
國立臺灣大學工學院機械工程學研究所

博士論文

Department of Mechanical Engineering

College of Engineering

National Taiwan University

Doctoral Dissertation

人型機器人之最佳化步態生成與即時控制

Optimized Walking Pattern Generation and Real-time
Control for Humanoid Robots

嚴舉樓

Jiu-Lou Yan

指導教授：黃漢邦 博士

Advisor: Han-Pang Huang, Ph.D.

 中華民國 101 年 6 月

June 2012

致謝

首先，我要感謝長久支持我的爸爸、哥哥以及在天國享樂的媽媽，沒有你們，

就沒有現在的我，接下來我要開始人生的下一段旅程了!!

 感謝指導教授 黃漢邦老師多年來的教誨與指引，認識老師到現在也已經八

年了，老師不只在學術方面指導我，也時常在人生與思想方面給予許多建議，讓

我在這個實驗室生涯中，學到許多寶貴的知識與經驗，也度過了重重的難關，老

師，謝謝您!! 在此，也要感謝論文口試委員福田敏男教授、李國民教授、羅仁權

教授、李祖添教授、蔡得民教授，在論文修改上給予精闢的意見，讓本篇論文更

加完整與豐富。

 感謝在實驗室這些年遇到的所有人，書耘大學長從我是專題生的時候就開始

指引我進入機器人這塊領域，也常常會靈光一閃提供我許多的意見；算是最大的

損友子豪與聖諺在這幾年中，也和我一起度過了許多碎碎念與游泳交換八卦的時

光；至於跟我同一屆打拼的軍毅、乙至與峻弘，我到現在都不時會想起我們一起

度過那手忙腳亂的兩年。也感謝在我也變成學長之後，認真幫忙的學弟學妹們，

尼諾機器人是由大家的努力所共同完成的!! 在這邊也要特別感謝參與這次人型機

器人成果發表會的各位，畢業前能夠成功展出機器人，都是由於你們的幫忙：笑

聲超級爽朗的泓逸，謝謝你總是主動幫忙，還有你真是很會找好吃的東西；認真

負責的瑋軒，謝謝你都幫我們接下像是機械臉或是整線等難以處理的工作；萬能

的聖翔，謝謝你幫我們負責手臂的部分；熱心的秀婷與衍文，謝謝你們一起排演

邦妮與尼諾的表演；還有要特別感謝毓文，在我們最困難的時候回來加入我們，

推我們一把，讓成果發表會能夠順利進行。

 最後，我要謝謝我十年來的好朋友聯聖(熊)以及嘉德(Tito)，雖然我們不同實

驗室，但是你們總是能在我需要的時候幫助我與陪伴我，謝謝你們。也謝謝所有

在台大這十年之間遇到的所有人!!

 2012/06/22 於機器人實驗室

i

摘要

早從二十世紀初，人類對於人型機器人的幻想就不曾停止過，隨著時代的演

進，我們對於人型機器人的想像一直都是類似的，會跑、會跳、行為舉止要像人

類、甚至是超越人類，都是我們對於機器人的期待，可惜由於材料與致動器的限

制，機器人的重量與力量輸出的比例一直沒有辦法追上人類，導致機器人的身體

能力一直都沒有辦法突破到符合我們想像的程度，直到最近，由於科技的進步以

及經驗的累積，才由日本與美國的研究者開發出具有跑跳能力並且十分穩定的人

型機器人，機器人的身體能力也才慢慢開始足以應付這些困難的要求。但是在運

動規劃方面，目前在學界與業界的研究上，仍然是各自採用各自的機器人平台與

演算法來開發機器人的控制與運動規劃，各種的方法也有各自的限制與長處。有

鑑於此，本論文提出了一套可通用於人型機器人之最佳化運動控制與步態生成器，

此方法兼具了即時性與機器人重心高度與地面高度可變之特點，可達成自由指定

零力矩點(Zero Moment Point)軌跡與重心高度軌跡輸入之步態生成。利用此一步態

生成器與牛頓—尤拉動力學(Newton-Euler dynamics)，我們可以設計一個代價函數

(cost function)並且求得重心高度軌跡對於此代價函數之導數，進而求得在指定零力

矩點輸入軌跡之下最佳化之重心高度軌跡，達成本論文所提出之人型機器人之最

佳化 3D 重心軌跡之步態生成器。除此之外，本論文也利用多個狀態機(state machine)

