Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68912
標題: 以稀疏潛在概念層改善基於變分自編碼架構的神經網絡主題模型
Improving Variational Auto-Encoder Based Neural Topic Model with Sparse Latent Concept Layer
作者: Sheng-Yao Shen
沈聖堯
指導教授: 黃鐘揚(Chung-Yang Huang)
關鍵字: 潛在狄利克雷分配,主題模型,變分自編碼器,
Latent Dirichlet Allocation,Topic Model,Variational Auto-encoder,
出版年 : 2017
學位: 碩士
摘要: 此論文主要貢獻為提出一個簡單的基於變分自編碼器的主題模型,並提出有效的主題字選擇方式。通過將機率矩陣分解為主題矩陣與文字矩陣的乘積,我們引入了潛在概念 (Sparse Latent Concept, SLC) 作為主題與文字的語意向量空間維度,並基於主題具有「潛在概念的稀疏性」的假設,和以主題與文字的語意相似度作為主題字的選擇函數。實驗結果顯示,基於SLC的模型具有更高的平均主題一致性 (topic coherence)。
In this thesis, the primary contribution is proposing a simple variational auto-encoder based topic model, and effective topic word selection criteria. By decomposing the probability matrix into the product of a topic matrix and a word matrix, we introduce sparse latent concepts (SLC) as the dimensionalities of the semantic space of the topic and word vectors, improve the model based on the idea that a topic is represented as few latent concepts, and select topic words by semantic similarity between topic and word vectors. In the experiments, SLC-based model outperforms the non-SLC-based model in terms of average topic coherence.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68912
DOI: 10.6342/NTU201702238
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.67 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved