n]. Formally, the transformed series in frequency is periodic and

the frequency spectrum can be expressed in a finite duration.

For the spectral gait analyses, “*KPC is transformed with DFT. The main lobe frequency
(corresponding to H in Figure 3.5(c)) of the *KPC spectrum, representing the gait parameter of the
step frequency for a participant, is then computed. Afterwards, the sums of the power within the
main lobe between F and G in Figure 3.5(c) is calculated. The sums of the powers within the main
lobe are denoted as Eyn, Emorr and Eyon for a non-PD subject, a patient with mild PD in the
“Drug-Oft” and “Drug-On” states, respectively. The low- and high-frequency counterparts for a

participant, denoted as Epn, Erorr and Ep on and Enn, Enorr and Egon, respectively, are also
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similarly calculated.

The study was designed to identify the gaits and quantify the gait parameters of the non-PD
subjects and the patients with mild PD in the “Drug-On” (proper L-dopa treatment received one
hour later) and “Drug-Off” (at least 12 hours after the withdrawal of L-dopa) states. A paired t-test
was used to examine the differences among the non-PD, “Drug-Off” and “Drug-On” groups. To
examine whether the BMI and age make impacts on recognizing the non-PD subject and “Drug-Off”
gaits, an analysis of covariance (ANCOVA) test for measurements with covariates BMI and age
was applied to evaluate the differences in gait parameters between the two groups. A value of p less
than 0.05 is considered to be statistically significant. A least significant differences LSD post hoc

test is performed.

3.2.8 Correlations between the extracted gait parameter s and the five sub-scores
inthepart I11 of UPDRS

The extracted gait parameters of gait cycle time, stride length, walking velocity, cadence stride
frequencies from the KPCA-based feature in temporal and frequency domains are correlated with
the five sub-scores in part III of UPDRS. The correlation coefficient between the observation
assessment and the image-based gait analysis is investigated with the Pearson product-moment

correlation, shown as

_ L (X=X vy
“N—lé[ S j{ S j (3.7)

where X and y are two datasets of variable of interest, X, and Y, are the ith data points of X
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and Yy respectively, X and Yy are the sample means of datasets X and Yy, S, and S, are the sample
standard deviation (S.D.) of X and y, N is the amount of data points of dataset, and r is the
correlation coefficient. If the p-value < 0.05, which means our method has the expected and
equivalent capability close to the five subscores in UPDRS part III and may describe the motor

impairment.

3.3 Reaults

3.3.1Five UPDRS part |11 subscores of the patientswith mild PD in the“Drug
Off” and “Drug On” states

Five subscores—axial score (summation of UPDRS part III items 18, 22 with neck only, 27,
28, 29, and 30), limb akinesia (summation of items 23, 24, 25, and 26), limb rigidity (item 22 with
neck excluded), limb tremor (summation of items 20 and 21), and part III (summation of items 18
to 31)—are computed according to the UPDRS part III motor scores (table 3.2) to describe the
motor deviation of the patients with mild PD in different states (table 3.3). After the L-dopa
treatment, the five subscores of all the patients with mild PD are improved; 10 patients with mild

PD show an increase of less than 20 points on the Part III scores.
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Table 3.2 UPDRS part III motor scores during the*“Drug-Off” and“Drug-On” states.

Patient 1 2 3 4 5 6 7 8 9 10 11 12
Drug Off/On  Off/On  Off/On  Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On  Off/On
18 .speech 2/2 11 2/2 0/0 171 0/0 171 11 1/0 11 11 171
19. Facial 11 0/0 2/2 171 1/0 0/0 2/1 11 2/1 171 1/1 171
expression

20. Tremor at rest

Face 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Hand RL 1,0/1,0 3,1/1,0 03/03 21/2,0 0,000 1,010 1,1/0,0 2000 01/0,0 03/03 0,0/0,0 0,0/00
Feet RL 1,2/0,0 1,0/00 2,0/1,1 1,000 0,000 0000 0000 2000 1000 12/12 0,000 0,0/0,0

21. Action tremor 0,0/0,0 2,1/1,0 0,0/0,0 1,1/0,0 0,000 1,0/1,0 1,1/1,1 1,1/0,0  2,2/0,0 03/0,2 0,000 0,0/0,0
RL

22. Rigidity
Neck 21 212 212 22 0/0 0/0 21 21 2/0 1/0 11 22
UERL 2UL,0 3221 2312 2221 1202 3221 3221 1200 1200 020,10 1302 2222
LERL UL 2221 3323 2312 010,01 1,000 2211 220,01 3221 0,100 1,212 2121

23.Fin

R3L MO 0200 211 2212 LI 14T LULO 23L1  22L1 1212 0302 L1 12712

24. Hand grips

oL 0,100 2,1/l 1212 2UL1 0101 LULL 2241 2ULI 2212 0202 1312 1/,

25. RAMH RL 02/02  31/1,0 2313 2222 1200 1,040 2211 2222 1211 0302 1313 12/1,1

26. LegagilityRL  2,2/00 2,1/1,0 3,333 1,1/0,1 0,1/0,l 1,00,0 1,1/0,0 1,100 22/0,0 0,1/0,1 1,2/1,1  0,0/0,0

27, Arisef

Ariseirom 300 21 2 10 0/0 1/0 110 1”1 1/0 0/0 1 0/0
chair
28. Posture 11 1 11 11 11 1”1 32 w0 1 0/0 1 0/0
29, Gait 10 11 22 1/0 10 10 11 21 200 11 11 0/0
30, Postural 2”0 0/0 11 2”0 11 11 2/1 2”0 21 11 11 0/0
stability
31 B

ody 2”1 21 20 11 10 1 20 21 21 20 20 1”1

bradykinesia
Part I11: total 3314 3921 4842 3523 1810 1912 4220 3920 4114 28722 3025 20/19

R: right; L: left; UE: upper extremity; LE: lower extremity; RAMH: rapid alternating movements of
hands.
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Table 3.3 Definition of the five subscores in the UPDRS part III.

Subscores UPDRS part |11 motor items
Axial score 18, 22 (neck only), 27, 28, 29, 30
Limb akinesia 23,24,25,26

Limb rigidity 22(without neck)

Limb Tremor 20, 21

Part 7/ 18 -31

3.3.2 Comparison of the sensitivities of the approaches

Classification accuracies using MDC based on the area feature, PCA-based and KPCA-based

features to identify different gaits are presented by confusion matrices in table 3.4.

Table 3.4 The confusion matrices use the area feature, PCA and KPCA approaches to classify

different gaits.

Areafeature PCA KPCA

Non-PD  Drug-Off Drug-On Non-PD  Drug-Off Drug-On Non-PD  Drug-Off Drug-On
Non-PD 9 0 3 10 1 1 10 0 2
Drug-Off 1 8 3 2 7 3 2 10 0
Drug-On 6 5 1 3 1 8 2 1 9
Predicted(positive)/  9/12 8/12 1/12 10/12 7/12 8/12 10/12 10/12 9/12
actual(all)
sensitivity 75% 66.67% 8.33% 83.33% 5833%  66.67% 83.33%  83.33% 75%
Average sensitivity  50.16% 69.44% 80.51%

In identifying the non-PD subjects from the patients with mild PD in the “Drug-Off” and
“Drug-On” states, the separation capabilities of area, PCA-based and KPCA-based features are
similar. However, area feature is inadequate in identifying patients with mild PD in the “Drug-On”
state. Only one of them is classified correctly, whereas the others are mis-classified as non-PD
subjects or patients with mild PD in the “Drug-Off” state. On the other hand, results from the

KPCA-based feature approach provide an average sensitivity of 80.51%.

3.3.3 Kinematic gait parameters among different groups

The KPCA-based method was used to extract the gait parameters from the sequential gait

video frames from the non-PD subjects, the patients with mild PD in the “Drug-On” and “Drug-Off”
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states. The average gait cycle times (s), stride lengths (cm), walking velocities (cm/s), and cadences

(steps/min) of these groups are presented in Table 3.5.

Table 3.5 Kinematic and spectral gait parameters (Mean+SD).