與 USB-to-CAN-Bus 通訊網路建立一套人型機器人之即時控制系統，利用此系統，

也驗證了我們所提出的即時步態生成系統的效能。

關鍵字：人型機器人、即時步態生成、最佳控制、全身運動規劃

ii

Abstract

Since early twentieth century, human continues to imagine the future of humanoid

robots. As the time going on, we always wish humanoid robots can run, jump, act like

human, and even be better than human. Because of the limitations of material

technology and actuators, the ratio of weight and power output of robots cannot reach

the same level as human. Until now, due to the improvement of technology and the

accumulated experiences, researchers in America and Japan start to demonstrate that

their new robots can run and jump smoothly and stably. And the robots nowadays start

to be capable of these difficult tasks. However, in the aspect of motion planning and

pattern generation, the researchers in academy and in industry use their own robot

platforms and algorithms to develop their motion control and planning systems. These

systems have their own advantages and limitations. In view of this, an optimized

walking pattern generator for humanoid robots is proposed in this dissertation. The

proposed pattern generator can solve walking patterns with arbitrary assigned COG

(Center of Gravity) height trajectory and 3D ZMP (Zero Moment Point) trajectory in

real-time. Thus, walking pattern generation with arbitrary assigned ground height status

is achievable. Based on the proposed walking pattern generator and Newton-Euler

dynamics, a cost function is designed to optimize COG height trajectory with given

ZMP trajectory. An optimized 3D COG walking pattern generator can be achieved in

this dissertation. In addition, state machine based distributed control system with

USB-to-CAN-bus interface is used to construct a real-time robot control system. Using

this system, the performance of the proposed walking pattern generator is also verified.

Keywords: Humanoid Robot, Real-time Walking Pattern Generation, Optimal Control,
Whole Robot Motion Planning

iii

Contents

摘要 ... i
Abstract ... ii
Contents ... iii
List of Tables ... vi
List of Figures ... vii
Nomenclature.. x
Chapter 1 Introduction .. 1

1.1 Different Types of Robots .. 1
1.2 Pattern Generation System for Humanoid Robots 2
1.3 Control System for Humanoid Robots ... 6
1.4 Contributions .. 7
1.5 Overall Framework of the Dissertation .. 9

Chapter 2 Kinematics and Dynamics ... 11
2.1 Introduction ... 11
2.2 Forward Kinematics ... 12
2.3 Inverse Kinematics ... 13

2.3.1 Robust Damped Least Squares Method (RDLS) 14
2.3.2 Weighted Least-Norm Method (WLN) .. 15
2.3.3 Robust Weighted Least Norm Method (RWLN) 16

2.4 Newton-Euler Dynamics .. 16
2.4.1 Forward Iteration .. 17
2.4.2 Backward Iteration ... 19

2.5 Linear Momentum and Angular Momentum .. 20
2.5.1 Linear Momentum .. 20
2.5.2 Angular Momentum ... 20

2.6 Summary ... 22
Chapter 3 Jacobian Based Inverse Kinematics Solver .. 23

3.1 Introduction .. 23
3.2 Conventional Jacobian Matrix .. 24
3.3 Fixed-Leg-Motion Jacobian Matrix.. 27
3.4 COG Jacobian ... 33

3.4.1 Calculation of COG .. 34
3.4.2 COG Jacobian ... 34
3.4.3 Fixed COG Jacobian ... 36

3.5 Momentum Jacobian .. 38

iv

3.5.1 Linear Momentum Jacobian ... 38
3.5.2 Iterative Calculation of Moment of Inertia 40
3.5.3 Angular Momentum Jacobian .. 42

3.6 Global Jacobian .. 45
3.7 Simulation ... 46
3.8 Summary ... 48

Chapter 4 Linear Quadratic State Incremental Control ... 50
4.1 Introduction .. 51
4.2 Inverted Pendulum Model and COG/ZMP Equations 53
4.3 Preview Control .. 56
4.4 Linear Quadratic State-Incremental Control (LQSI) 57

