請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68912完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鐘揚(Chung-Yang Huang) | |
| dc.contributor.author | Sheng-Yao Shen | en |
| dc.contributor.author | 沈聖堯 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:41:44Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | [1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” JMLR, vol. 3, pp. 993–1022, 2003.
[2] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” ICLR, 2014. [3] A. Srivastava and C. Sutton, “Autoencoding Variational Inference for Topic Models,” ICLR, 2017. [4] T. Hofmann and I. Computer, “Probabilistic latent semantic indexing,” in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 1999, pp. 50–57. [5] D. Mimno, H. M. Wallach, E. Talley, M. Leenders, and A. McCallum, “Optimizing Semantic Coherence in Topic Models,” in Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, no. 2, pp. 262–272, 2011. [6] R. Das, M. Zaheer, and C. Dyer, “Gaussian LDA for Topic Models with Word Embeddings,” in Proceedings ACL 2015, pp. 795–804, 2015. [7] D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson, “Improving topic models with latent feature word representations,” in Transactions of the Association for Computational Linguistics, vol. 3, pp. 299–313, 2015. [8] L. Niu, X. Dai, J. Zhang, and J. Chen, “Topic2Vec: Learning distributed representations of topics,” in Proceedings of 2015 International Conference on Asian Language Processing (IALP 2015), pp. 193–196, 2015 [9] C. E. Moody, “Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec,” 2016. [10] D. J. C. MacKay, “Choice of basis for Laplace approximation,” in Machine Learning, vol. 33, no. 1, pp. 77–86, 1998. [11] P. Henning, D. Stern, R. Herbrich, T. Graepel, and P. Hennig, “Kernel Topic Models,” Proc. 15th Int. Conf. Artif. Intell. Stat., vol. 22, pp. 511–519, 2012. [12] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in continuous space word representations,” Proc. NAACL-HLT, no. June, pp. 746–751, 2013. [13] Pedregosa et al, “Scikit-learn: Machine Learning in Python,” JMLR, pp. 2825-2830, 2011. [14] C. Tan, D. Card, and N. A. Smith, “Friendships, Rivalries, and Trysts: Characterizing Relations between Ideas in Texts,” 2017. [15] McCallum, Andrew Kachites. “MALLET: A Machine Learning for Language Toolkit.” http://mallet.cs.umass.edu. 2002. [16] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for Word Representation,” Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., pp. 1532–1543, 2014. [17] D. Newman, J. Lau, K. Grieser, and T. Baldwin, “Automatic evaluation of topic coherence,” Hum. Lang. Technol. 2010 Annu. Conf. North Am. Chapter ACL, pp. 100–108, 2010. [18] J. H. Lau, D. Newman, and T. Baldwin, “Machine Reading Tea Leaves : Automatically Evaluating Topic Coherence and Topic Model Quality,” Proc. 14th Conf. Eur. Chapter Assoc. Comput. Linguist. (EACL 2014), pp. 530–539, 2014. [19] D. P. Kingma and J. B. Adam, “A method for stochastic optimization,” ICLR, 2015. [20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in The Workshop Proceedings of the International Conference on Learning Representations (ICLR), 2013. [21] R. Salakhutdinov and G. E. Hinton, “Replicated softmax: An undirected topic model,” Adv. Neural Inf. Process. Syst. 22 - Proc. 2009 Conf., pp. 1607–1614, 2009. [22] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68912 | - |
| dc.description.abstract | 此論文主要貢獻為提出一個簡單的基於變分自編碼器的主題模型,並提出有效的主題字選擇方式。通過將機率矩陣分解為主題矩陣與文字矩陣的乘積,我們引入了潛在概念 (Sparse Latent Concept, SLC) 作為主題與文字的語意向量空間維度,並基於主題具有「潛在概念的稀疏性」的假設,和以主題與文字的語意相似度作為主題字的選擇函數。實驗結果顯示,基於SLC的模型具有更高的平均主題一致性 (topic coherence)。 | zh_TW |
| dc.description.abstract | In this thesis, the primary contribution is proposing a simple variational auto-encoder based topic model, and effective topic word selection criteria. By decomposing the probability matrix into the product of a topic matrix and a word matrix, we introduce sparse latent concepts (SLC) as the dimensionalities of the semantic space of the topic and word vectors, improve the model based on the idea that a topic is represented as few latent concepts, and select topic words by semantic similarity between topic and word vectors. In the experiments, SLC-based model outperforms the non-SLC-based model in terms of average topic coherence. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:41:44Z (GMT). No. of bitstreams: 1 ntu-106-R03921055-1.pdf: 2738735 bytes, checksum: 4adae7e9b39f268261e76dc8452bd23d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Related Work 2 1.2 Contributions of the Thesis 2 1.3 Organization of the Thesis 3 Chapter 2 Preliminaries 4 2.1 Latent Dirichlet Allocation 4 2.2 Variational Auto-Encoder 5 2.3 Auto-Encoding Variational Inference for Topic Model 7 2.4 ProdLDA: LDA with Product of Experts 10 Chapter 3 Sparse Latent Concept Topic Model 11 3.1 Incorporating Word Embedding 11 3.2 Sparsity Transformation 12 3.2.1 Rectified Linear Unit (ReLU) and Parametrized Rectified Linear Unit (PReLU) 12 3.2.2 Softmax Normalization (SN) 14 3.3 Word Selection by Similarity-Based Criterion 15 Chapter 4 Architecture 17 4.1 Overview 17 4.2 Implementation Issue 18 Chapter 5 Experiments 20 5.1 Evaluating Topic Coherence 20 5.1.1 Evaluation Metric 20 5.1.2 Dataset and Preprocessing 21 5.1.3 Experimental Results 22 5.1.4 Qualitative Study – 20 Newsgroups 23 5.1.5 Qualitative Study – NIPS 24 5.2 Investigating Learned Representation 29 5.2.1 Discussion 1: Impact of Rich Concept Information 30 5.2.2 Discussion 2: Effectiveness of Pre-Trained Word Embedding 31 5.2.3 Discussion 3: Effectiveness of Softmax Normalization 32 Chapter 6 Conclusion and Future Work 35 6.1 Conclusion 35 6.2 Future Work 35 6.2.1 Theory on Learning Latent Representation of Topics 36 6.2.2 Hierarchical Topic Model with Neural Network Architecture 36 REFERENCE 37 | |
| dc.language.iso | en | |
| dc.subject | 變分自編碼器 | zh_TW |
| dc.subject | 潛在狄利克雷分配 | zh_TW |
| dc.subject | 主題模型 | zh_TW |
| dc.subject | Variational Auto-encoder | en |
| dc.subject | Topic Model | en |
| dc.subject | Latent Dirichlet Allocation | en |
| dc.title | 以稀疏潛在概念層改善基於變分自編碼架構的神經網絡主題模型 | zh_TW |
| dc.title | Improving Variational Auto-Encoder Based Neural Topic Model with Sparse Latent Concept Layer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李宏毅(Hung-Yi Lee),許萬寶,周俊男 | |
| dc.subject.keyword | 潛在狄利克雷分配,主題模型,變分自編碼器, | zh_TW |
| dc.subject.keyword | Latent Dirichlet Allocation,Topic Model,Variational Auto-encoder, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201702238 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