Non-PD (n=12) Drug-Off (n=12) Drug-On (n=12) BMI  Age

Gait cycletime (s) 1.21+0.08 1.16+0.15 1.15+0.12 N.S NS
Sride length (cm) 105.48+6.95 85.54+17.21 £105.94+22.90 N.S NS
Walking velocity (cnvs) 87.35+8.45 76.35+22.84 93.68+23.35 N.S NS
Cadence (steps/min) 99.33+6.04 106.45+15.09 105.88+12.33 N.S NS
Sep frequency (H2) 1.66+0.11 1.48+0.34 1.74+0.18 N.S NS
EL (%) 9.55+7.84 16.21+9.60 “0.40+4.56 NS NS
EM (%) "75.07+9.36 63.89+11.63 72.58+8.63 N.S NS
EH (%) 15.37+£3.10 19.88+8.25 18.00+6.31 N.S NS

“Sare significant (p < 0.05) regarding the non-PD subject and patients with mild PD in the “Drug-Off” state, and the
patients with mild PD in the “Drug-Off” and “Drug-On” states. EL, EM, and EH are the percent of energy distributed
in the low-frequency band, main-frequency band, and high-frequency band, respectively. Interactions between factors

(BMI and AGE) and Groups (Non-PD and Drug-Off) were assessed by ANCOVA. N.S is non-significant (p > 0.05).

The patients with mild PD showed improvements in all gait parameters after receiving L-dopa,
but only stride length showed significant improvement. Compared to the patients with mild PD in
the “Drug-Off” state, the non-PD subjects manifested better gait performance in terms of stride
length and walking velocity, but their performance was worse than the patients with mild PD in the

“Drug-On” state across all kinematic gait parameters. Moreover, the non-PD subjects showed no

significant differences in the kinematic gait parameters compared to the patients with mild PD in
the “Drug-Off” and “Drug-On” states. ANCOVA measurements were used to analyze the interaction
between factors (BMI and age) and groups (Non-PD and Drug-Off). We find found that there were
no significant differences in the interactions between the factors and groups.

Figure 3.6 presents examples of the **KPC waveforms from a non-PD subject, a patient with
mild PD in the “Drug-Off” and “Drug-On” states. The "KPC waveforms of the patient with mild
PD in the “Drug-On” state were similar to those of the non-PD subject, whereas the waveforms of

patients with mild PD in the “Drug-Off” state tended to be rather irregular.
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Figure 3.6 (a) The 15KPC waveform of a selected non-PD subject. (b) The 13KPC waveform of a
selected patient with mild PD in the “Drug-Oft” state. (c¢) The 1stKPC waveform of the same patient

with mild PD in the “Drug-On” state. The red circles and black squares represent the local

maximums and minimums, which reflect the occurrences of mid-swings and heel strikes,

respectively.

3.3.4 Power spectrum of temporal gait signals

The gait frequency spectra of the patients with mild PD in the “Drug-Off/On” states and the

non-PD subjects are shown in Figure 3.7. The average step frequencies of the non-PD subjects and

patients with mild PD in the “Drug-On” and “Drug-Off” states are 1.661, 1.743 and 1.543 Hz,

respectively. The comparisons of the step frequency and spectrum power distributions among the

three groups are shown in table 3.5. The results from a paired t-test indicate that patients with mild

PD in the “Drug-On” state show significant improvement in step frequency. Moreover, Exnon 1S

significantly larger than Eyorr, and Ep on is significantly larger than Ep opr.
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Figure 3.7 The gait frequency spectra of (a) patients with mild PD in the “Drug-Off” state (red solid

0 5
frequency (Hz)

.

0 5 10
frequency (HZ)

M
0 5
frequency (Hz)

10

10

0 5
frequency (Hz)

10

0 5 10
frequency (Hz)
0 5 10

frequency (HZ)

DJM?,

frequency (HZ)

uﬂﬂﬂ“?“

frequency (Hz)

10

10

[ i)l [iF

[T

[viF

I iFl

i

[ iF

i

[irl

-
[}
mf

0.4

02 nﬂfL\Q_

1]

1] 5
frequency (Hz)

04—
0

0 o 10
frequency (Hz)

10

0.4
0.2 f! fy
0

0 5
frequency (Hz)

10

0.4

0.2 Mll

0

0 5
frequency (Hz)

(a}

10

0.4
"2k

I:I o]

a L 10

frequency (Hz)

0.4
0.2
a

10
frequency (Hz)

0.4
0.2
a

10
frequency (HZ)

0.4
0.2

10
frequency (Hz)

(b)

il

[YiF)l

il

[ {f)

il

MU

[YiF)l

il

line) and the “Drug-On” state and (b) the non-PD subjects.

41

0.4
0.2
a

0.4
0.2
a

0.4
0.2
a

0.4
0.2
a

0.4

0.2¢

a

0.4
0.2
a

0.4
0.2
a

0.4

0.2¢

o

0 ﬁ5 10
frequency (Hz)

0 5 10
frequency (Hz)

0 5
frequency (Hz)

0 5
frequency (Hz)

a ] 10
frequency (Hz)

a ] 10
frequency (Hz)

a ] 10
frequency (HZ)

a ] 10

frequency (Hz)



3.3.5 Correlations between the gait parameters and five UPDRS part |11
subscores

The correlation coefficients between the gait parameters extracted using the KPCA features and
the five UPDRS part III subscores are presented in Table 3.6. It is shown that all gait parameters,

except cadence, are significantly correlated to at least 3 subscores.

Table 3.6. Correlation coefficients between the five subscores and the extracted gait parameters.

Axial score Limb akinesia Limb rigidity Limb tremor Part 111
Gait cycle time N.S. 0.470 0.462 N.S. 0.483
Stride length 0.731 0.479 0.543 N.S. 0.625
Walking velocity 0.686 0.538 0.559 0.413 0.661
Cadence N.S. N.S. N.S. N.S. N.S.
Stride frequency 0.693 0.667 0.558 0.438 0.742

N.S. indicates “not significant”

3.4 Discussions

3.4.1 The senditivity of the KPCA-based gait recognition method

As parkinsonian gait is commonly accompanied by not only slowness in walking and shuffling
steps, but also a reduction in hand swing and a stooped posture; thus, information regarding upper
extremities and trunk movements facilitate the identification of patients with mild PD [4, 51]. The
silhouette approach proposed in this study aims to develop a parkinsonian gait recognition method.
Two parkinsonian gait recognition algorithms, the KPCA-based and PCA-based, as well as the area
feature approaches, were tested for their abilities to classify the gait of the “non-PD” subjects and
the patients with mild PD in different states. The area feature approach is worst at identifying the
patients with mild PD in the “Drug-On” state. Only one out of 12 patients with mild PD in the
“Drug-On” state is correctly identified and classified; the rest are incorrectly identified as non-PD
subjects or patients with mild PD in the “Drug-Off” state. The area feature approach calculates the
area occupied by an object (in this case, a participant) in an image frame (i.e., the number of pixels),

which may be similar under different conditions. Thus, the poor sensitivity of the area feature
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approach is not surprising. The average sensitivity of the PCA-based feature approach is 69.44%,
which is better than the area feature method. Nonetheless, the average sensitivity of the
KPCA-based feature approach is the highest at 80.51%. Such results are expected; although PCA is
appropriate in decomposing images with linear components, the spatiotemporal characteristics
associated with abnormalities in gait and upper extremity and trunk movements contain nonlinear

principal components.

3.4.2 Gait parameter analysis

Quantitative gait performance is an important reference for early detection and diagnosis of PD
and the improvement brought about by scheduled medical treatments. Our results show that the
patients with mild PD who receive the L-dopa treatment show improvement in their gait cycle time,
stride length, walking velocity, cadence, and step frequency. Such results are consistent with the
findings in prior studies [73-75]. However, the patients with mild PD show significant
improvements in only their stride length and step frequency in the “Drug-On” state. The
improvements in gait cycle time, cadence, and walking velocity are not significant, whereas
reductions in gait irregularity and motor symptoms were observed. The results show that the
improvements in PD gait are not robust. Nevertheless, the proposed method presented a promising
sensitivity in identifying the patients with mild PD in the “Drug-Off” and “Drug-On” states.

