請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6870
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃漢邦(Han-Pang Huang) | |
dc.contributor.author | Jiu-Lou Yan | en |
dc.contributor.author | 嚴舉樓 | zh_TW |
dc.date.accessioned | 2021-05-17T09:19:57Z | - |
dc.date.available | 2014-06-29 | |
dc.date.available | 2021-05-17T09:19:57Z | - |
dc.date.copyright | 2012-06-29 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-24 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6870 | - |
dc.description.abstract | 早從二十世紀初,人類對於人型機器人的幻想就不曾停止過,隨著時代的演進,我們對於人型機器人的想像一直都是類似的,會跑、會跳、行為舉止要像人類、甚至是超越人類,都是我們對於機器人的期待,可惜由於材料與致動器的限制,機器人的重量與力量輸出的比例一直沒有辦法追上人類,導致機器人的身體能力一直都沒有辦法突破到符合我們想像的程度,直到最近,由於科技的進步以及經驗的累積,才由日本與美國的研究者開發出具有跑跳能力並且十分穩定的人型機器人,機器人的身體能力也才慢慢開始足以應付這些困難的要求。但是在運動規劃方面,目前在學界與業界的研究上,仍然是各自採用各自的機器人平台與演算法來開發機器人的控制與運動規劃,各種的方法也有各自的限制與長處。有鑑於此,本論文提出了一套可通用於人型機器人之最佳化運動控制與步態生成器,此方法兼具了即時性與機器人重心高度與地面高度可變之特點,可達成自由指定零力矩點(Zero Moment Point)軌跡與重心高度軌跡輸入之步態生成。利用此一步態生成器與牛頓—尤拉動力學(Newton-Euler dynamics),我們可以設計一個代價函數(cost function)並且求得重心高度軌跡對於此代價函數之導數,進而求得在指定零力矩點輸入軌跡之下最佳化之重心高度軌跡,達成本論文所提出之人型機器人之最佳化3D重心軌跡之步態生成器。除此之外,本論文也利用多個狀態機(state machine)與USB-to-CAN-Bus通訊網路建立一套人型機器人之即時控制系統,利用此系統,也驗證了我們所提出的即時步態生成系統的效能。 | zh_TW |
dc.description.abstract | Since early twentieth century, human continues to imagine the future of humanoid robots. As the time going on, we always wish humanoid robots can run, jump, act like human, and even be better than human. Because of the limitations of material technology and actuators, the ratio of weight and power output of robots cannot reach the same level as human. Until now, due to the improvement of technology and the accumulated experiences, researchers in America and Japan start to demonstrate that their new robots can run and jump smoothly and stably. And the robots nowadays start to be capable of these difficult tasks. However, in the aspect of motion planning and pattern generation, the researchers in academy and in industry use their own robot platforms and algorithms to develop their motion control and planning systems. These systems have their own advantages and limitations. In view of this, an optimized walking pattern generator for humanoid robots is proposed in this dissertation. The proposed pattern generator can solve walking patterns with arbitrary assigned COG (Center of Gravity) height trajectory and 3D ZMP (Zero Moment Point) trajectory in real-time. Thus, walking pattern generation with arbitrary assigned ground height status is achievable. Based on the proposed walking pattern generator and Newton-Euler dynamics, a cost function is designed to optimize COG height trajectory with given ZMP trajectory. An optimized 3D COG walking pattern generator can be achieved in this dissertation. In addition, state machine based distributed control system with USB-to-CAN-bus interface is used to construct a real-time robot control system. Using this system, the performance of the proposed walking pattern generator is also verified. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:19:57Z (GMT). No. of bitstreams: 1 ntu-101-F94522830-1.pdf: 12241432 bytes, checksum: 2ce54b9683889ccac662a6ab3ae3784c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii Contents iii List of Tables vi List of Figures vii Nomenclature x Chapter 1 Introduction 1 1.1 Different Types of Robots 1 1.2 Pattern Generation System for Humanoid Robots 2 1.3 Control System for Humanoid Robots 6 1.4 Contributions 7 1.5 Overall Framework of the Dissertation 9 Chapter 2 Kinematics and Dynamics 11 2.1 Introduction 11 2.2 Forward Kinematics 12 2.3 Inverse Kinematics 13 2.3.1 Robust Damped Least Squares Method (RDLS) 14 2.3.2 Weighted Least-Norm Method (WLN) 15 2.3.3 Robust Weighted Least Norm Method (RWLN) 16 2.4 Newton-Euler Dynamics 16 2.4.1 Forward Iteration 17 2.4.2 Backward Iteration 19 2.5 Linear Momentum and Angular Momentum 20 2.5.1 Linear Momentum 20 2.5.2 Angular Momentum 20 2.6 Summary 22 Chapter 3 Jacobian Based Inverse Kinematics Solver 23 3.1 Introduction 23 3.2 Conventional Jacobian Matrix 24 3.3 Fixed-Leg-Motion Jacobian Matrix 27 3.4 COG Jacobian 33 3.4.1 Calculation of COG 34 3.4.2 COG Jacobian 34 3.4.3 Fixed COG Jacobian 36 3.5 Momentum Jacobian 38 3.5.1 Linear Momentum Jacobian 38 3.5.2 Iterative Calculation of Moment of Inertia 40 3.5.3 Angular Momentum Jacobian 42 3.6 Global Jacobian 45 3.7 Simulation 46 3.8 Summary 48 Chapter 4 Linear Quadratic State Incremental Control 50 4.1 Introduction 51 4.2 Inverted Pendulum Model and COG/ZMP Equations 53 4.3 Preview Control 56 4.4 Linear Quadratic State-Incremental Control (LQSI) 57 4.4.1 Boundary Condition of the LQSI Controller 61 4.4.2 Preview Gain of the LQSI Controller 63 4.4.3 Minimum Required Future Reference Input 64 4.5 Simulation and Results 65 4.5.1 Simulation Using Inverted Pendulum Model 65 4.5.2 Simulation Using Physical Model in ADAMS 71 4.5.3 Comparison of LQSI and Preview Controller Using ADAMS 75 4.5.4 Computation Complexity of the LQSI Controller 78 4.6 Summary 80 Chapter 5 Optimized 3D COG trajectory Generation 81 5.1 Introduction 81 5.2 Goal and Procedure of Optimization 83 5.2.1 Performance Index 83 5.2.2 Optimization Procedure 84 5.3 The Derivatives with Respect to COG Height 85 5.3.1 Horizontal COG Change with Respect to Vertical COG Change 86 5.3.2 Derivatives of Basic Vectors 87 5.3.3 Derivatives of Newton-Euler Dynamics 88 5.4 Training Results 90 5.5 Summary 101 Chapter 6 Real-time Control Architecture of Humanoid Robots 103 6.1 Introduction 103 6.2 Networking for Humanoid Robot Control System 106 6.2.1 Control Bus of the Humanoid Robot 107 6.2.2 Joint Controllers and Nodes of the Robot 107 6.2.3 Multi-Node Control Structure for the Humanoid Robot 109 6.2.4 Multi-Robot Control and Communication System 110 6.3 Priority Oriented Networking (PON) 110 6.3.1 Objects of Network Communications 111 6.3.2 Priority and Size of Network Objects 112 6.3.3 Common Properties of the Network Objects 113 6.4 Network Scheduling 114 6.4.1 Network Scheduling Mechanism 114 6.4.2 Flow Control of the Scheduling Mechanism 114 6.5 Simulation and Implementation 115 6.5.1 Ethernet Based RTNET 116 6.5.2 CAN-Bus Based RTNET for Local Networks 116 6.5.3 Performance on Data Transmission through RTNET 117 6.6 Summary 119 Chapter 7 Implementation 121 7.1 Specifications of the Proposed Humanoid Robots 121 7.2 Real-time Planning/Control System of Humanoid Robots 124 7.2.1 Real-time Planning and Control Architecture 124 7.2.2 State Machine Architecture of C30 Controllers 125 7.2.3 State Machine Architecture of C32 Controllers 128 7.3 Experiments 129 7.3.1 Tracking Performance of Joint Angles 130 7.3.2 Tracking Performance of COG trajectory 134 7.3.3 Tracking Performance of ZMP trajectory 138 7.3.4 Calculated Knee Joint Torque 142 7.4 Summary 144 Chapter 8 Conclusions and Future Works 145 8.1 Summary 145 8.2 Conclusions 149 8.3 Future Works 150 References 157 APPENDIX A 171 APPENDIX B 174 | |
dc.language.iso | en | |
dc.title | 人型機器人之最佳化步態生成與即時控制 | zh_TW |
dc.title | Optimized Walking Pattern Generation and Real-time Control for Humanoid Robots | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 福田敏男(Toshio Fukuda),李國民(Kok-Meng Lee),羅仁權(Ren C. Luo),李祖添(Tsu-Tian Lee),蔡得民(Der-Min Tsay) | |
dc.subject.keyword | 人型機器人,即時步態生成,最佳控制,全身運動規劃, | zh_TW |
dc.subject.keyword | Humanoid Robot,Real-time Walking Pattern Generation,Optimal Control,Whole Robot Motion Planning, | en |
dc.relation.page | 174 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-06-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 11.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。