Besides, the PD patients in this study are in the mild stages of the disease and present no
significant deficits or deterioration in motor functions, they move normally or with only a slight
impairment after receiving L-dopa. In this study, the non-PD subjects recruited were healthy adults
of nearly the same age and the similar BMI as the patients with mild PD. Given that the healthy and
patient groups had similar physical conditions, there were no significant differences in gait
performance between the two groups. As the patients with mild PD in the “Drug-On” state

presented the nearly the same gait performance as the non-PD subjects, it becomes a big difficulty

43



to identify two groups. As shown in Figure 3.6 (a) and (b), the **KPC waveforms from walking
cycles performed by a “non-PD” subject and a patient with mild PD during the “Drug On” state are
similar, suggesting the difficulty in identifying the mild parkinsonian gait with inspection using
eyes. However, the proposed method once again showed a promising sensitivity in identifying the
non-PD subjects and the patients with mild PD in the “Drug-On” state.

In Figure 3.6(c), a longer gait cycle time and the freezing of gait and slowness in motion
resulted from body bradykinesia can be identified from the irregular and gentle parts. Due to the
slow and asymmetry and unstable walking of the patients with mild PD during the “Drug-Off” state,
the *KPC waveforms appear to be irregular and different from the non-PD subject’s *KPC
waveform. In fact, the slowness in the walking cycle shifts the main frequency of the *KPC
waveform toward a lower frequency band. Compared with the patients with mild PD during the
“Drug-On” state, approximately 8% of the energy is shifted from the main frequency (Drug On:
73.86%, Drug Off: 66.10%) to a lower frequency band (Drug On: 8.34%, Drug Off: 16.95%) for
the patients with mild PD in the “Drug-Off” state. The change in the power distribution causes the
temporal "*KPC waveform, resulting in a failure to form regular waveforms resembling those of
non-PD subjects. Such results show that the lack of dopamine in the basal ganglia circuit in the

brain may cause abnormalities and irregularities in the gait profile.

3.4.3 Correlations between the five UPDRS I 11 subscores and the extracted gait

parameters

The correlations between the extracted gait parameters and the five UPDRS part III subscores
are calculated and all gait parameters are significantly correlated to at least three subscores, with
the exception of cadence. It is worthwhile to note that limb akinesia, limb rigidity and limb tremor

show significant correlations with some gait parameters, despite the lack of items used to evaluate
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gait or posture. The findings are consistent with the results described in [76]; thus, it is possible for

the therapists to evaluate the motor function of upper extremities of patients with mild PD through

gait parameters. The results also support the findings in [77], which describes how the deterioration

in upper extremity motor functions contributes to the identification of parkinsonian gait.

In addition, the proposed approach provides the power spectrums of the participant’s gait as

additional information to analyze the irregularity of the motions of patients with mild PD.

3.5 Conclusion

The abilities to recognize the mild parkinsonian gait and monitor the disease’s progression are

important clinical issues. However, previous research has been hindered due to the lack of a reliable

tool that can be easily installed, provide prompt gait analysis, facilitate data collection and gait

analysis, and lower a patient’s level of exertion during the examinations. In this study, a computer

vision-based gait analysis approach that uses kernel-based principal component analysis is

developed. It only requires a digital camera and a decorated corridor to facilitate the classification

and quantification of specific gait patterns. Although there is a high similarity in the gait patterns

between the patients with mild PD and non-PD subjects, the proposed method presents an

encouraging classification sensitivity of 80.51%. Besides, the quantification of the mild

parkinsonian gait can also be easy obtained and therefore the clinicians may evaluate the

improvement brought about by scheduled medical treatments and monitor the progression of this

disease. The significant correlations between the gait parameters and five UPDRS part III subscores
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are also acquired and suggest that the gait parameters may also facilitate the assessment of motor

deviations of patients with mild PD.
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Chapter 4 Quantitative analysis of parkinsoian gait initiation

and symmetry using centroid tracking algorithm
4.1 Background and motivations

Hypthesis 2: The gait initiation and symmetry are deteriorated in the early stages of Parkinson’s
disease. Thus, it is possible to identify the parkinsonian gait from the monocular image
sequences using a method that analyzes the gait performance and symmetry during the gait
initiation period.

In the previous chapter, we have introduced a KPCA-based method using monocular video
image sequences to carry out the recognition and quantification of parkinsonian gait. The ease of
use and installation of the previous proposed method provides clinicians and researchers a low cost
solution to monitor the progression of and the treatment to PD. However, the demand for space was
not well-addressed in the 1% part of this study due to an approximately 6-m decorated corridor
required.

Disorder gait initiation [6, 52, 53] and walking symmetry [54, 55, 57] are cardinal symptoms
and are commonly used to monitor the progression of PD and estimate the postural instability of
PD patients in the early stages. As the evaluation of gait initiation requires a relative small space
and is much easier to carry out at clinics with spacious limitation, we are prompted to develop a 2nd
method that recognizes the mild parkinsonian gait using the quantitative analysis of parkinsonian

gait initiation and symmetry.
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In this chapter, the centroid tracking algorithm (CTA) for object tracking is developed to
enhance the proposed method in obtaining quantitative gait parameters and associated symmetry
indexes during the gait initiation and steady-state walking periods for aiding clinicians to recognize
the patients with mild PD, evaluate the improvement brought about by the levodopa, and monitor

the progression of PD.

4.2 Methods

4.2.1 The participants

A total of 10 patients with mild PD (8 males and 2 females) with an average age of 59.6 years
old (max = 68, min = 44, standard deviation [S.D.] = 6.78), an average weight of 67 kg (max = 76.5,
min = 46, S.D. = 9.7), and an average L-dopa dose per treatment of 243.7 mg (max = 375, min =
125, S.D. = 68.8) are recruited as a PD group from Buddhist Tzu Chi General Hospital, Hualien,
Taiwan. Another 10 neurologically intact participants (6 males and 4 females) with an average age
of 54.4 years old (max = 67, min = 48, S.D. = 5.8) and an average weight of 62.2 kg (max = 75.5,
min = 51, S.D. = 9) are recruited into a non-PD group. All participants are giving informed written
consent prior to participation.

The patients with mild PD given L-dopa at an equivalent daily dose (LEDD) for one hour
were classified as “Drug-On”, whereas those that abstained from L-dopa treatment for at least 12
hours were classified as “Drug-Off”. The patients with mild PD were asked to abstain from L-dopa

overnight for at least 12 hours prior to the gait measurements. They then performed drug-off trials
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in the morning. Immediately following the completion of the drug-off trials, they were given

L-dopa at an equivalent daily dose. Drug-on trials were then assessed one hour after L-dopa given.

All patients with mild PD are physically independent. One patient was reported as having mild

unilateral motor symptoms with axial involvement on his left side. Nine patients had mild bilateral

motor symptoms disease, with recovery on pull test. Six of nine patients were predominantly

diseased on their left sides. Three of nine patients were predominantly diseased on their right sides.

In the “Drug-Oft” state, the patients with mild PD scored an average rating 2.45 on the Hoehn

& Yahr (H&Y) scale [78] (max = 3, min = 1.5, S.D. = 0.5); whereas the average rating was 2.35

(max = 3, min = 1.5, S.D. = 0.4) in the “Drug-On” state. The clinical performances of all patients

with mild PD both states are also estimated using part III of unified Parkinson’s disease rating scale

(UPDRS) scores [67]. The patients with mild PD in the “Drug-On” state showed an average

reduction of 7.8 on UPDRS part III score (max =21, min = 2. S.D. = 6.8). The characteristics of the

participants in both groups are presented in Table 4.1.
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Table 4.1 The characteristics of patients with mild PD and non-PD subjects in this study

patients with mild PD non-PD subjects
H&Y stage UPDRS III total
score
Subject Age Sex Weight(kg) L-dopa Drug-Off Drug-On Drug-Off Drug-On Age Sex Weight(kg)
(mg)
1 4 M 73.5 125 1.5 1.5 10 8 52 M 52
2 61 F 74.7 375 3 25 44 26 50 M 71
3 67 M 71 187.5 2 2 46 35 57 M 54
4 65 M 72 250 25 25 25 23 48 M 72.5
5 57 M 61 250 3 3 52 49 67 F 56
6 59 M 71 187.5 2 2 21 16 57 F 65
7 57 M 56 250 25 25 28 24 48 F 51
8 68 M 68 250 25 25 26 18 51 F 60
9 59 F 46 312.5 3 25 47 26 57 M 65
10 59 M 76.5 250 2.5 2.5 13 9 57 M 75.5

The H&Y stage and UPDRS III total score refer to the “Drug-Off” and “Drug-On” states.

4.2.2 Environmental setup and video recording standard

The environmental setup is shown in Figure 4.1(a). A video camera (VPC-HD1010, Sanyo

Corp., Ltd, Japan) is stationed approximately 4.5 m away from the pathway, perpendicular to the

participants’ walking direction. Participants are asked to walk barefoot along a 4-m pathway at

their pace to naturally reflect their gait performance after receiving a vocal instruction. Each

participant is asked to perform four left-to-right walking trials, starting with the right leg, as well as

four right-to-left walking trials, starting with the left leg, for a total of eight successful trials.

Between trials, the participants were instructed to rest for at least five minutes until their strength

was recovered.
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fibula head

lateral malleolus

Video camera
(a) (b)

Figure 4.1 (a) The environmental setup includes a camera at a distance of 4.5-m from the front end of

the pathway and a 4-m pathway of participants’ walking direction. (b) The position of markers on a
participant’s the fibula head and lateral malleolus.

Referring to a prior study [31], gait initiation and steady-state walking periods are defined as

the duration beginning from the vocal instruction for gait initiation to heel strike of the first swing

leg in a gait sequence, and the duration starts from toe off of the first stance leg to the final heel

strike in a gait sequence walking states, respectively. The descriptive stages during the gait

initiation and steady-state walking periods are presented in Figure 4.2. The first step length is

defined as the distance between heels of the first stance leg and the first swing leg at the moment

when the first swing leg contacted the ground, indicating the proceeding distance during the gait

initiation period.
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Figure 4.2 Descriptive stages during the gait initiation and steady-state walking periods.
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All captured walking dynamic data was sent to a host computer and clipped automatically with
a sampling rate of 60 frames/sec. The resolution of each image is 640 x 480 pixels, with an image
spatial resolution of 1.6 pixels/cm. As the video camera was not equipped with an excitation filter,
the reflective markers cannot be detected. In addition, the image spatial resolution was too low to
accurately identify the conventional small and spherical markers. Therefore, as shown in Figure
4.1(b), two 5 X 5 cm square color tapes were used as tracking tags to mark the positions of the
fibula head and lateral malleolus during all trials. They were attached to two anatomic bony
landmarks, the fibula head and the lateral malleolus of the leg. Thereafter, the proposed
camera-based gait tracking and analysis system, implemented with MATLAB R11 (Mathworks Inc.,

USA), was conducted for further signal processing.

4.2.3 The centroid tracking algorithm to determine the hedl strike and toe off
events

Heel strike and toe off events are necessary for reconstructing the gait pattern and quantifying
gait parameters and further statistical analysis. In this study, the derivative of shank angle variation,
the shank angular velocity, is used to determine the heel strike and toe off events during each gait
sequence. Traditional methods record the moving trajectories of tags on hip, knee, and ankle and
then compute the shank variation angle & (in degrees) during walking (as shown in Figure 4.3(a)).
However, in this study, the determination of the shank angular velocity is different. The

acquirement of shank angle variation uses two tracking tags attached on the fibula head and lateral

malleolus to compute the variation angle 0 (in degrees) during walking (as shown in Figure
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4.3(b)). A red solid line (a plumb line) perpendicular to the ground from the tracking tag on the

fibula head is traced in each image frame. It is treated as a zero degree (6=0°) reference for

calibration in image post-processing. Noted that hip flexion is not required for the determination of

shank angle variation angle.

0=180r

Figure 4.3 The representation of how the proposed method uses two joint identifiers to calculate the
shank angle variation. (a) The traditional method using three joint markers secured on hip, knee, and
ankle joints. (b) The proposed method using two joint markers secured on knee and ankle joints,
respectively. The red solid line is a plumb line and treated as a zero degree reference for calibration in
image post-processing. The red dotted line is a line horizontal to the ground. The angle between the

red solid and red dashed lines is the shank angle variation derived.

In the present study, the CTA introduced in chapter 2 is used to detect the moving trajectories

of the two tags, by which the knee and ankle joint movements during trials are recorded. Using the

CTA, the shank angle variation during walking can be computed conveniently. According to a

previous study [79], the heel strike and toe off events can be effortlessly determined through shank

angular velocity.

The quantitative gait parameters during the gait initiation and steady-state walking periods both

can be derived once the heel strike and toe off events are determined. In Figure 4.4, the shank angle
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variation in degrees and the associated angular velocity from a mild PD patient’s walking trial are

shown as the top and bottom illustrations, respectively.
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Figure 4.4 The shank angle variation and associated angular velocity in a gait sequence performed by
a patient with mild PD. The circles are the moments of the occurrences of heel strike and toe off

events. TO and HS are toe off and heel strike events, respectively.

The index of frame reflects time interval equivalent to the inverse of the clipping rate. An

example of the variation of a mild PD patient’s shank angle is shown in Figure 4.4 and heel strike

and toe off events are identified with circles, respectively. After the heel strike and toe off events

are determined, the kinematic gait parameters during the gait initiation and steady-state walking

periods of each walking sequence can be extracted to examine the differences in gait performance

between different states in non-PD subjects and patients with mild PD.

To verify the validity of the video-based gait tracking and analysis system, a commercial gait

analysis technique, the Vicon system (Oxford Metrics Group; Oxford, UK), is selected for validity

verification. Results indicate that there is no significant difference between the proposed system and
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the compared techniques in providing gait parameters, including stance phase (% of gait cycle),
walking velocity (cm/sec), and cadence (steps/min) for further gait parameter analysis (please refer

to Appendix C for details).

4.2.4 Gait symmetry index

Gait symmetry information is another important indication of the severity of the loss of
walking balance in people with neuromuscular issues, including PD. Robinson et al. proposed a

symmetry index (SI) equation [80], which is reported in [81, 82] and defined below:

g AXap %]
0.5(X + X,)

x100% (4.4)
where X and X, are the values of any gait parameter measured from the right and left lower
limbs, respectively. To avoid side (right/left) or paretic/non-paretic limb discrimination, the
absolute value is applied for the subtraction item. The magnitude of SI indicates the degree of
asymmetry, ranging from 0 to 200%. When SI = 0, the gait is at perfect symmetry; an increase in SI
implies an increase in the asymmetry of the gait parameter. Notably, step length, swing time, and

swing speed during gait initiation and steady-state walking periods are measured to derive gait

symmetry index in different states.
4.2.5 Data statistics

The experiment was designed to quantitatively compare differences in gait parameters and
symmetry indexes in non-PD subjects and patients with mild PD. A paired t-test is conducted to

find the differences in the gait parameters and symmetry indexes between the patients with mild PD
56



in “Drug-On” and “Drug-Off” states. A two-sample t-test is used to compare the differences in gait
parameters and symmetry indexes between the non-PD subjects and patients with mild PD. A value

of p less than 0.05 is considered to be significant.

4.3 Results

4.3.1 Comparisons of gait parametersand symmetry indexes during the
steady-state walking between non-PD subjects and patientswith mild PD

The averages of the gait parameters during the steady-state walking for non-PD subjects and

patients with mild PD in the “Drug-Off” and “Drug-On” states are shown in Table 4.2.

Table 4.2 Comparisons of the gait parameters and symmetry index during steady state walking
period among non-PD subjects and patients with mild PD in different states. All values are

presented as mean + standard deviation.

Gait Parameter Non-PD Drug-Off Drug-On
Gait Cycle Time (sec) 1.13+0.15 1.07 + 0.08 1.06 £ 0.11
Stance Phase (%GC) 62.20 = 1.82 62.6 £2.65 62.03 + 1.46
Walking Velocity (cm/sec) %LL "1.18 £ 0.20 0.94+0.19 1.19+0.18
Cadence (steps/min) 107.93 £ 14.34 113.18 + 8.41 114.84 £ 11.50
Step Length (cm) %LL "1.09+0.11 0.92+0.19 “1.08 = 0.09
Swing Time (sec) %0.44 £ 0.05 0.39 £ 0.03 0.39 +0.04
Step Speed (cm/sec) %LL "2.65+0.34 2.20+0.34 2.71+£0.38
Symmetry | ndex Non-PD Drug-Off Drug-On
Gait Cycle Time (%) ‘144 +1.23 2.56+1.16 2.06 +2.62
Stance Phase (%) .21 £0.67 3.06 £ 3.06 3.13+2.81
Step Length (%) 40.99 + (.84 3.36+1.93 2.75+1.49
Swing Time (%) .19+ 1.10 6.03 + 3.80 5.44 +4.59
Step Speed (%) “*0.77 +0.78 5.59 +3.26 3.52+2.95

% LL 1s normalized by leg length. %GC is percent of gait cycle.
Sk grepresent significant differences (p < 0.05) between the non-PD subjects and patients with mild
PD in the “Drug-Off” state, non-PD subjects and patients with mild PD in the “Drug-On” state, and

patients with mild PD in the “Drug-Off” and “Drug-On” states.
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The associated symmetry indexes are also shown in Table 4.2. In the “Drug-Off” state, the

mean step length of patients with mild PD is significantly shorter than that of the non-PD subjects

(092 £ 0.19 vs. 1.09 £ 0.11, p < 0.05). The mean swing time of patients with mild PD is

significantly shorter than that of the non-PD subjects (0.39 + 0.03 vs. 0.44 £+ 0.05, p < 0.05). The

mean walking velocity and step speed in patients with mild PD are significantly less than those of

the non-PD subjects (0.94 £0.19 vs. 1.18 £ 0.20, p < 0.05 and 2.20 &+ 0.34 vs. 2.65 + 0.34, p< 0.01,

respectively). The patients with mild PD in the “Drug-Off” state show a slight but non-significant

increase in their cadence and stance phase and reduction in gait cycle time as compared to the

non-PD subjects. The symmetry indexes of patients with mild PD in the “Drug-Off” state are

significantly greater than those of the non-PD subjects, in terms of gait cycle time (2.56 = 1.16 vs.

1.44 + 1.23, p < 0.05), step length (3.36 + 1.93 vs. 0.99 + 0.84, p < 0.01), swing time (6.03 + 3.80

vs. 1.19 £ 1.10, p < 0.01), and step speed (5.59 + 3.26 vs. 0.77 £ 0.78, p < 0.01). However, no

significant differences are observed in the stance phase (% of gait cycle).

In the “Drug-On” state, patients with mild PD display significant increases in walking velocity

(1.19 £ 0.18 vs. 0.94 £ 0.19, p < 0.05, paired t-test), step length (1.08 = 0.09 vs. 0.92 = 0.19, p <

0.05, paired t-test), and step speed (2.71 £ 0.38 vs. 2.20 = 0.34, p < 0.05, paired t-test), as compared

to the patients with mild PD in the “Drug-Off” state. When compared to non-PD subjects, patients

with mild PD in the “Drug-On” state show significant differences in swing time (0.39 = 0.04 vs.

0.44 £ 0.05, p < 0.05, paired t-test). However, no significant differences are observed in the other
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gait parameters. The symmetry indexes of patients with mild PD in the “Drug-On” state are
significantly larger than those of non-PD subjects in terms of the stance phase (3.13 + 2.81 vs. 1.21
+ 0.67, p < 0.05), step length (2.75 + 1.49 vs. 0.99 + 0.84, p < 0.01), swing time (5.44 £+ 4.59 vs.
1.19 £ 1.1, p < 0.05), and step speed (3.52 £ 2.95 vs. 0.77 £ 0.78, p < 0.05). However, there is no
significant improvement in the symmetry indexes observed for patients with mild PD in the

“Drug-On” state.

4.3.2 Comparisons of gait parameters and symmetry indexes during the gait
initiation period between non-PD subjects and patients with mild PD

The averages of the gait parameters of non-PD subjects and patients with mild PD in the

“Drug-Off” or “Drug-On” states during the gait initiation period are presented in Table 4.3.

Table 4.3. Comparisons of gait parameters and symmetry index during the gait initiation period
among non-PD subjects and patients with mild PD in different states. All values are presented as

mean =+ standard deviation.

Gait Parameter Non-PD Drug-Off Drug-On
First Step Length (cm) % LL '0.55 +0.06 0.42+0.11 .53 +0.07
First Swing Time (Sec) 0.47 + 0.06 0.47 +0.06 0.49 + 0.08
First Step Speed (cm/sec) %LL "1.16 £0.27 0.90 +0.19 1.07+0.29
Symmetry | ndex Non-PD Drug-Off Drug-On
First Step Length (%) .98 £ 4.40 16.36 +5.19 13.58 +8.58
First Swing Time (%) 2.24+2.73 10.98 £ 6.93 12.41 +9.88
First Step Speed (%) 3,81 +3.26 12.02 + 6.92 16.81 +10.41

% LL is normalized by leg length.

"% represent significant differences (p < 0.05) between the non-PD subjects and patients with mild
PD in the “Drug-Off” state, non-PD subjects and patients with mild PD in the “Drug-On” state, and
patients with mild PD in the “Drug-Off” and “Drug-On” states.

59



The associated symmetry indexes are also included in Table 4.3. In the “Drug-Off” state, the

mean first step length of the patients with mild PD is significantly shorter than that of the non-PD

subjects (0.42 £ 0.11 vs. 0.55 + 0.06, p < 0.05). The mean first step speed of the patients with mild

PD is significantly slower than that of the non-PD subjects (0.90 = 0.19 vs. 1.16 = 0.27, p < 0.05).

When compared to the non-PD subjects, the patients with mild PD in the “Drug-Oft” state show a

slight but non-significant reduction in first swing time. The symmetry indexes of the patients with

mild PD are significantly larger than those of the non-PD subjects in first step length (16.36 + 5.19

vs. 2.98 + 4.40, p < 0.01), first swing time (10.98 £+ 6.93 vs. 2.24 + 2.73, p < 0.01), and first step

speed (12.02 + 6.92 vs. 3.81 £ 3.26, p < 0.05).

In the “Drug-On” state, the patients with mild PD demonstrate significant improvement in first

step length (0.53 = 0.07 vs. 0.42 £ 0.11, p < 0.05) as compared to the “Drug-Off” state. There are

slight but non-significant increases in first swing time and first step speed. The patients with mild

PD in the “Drug-On” state show no significant differences in any of the gait parameters when

compared to the non-PD subjects. The symmetry indexes of the patients with mild PD in the

“Drug-On” state are significantly greater than those of non-PD subjects in first step length (13.58 +

8.58 vs. 2.98 £ 4.40, p < 0.01), first swing time (12.41 £ 9.88 vs. 2.24 £ 2.73, p < 0.01), and first

step speed (16.81 £ 10.41 vs. 3.81 = 3.26, p < 0.01). However, the patients with mild PD in the

“Drug-On” state do not show significant improvement across all of the symmetry indexes when

compared to the “Drug-Off” state.
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4.4 Discussions

4.4.1 Differences during the steady-state walking period among patients with
mild PD in the different states and non-PD subjects

Compared to the non-PD subjects, the patients with mild PD in the “Drug-Off” state during the
steady-state walking period show significantly slower walking velocity, step speed and shorter step
length. The quantitative outcomes obtained in this study are consistent with the findings of
preceding studies [5, 15, 28, 83]. In the “Drug-On” state, the patients with mild PD show significant
improvement in walking velocity and step speed; increases in step length are also observed as
compared to the “Drug-Off” state. These results are also consistent with earlier studies [5, 74,
83-86]. It has been reported that the patients with mild PD in the “Drug-Off” state might exhibit an
increase in cadence to compensate for the reduction in step length caused by the shuffling gait with
small steps [87]; the patients with mild PD in the “Drug-On” state exhibit reductions in the stance
phase and gait cycle time and an increase in walking velocity [88, 89]. However, in this study, a
non-significant increase in cadence is observed in the patients with mild PD in the “Drug-On” state.
Because the length of the pathway was limited, the patients with mild PD in the “Drug-On” state
may not have taken enough steps to allow the detection of a significant reduction in cadence
compared to the “Drug-Off” state. During the steady-state walking period, the non-PD show
significant differences in the symmetry indexes to the patients with mild PD. The differences are
assumed to be the results of the motor impairments in the patients with mild PD. Although the

patients with mild PD in the “Drug-On” state exhibit improvement in most symmetry indexes when
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compared to the “Drug-Off" state, there is no significant difference. There may be two plausible
explanations. Since only one camera is used to collect the kinematic data (lateral view), the gait
parameters of the left and right sides of the same participant are obtained from separate trials.
Therefore, each symmetry index is the average of two trials; it can be assumed that the differences
are also averaged, hence reducing potential significance. Besides, the patients with mild PD with
different severity of neurodegeneration do not exhibit similar improvement in posture and balance
control. According to the H&Y scale, only two PD patients show conspicuous improvement (from 3
to 2.5) in the “Drug-On” state, which is not sufficient to produce statistically significant
improvements in the symmetry indexes.

Although the differences in gait parameters during the steady-state walking period between the
non-PD and PD patients are observed and consistent with the preceding studies, the results suggest
that it is not easy to recognize patients with mild PD due to the lack of statistical significance.
However, at least four of the defined five associated symmetry indexes of the healthy are
significantly better than those of the patients with mild PD, suggesting that the associated symmetry
indexes derived from the steady state walking may facilitate the early detection and diagnosis of

PD.

4.4.2 Differences during the gait initiation period among the patients with mild
PD in the different states and non-PD subjects

Due to stooped posture and forward leaning, patients with mild PD may exhibit the following

behavior: a significant forward ankle shift to reduce the backward center of foot pressure (COP)
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shift, an increase in the unloading phase, a reduction in the vertical height of the first step, and a

shortening in the length of the first step [6]. Breniere et al. have demonstrated that the reduction in

the backward COP shift may decrease the COP forward acceleration of PD patients, hence reducing

first step speed and step length during the gait initiation period [90]. Results from the quantitative

analysis are consistent with the demonstration. Patients with mild PD exhibit significantly shorter

first step and slower first step speed during the gait initiation period than the non-PD subjects.

When the patients with mild PD in different states are compared, the first step length in the

“Drug-On” state is significantly increased. It has been reported that the proper levodopa dose can

help the patients with mild PD increase their first step length and shorten the first swing phase by

improving the performance in the unloading phase and the COP backward displacement [91]. The

outcomes of this study are consistent with the previous findings, suggesting that the proposed

system can provide useful information for identifying clinical improvement in gait initiation

performance of patients with mild PD upon the administration of medication.

The patients with mild PD in the “Drug-On” state exhibit slight but insignificant improvement

in the symmetry index of the first step length; moreover, their symmetry indexes of the first swing

time and first step speed are worse but insignificant than those of the patients with mild PD in the

“Drug-Off” state. Results indicate that levodopa treatment seems not to improve the symmetry

indexes during the gait initiation period. In clinical observations, some patients with mild PD in the

“Drug-On” state exhibit hesitation and freezing at gait onset unilaterally. Their first swing time and

first step speed on the affected side were increased and reduced, respectively. The observations are
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consistent with the prior studies [92, 93] that demonstrate motor symptoms including hesitation and

freezing at gait onset may occur as the side effects of levodopa treatment. Although the results

suggest that the symmetry indexes are not responsive to the levodopa treatment, it is insufficient to

rule out that levodopa treatment facilitates the symmetry in gait during the gait initiation period.

Further research is required to explain the effects of levodopa on gait symmetry during gait

initiation.

During the gait initiation period, as compared to the patients with mild PD in both states, the

non-PD subjects exhibit significantly greater performance in all of the symmetry indexes and few

gait parameters. The results suggest that the identification of mild PD patient using the symmetry

indexes during the gait initiation period may be easier than that using the gait parameters during the

gait initiation period.

Due to the special demand for a decorated corridor, the identification of mild parkinsonian gait

using the method introduced in chapter 3 may be not applicable in some clinics with small space.

The results in this part of study provide another solution for identification of mild PD patient. Using

the gait symmetry derived from the gait initiation period, clinicians may recognize patients with

mild PD and monitor the improvement brought about by the medical treatment quickly and

precisely. Besides, the crucial gait performances, including first step length, first swing time, and

first step speed, are determined using the quantitative gait analysis outcomes and may facilitate the

treatment management such as rehabilitation programs or drug.
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4.5 Conclusion

The gait initiation and symmetry are indicators of gait performance and allow clinicians to

comprehend contemporary gait performance of patients with Parkinson disease and to plan medical

treatment or rehabilitation programs for them. In this study, a method using the CTA to track and

analyze the gait initiation and symmetry of patients with mild PD is developed.

Using the CTA-based method, a number of quantitative gait parameters and associated

symmetry indexes during the gait initiation and the steady-state walking period are derived, and the

characteristics of mild parkinsonian gait then can be identified. Results reveal that the recognition

of patients with mild PD can be attained using the quantitative gait symmetry indexes during the

gait initiation period except those during the steady-state walking period. Because only a digital

camera, space for subjects to perform gait initiation, two joint identifiers secured on a participant’s

the fibula head and lateral malleolus are required, this system presents promising portability and

improved convenience for identification of patients with mild PD in clinics with small space or at

home.

This study aims to assess the quantitative analysis of gait initiation and symmetry in walking of

patients with mild PD, and therefore aid clinicians may detect and diagnose PD early and monitor

the therapeutic effect from medical treatment or rehabilitation programs in clinics with small space;

however, clinical applications can be expanded to analyze the motor performance of patients with

other neuromuscular disorders.
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Chapter 5 Conclusions & future studies
5.1 Conclusions

PD is a progressive neurodegenerative disease and the second most common
neurodegenerative disorder after Alzheimer’s disease and is expected to impose an increasing social
and economic burden on societies as people age. The diagnosis and treatment of PD in the early
stages therefore becomes an important issue. The diagnosis of PD is based on the presence of the
classic clinical signs: resting tremor, rigidity, postural instability, and bradykinesia. However, the
clinical presentation and progression can be greatly variable. The identification of characteristics
may be difficult thereby, especially in the early stages of PD. Gait disturbance presents a cardinal
motor symptom and may be observed in early stages of the disease; therefore, the quick and precise
recognition of mild PD patient, the quantification of the mild parkinsonian gait performance, and
the improvements provided by the treatment regime or rehabilitation programs are important
references and may aid the early diagnosis and the following treatment management. However, the
recognition and quantification of mild parkinsonian gait have been hindered due to the lack of tools
that can provide prompt gait analysis, facilitate data collection and gait analysis, and lower a
patient’s level of exertion during the examinations, especially be installed in clinics or at home,.

To address the demand, we attempted to develop solutions that require simple clinical settings
and can be easily installed and used in a clinic or at home with limited space to quantify and

recognize mild PD parkinsonian gait, and further evaluate the therapeutic effect of L-dopa on PD
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patients. In this proposed research, two video-based gait analysis methods that are different from
traditional sensor- or marker-based approaches are developed in the 1 and 2™ phases, respectively.

During the 1% phase, a portable and convenient video-based method using KPCA to recognize
and quantify mild parkinsonian gait during the steady-state walking period was developed and
implemented. The method requires only a decorated corridor and a digital camera capturing
people’s lateral silhouette during walking so that it can be easily deployed in clinics with space or
budgetary limitations. The time and cost for data collection and gait analysis therefore become less
than the conventional sensor- or marker-based approaches that request a user to wear sensors or a
specific suit.

The proposed method uses the KPCA to reduce the dimensionality of image frames and
therefore the computational cost for post-processing can be effectively reduced. The kernel
principal components from a walking image frame sequence are used to form a biometric feature
vector to represent a given participant. After observation and comparison, we found that the
moment of occurrence of the heel strike can be determined using the primary KPCA component (1%
KPC) waveforms. We are able to reconstruct each participant’s gait profile for follow-up
recognition and quantification thereby.

The recognition sensitivity of the method was compared with other competing methods, the
area feature and PCA-based feature approaches. Although there are few significant differences
among the gait patterns, the proposed method using KPCA presents an encouraging sensitivity of

80.51% in classifying subjects in different states, much better than the competing area feature
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(50.16%) and PCA-based (69.44%) approaches. The quantitative results show that PD patients who
receive the L-dopa treatment show improvement in their gait cycle time, stride length, walking
velocity, cadence, and step frequency. The correlations between the five UPDRS part III sub-scores
and the derived gait parameters show that four gait parameters are significantly correlated with at
least limb akinesia, rigidity and tremor, indicating that it is possible to evaluate the motor deviation
of the patients with mild PD through the derived gait parameters. In addition, the proposed
approach provides the power spectrum of the participant’s gait as additional information to analyze
the irregularity of the motions of patients with mild PD.

It may be a problem for clinics with small space to deploy the 1% method requiring a decorated
corridor. Therefore, during the 2™ phase, a video-based method using the CTA was developed and
implemented to track and analyze the gait initiation and symmetry of patients with mild PD. The
method use a digital camcorder and joint identifiers secured at palpable anatomic landmarks, the
fibula head and lateral malleolus, to capture the knee and ankle joint movements by which the heel
strike and toe off events can be determined. A participant’s gait pattern then can be reconstructed
and the gait performance and associated symmetry indexes during the gait initiation and
steady-state walking periods can be evaluated thereby.

During both the gait initiation and steady-state walking periods, the PD patients who received
L-dopa treatment show improvement in gait parameters, proving the therapeutic effect of the
L-dopa treatment demonstrated in [91]. Same as the 1* phase, the improvement brought about by

the L-dopa treatment was not robust on the patients with mild PD, resulting in a difficulty in
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identifying differences between the patients with mild PD in the “Drug-Off” and “Drug-On” states.
However, results show that the gait symmetry indexes derived from the gait initiation period may
also facilitate the identification of patients with mild PD.

Compared to the KPCA-based method, the CTA-based method provides a solution requiring a
smaller space and a simpler clinical setting for early detection and diagnosis of PD. Besides,
quantitative analysis of gait performance is also attained for monitoring the progression of PD and
improvement brought about by the rehabilitation programs and drug administration.

The study presents two techniques for clinicians and researchers with which to detect and
diagnose PD early and assess the progression of PD using gait patterns recorded in monocular
image frames. Although the proposed methods currently aim to recognize and quantify the mild
parkinsonian gait, clinical applications can be expanded to analyze the gait performance of patients

with other neuromuscular disorders in future.

5.2 Recommendations for future studies

This study is not perfect due to some intrinsic limitations. Therefore, here are some
recommendations for future studies. An orientation or a pre-education program for clinical setting,
safety, and identification of the palpable anatomic landmarks can facilitate the use of the
CTA-based method without skilled personnel. Moreover, there is a lack of patients with advanced
motor symptoms in this study, the therapeutic effect of prescribed L-dopa treatment on the PD

patients seems to be not robust and thereby it resulted in insignificant improvement in walking
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symmetry of the PD patients. Further researches are required to explain the effects of L-dopa

treatment on the walking symmetry and gait performance of PD patients.
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Abbreviations:

PD is Parkinson's disease.

VTA is ventral tegmental area.

KPCA is kernel-based principal component analysis.
UPDRS is Unified Parkinson’s Disease Rating Scale.
L-dopa is levodopa.

MDC is minimum distance classifier.

DFT is discrete Fourier transform.

PCA is principal component analysis.

K PC is the magnitude of the first principal component.
L SD is least significant difference.

CTA is centroid tracking algorithm.

LEDD is levodopa at an equivalent daily dose.

H&Y is Hoehn & Yahr.

Sl is symmetry index.
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Appendix A: Assessment of treatment of parkisonism
A.1 Assessment of Parkinson’s disease

Hand-writing samples, speech analysis, and questions that focus on developing
symptomatology can be used in the preclinical stage to detect early manifestations of PD. An
estimation of the stage and severity of the disease can be made using a staging scale. The two most
widely used are the Hoehn and Yahr classification of disability scale (H&Y stage) and the unified

Parkinson’s disease rating scale (UPDRS).

A.1.1 Hoehn and Y ahr scale

The Hoehn and Yahr scale is a rating scale for describing how the symptoms of PD progress
[94]. The current scale includes stages 0 through 5 to indicate the relative level of disability, and

stages 1.5 and 2.5 are proposed to reflect the growing knowledge of PD-related impairments.

Stage 0: No signs of disease.

o Stage 1: Unilateral symptoms only.

e Stage 1.5: Unilateral and axial involvement.

o Stage 2: Bilateral symptoms. No impairment of balance.

o Stage 2.5: Mild bilateral disease with recovery on pull test.

o Stage 3: Balance impairment. Mild to moderate disease. Physically independent.

o Stage 4: Severe disability, but still able to walk or stand unassisted.
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e Stage 5: Needing a wheelchair or bedridden unless assisted.

A.1.2 Unified Parkinson’s Disease Rating Scale (UPDRYS)

Due to the disagreements in rating PD-related disability and impairment using different
Parkinson’s disease rating scales such as intermediate scale for assessment of PD (ISAPD) and
Schwab and England scale (SES), the UPDRS was developed to address the demand of
incorporating elements from earlier scales to provide a compound but comprehensive scale to
capture multiple aspects of PD [67, 95-97]. At present, the UPDRS is the most widely used clinical
tool for the assessment of parkinsonian motor impairment and disability [98]. The UPDRS
reviewed and modified by a consortium of movement disorders specialists comprises four main

sections as the following:

o Part I: evaluation of mentation, behavior, and mood.

o Part II: self evaluation of the activities of daily life (ADLs) including speech, swallowing,
handwriting, dressing, hygiene, falling, salivating, turning in bed, walking, cutting food.

e Part III: clinician-scored motor evaluation;

e Part IV: Complications of therapy.

The UPDRS is often accompanied by and reported with such scales as the “Schwab and
England scale” or the “Hoehn and Yahr scale”, whereas the latter scales are not parts of the UPDRS.
The UPDRS strongly relies on the experience or the expertise of clinician and therefore the

interpretation may vary due to individual subjective judgments or opinions. Richard et al. indicated
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the disagreement between the UPDRS raters despite that the scale is the most common and uniform

tool that captures multiple aspects of PD [99].

A.2 Treatment of Parkinson’s disease

Although the physician, therapist, and neurologist cooperatively institute medical program
against PD, a cure for the progressive disease is currently not available. However, the effects of the

disease and secondary impairments can be minimized using early and vigorous treatment.

A.2.1 Levodopa

Levodopa (L-dopa) is the most preferred and effective drug treatment for PD and is
administrated orally with carbidopa. It is a metabolic precursor of dopamine that can raise the level
of striatal dopamine in the basal ganglia and maintain the equilibrium between dopamine and
acetylcholine. The primary benefit is to alleviate bradykinesia and rigidity, but less effect on resting
tremor. However, long-term use of L-dopa therapy may result in a deterioration of the drug’s overall
therapeutic effectiveness. The depletion of the therapeutic effectiveness is most likely due to a
progressive decrease in responsiveness of the dopamine receptors or to progressive loss of
dopamine neurons in substantia nigra. The detailed description and efficacy of L-dopa can be found

in [93, 100-102].

A.2.2 Deep brain stimulation (DBS)

Deep brain stimulation (DBS) is a surgical procedure used to replace drug treatment and
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alleviate the symptoms of PD, such as tremor, rigidity, stiffness, bradykinesia, and abnormal gait

pattern. The detailed descriptions and efficacy can be found in [103]. DBS uses a neurostimulator, a

battery-operated medical device that is surgically implanted into a deep brain region to deliver

electrical stimulation to targeted areas in the brain that control movement, blocking the abnormal

nerve signals that cause tremor and PD motor symptoms. Generally, these targets are the thalamus,

subthalamic nucleus, and globus pallidus.

The DBS system consists of three components: the lead, the extension, and the

neurostimulator. The lead (an electrode), which is a thin and insulated wire, is inserted through a

small hole in the skull and implanted in the brain. The tip of the electrode is positioned within the

targeted brain area. The extension is an insulated wire that is passed under the skin of the head, neck,

and shoulder, connecting the lead to the neurostimulator. The neurostimulator is the third

component and is usually implanted under the skin near the collarbone or lower in the chest,

sometimes under the skin over the abdomen. Once the system is in place, electrical impulses are

sent from the neurostimulator up along the extension wire and the lead and into the brain. These

impulses interfere with and block the disordered neural signals that cause PD symptoms.
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Appendix B: Comparing the KPCA-based feature approach
with the GAI TRite® method for validation

To evaluate the validity of the proposed KPCA-based method in quantifying gait performance to
aid clinical diagnoses and further applications, the quantitative gait parameters from the proposed
approach were compared with the outcomes of the GAITRite” system (CIR system, Inc., USA)
prior to the actual experiment.

The GAITRite” system is an instrumented walkway system that has been validated as a reliable
tool for the measurement of kinematic gait parameters [104]. Six healthy male volunteers with an
average age of 54 years (max = 76.5 years, min = 46 years, S.D. = 9.7 years) were recruited, and
they provided informed consent for participation. Using an identical experimental setup to that
employed in the present study, these volunteers were asked to perform four walking trials at their
natural pace, and a total of 24 trials were collected.

Figure B1 shows the equipment setup used to perform the concurrent gait analysis by the

GAITRite- and KPCA-based methods.
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Figure B1. Equipment setup used to measure the gait parameters with the GAITRite® mat and

recording system along with the video methods.

Gait analysis was performed using an electrical spatial and temporal analysis system (GAITRite”
system; CIR Systems Inc., Clifton, NJ, USA). The GAITRite® system is a 4.6-m-long electronic
walkway that connects to the serial port (19,200 baud rate) of a windows XP computer. The
walkway is 1/8 inch thick and contains 16,128 sensors sandwiched between a thin vinyl cover on
top and a rubber bottom. The active senor area is 0.61 m wide by 3.66 m long. GAITRite® software
(ver. 3.8) was used to process the footstep data and to provide quantified temporal and spatial
parameters.

The Panasonic video camera (model PV-GS400) used to videotape the walking trials was
mounted on a tripod and positioned midway between the start and finish lines of the walkway, with

the camera’s field of view perpendicular to the long axis of the walkway. All trials were videotaped
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using a sampling rate of 15 image frames per second and an image size of 320 x 240 pixels. The
plane of the camera’s shutter was located 4.1 m from the centerline of the walkway. The size of the
field of view ensured that two pairs of infrared sensors, which were aligned with the start and finish
lines, could be seen in the camera’s viewfinder. One graphical programming utility was developed
using the NI LabVIEW environment (LabVIEW 8.5, National Instruments, Austin, TX, U.S.A) and
a 1394 video capture card (Model PXI-8252, National Instruments, Austin, TX, U.S.A) to
synchronize the motion detection and gait video capture.

In a preliminary experiment, the participant stood at the starting line with his toes just behind the
line. The participant was asked to walk through a 6-m corridor decorated with a navy curtain, and
the 3-m GAITRite” walkway for steady-state gait was defined by two pairs of infrared sensors that
were aligned with the start and finish lines. When the infrared beam was broken by the participant’s
advancing lower leg, the infrared reflector transmitted a TTL logic signal to the LabVIEW utility on
the PC side via a serial RS232 port, providing timestamps to determine the timing of the closest
playback frame at the start and end of each walking trial.

The GAITRite® system and the Panasonic video camera (model PV-GS400) simultaneously
collected footstep data during the steady-state walking period. The gait sequence image frame and

the **KPC waveform of a healthy subject are shown in Figure B2 (a) and (b), respectively.
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Figure B2. Sequential gait image frames from a healthy subject walking on the GAITRite walkway
system. (s) The top panels are original sequential walking image frames containing 240 x 320 pixels.
The bottom panels are trimmed 64 x 64 pixel binary silhouettes of the top panels. (b) The **KPC
waveform of a selected non-PD subject participating in the preliminary experiment. The green dots

indicate the magnitudes of the sequential **KPCs,

Results from the KPCA-based method were acquired using processing procedures identical to
those used in the actual experiment. A paired Student’s t-test was conducted to examine the
differences between the gait parameters (gait cycle time, stride length, walking velocity and
cadence) measured by the GAITRite” system and the KPCA-based method. According to table B.1,
there were no significant differences (p-value > 0.05) in the gait cycle time, stride length, walking
velocity, or cadence detected using these two methods, indicating that the KPCA-based method and
the GAITRite® system yielded comparative gait measurements. This finding was expected because

the results of the two methods were also correlated with respect to the spatial measures recorded
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concurrently during the subject’s walking trials. We are hence convinced of the validity of the
KPCA-based method for acquiring adult gait cycle time, stride length, walking velocity, and

cadence.

Table B1 Comparison of gait parameters assessed by the GAITRite® system and the KPCA-based
method

Gait Parameters KPCA GAITRite® p-value

Gait cycle time (s) 1.26+0.13 1.26+0.12 N.S.
Stride Length (cm) 116.81+£6.55 116.48+6.68 N.S.
Walking Velocity (cm/sec) 92.95+10.55 92.97+10.59 N.S.
Cadence (steps/min) 95.90+9.99 95.79+£9.97 N.S.

N.S is non-significant (p > 0.05).
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Appendix C Comparing the CTA-based gait tracking and
analysis system with the Vicon system for validation

To evaluate whether the proposed video-based gait tracking and analysis system in chapter 3 is
valid in assisting clinical diagnoses and further applications, the quantification of gait initiation and
symmetry from the proposed video-based gait tracking and analysis system is compared with the
quantification outcomes from a commercial system, the Vicon system (Vicon Inc, Oxford, UK).

The Vicon system is a commercially available motion analysis technology that uses optical
reflective markers to measure three dimensional movement for capturing and modeling human
motion [105]. In the experiment comparing the proposed system to the Vicon system, five healthy
volunteers (4 males and 1 female) with an average age of 23.8 years (max = 25, min = 23, S.D. =
0.84) are recruited and given informed consent. The Vicon system and proposed video-based
system are synchronized for the simultaneous collection of temporal-spatial gait parameters
performed by the recruited subjects. Each volunteer was asked to perform four successful trials at
their natural pace during the trials to naturally reflect their gait performance. Gait cycle time, stance
phase, stride length, walking velocity, and cadence, were calculated to obtain comparison.

A two-sample (paired) t-test was conducted to examine the differences. According to table C1,
p-values greater than 0.05 were obtained for all comparisons of temporal-spatial gait parameters
across the two systems. There are no significant differences between the proposed system and the

Vicon system; results obtained from the proposed system are comparable to those from the Vicon
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system. Thus, the proposed system exhibits validity for acquiring temporal-spatial gait

measurements of interest.

Table C1. Comparisons of several gait parameters with VICON System.

Gait Parameters Our system VICON p-value
Gait cycle time (sec) 1.39+0.19 1.37+0.19 0.757
Stance Phase (%) 64.83£2.07 63.90+2.92 0.239
Stride Length (cm) 92.32+45.51 92.71+6.10 0.825
Walking Velocity (cm/sec) 67.70£10.35 68.93£10.47 0.706
Cadence (steps/min) 87.82+11.05 89.08+11.57 0.719
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