4.4.1 Boundary Condition of the LQSI Controller 61
4.4.2 Preview Gain of the LQSI Controller ... 63
4.4.3 Minimum Required Future Reference Input 64

4.5 Simulation and Results ... 65
4.5.1 Simulation Using Inverted Pendulum Model 65
4.5.2 Simulation Using Physical Model in ADAMS 71
4.5.3 Comparison of LQSI and Preview Controller Using ADAMS 75
4.5.4 Computation Complexity of the LQSI Controller 78

4.6 Summary ... 80
Chapter 5 Optimized 3D COG trajectory Generation ... 81

5.1 Introduction .. 81
5.2 Goal and Procedure of Optimization .. 83

5.2.1 Performance Index .. 83
5.2.2 Optimization Procedure .. 84

5.3 The Derivatives with Respect to COG Height 85
5.3.1 Horizontal COG Change with Respect to Vertical COG Change .. 86
5.3.2 Derivatives of Basic Vectors ... 87
5.3.3 Derivatives of Newton-Euler Dynamics... 88

5.4 Training Results .. 90
5.5 Summary ... 101

Chapter 6 Real-time Control Architecture of Humanoid Robots 103
6.1 Introduction .. 103
6.2 Networking for Humanoid Robot Control System 106

6.2.1 Control Bus of the Humanoid Robot .. 107
6.2.2 Joint Controllers and Nodes of the Robot 107
6.2.3 Multi-Node Control Structure for the Humanoid Robot 109
6.2.4 Multi-Robot Control and Communication System 110

v

6.3 Priority Oriented Networking (PON) .. 110
6.3.1 Objects of Network Communications ... 111
6.3.2 Priority and Size of Network Objects .. 112
6.3.3 Common Properties of the Network Objects 113

6.4 Network Scheduling .. 114
6.4.1 Network Scheduling Mechanism... 114
6.4.2 Flow Control of the Scheduling Mechanism 114

6.5 Simulation and Implementation .. 115
6.5.1 Ethernet Based RTNET ... 116
6.5.2 CAN-Bus Based RTNET for Local Networks 116
6.5.3 Performance on Data Transmission through RTNET 117

6.6 Summary .. 119
Chapter 7 Implementation ... 121

7.1 Specifications of the Proposed Humanoid Robots 121
7.2 Real-time Planning/Control System of Humanoid Robots................... 124

7.2.1 Real-time Planning and Control Architecture 124
7.2.2 State Machine Architecture of C30 Controllers 125
7.2.3 State Machine Architecture of C32 Controllers 128

7.3 Experiments .. 129
7.3.1 Tracking Performance of Joint Angles ... 130
7.3.2 Tracking Performance of COG trajectory 134
7.3.3 Tracking Performance of ZMP trajectory 138
7.3.4 Calculated Knee Joint Torque ... 142

7.4 Summary ... 144
Chapter 8 Conclusions and Future Works ... 145

8.1 Summary ... 145
8.2 Conclusions .. 149
8.3 Future Works .. 150

References .. 157
APPENDIX A ... 171
APPENDIX B ... 174

vi

List of Tables

Table 4-1: Environment parameters and settings in ADAMS .. 71
Table 4-2: Average computation time of the controllers using C++ 78
Table 4-3: Comparison of computation time of re-planning for different situations 79
Table 5-1. Parameters of Walking... 90
Table 5-2. Torque and joint-limit weightings for all joints ... 92
Table 6-1 Size and Rate of the Objects .. 117
Table 7-1 Physical specifications of the proposed robots ... 123
Table 7-2 Arrangement of degrees of freedom ... 123
Table 7-3. Settings of the experiments ... 130
Table 7-4. Mean absolute joint trajectory tracking error in experiments 2 and 3 133
Table 7-5. Comparison of torque performance ... 143

vii

List of Figures

Figure 1-1. Types of model for humanoid robots ... 4
Figure 1-2. The overall framework of the dissertation ... 9
Figure 2-1. The physical meaning of rotation matrix in the world coordinates 13
Figure 2-2. The procedure of solving inverse kinematics .. 16
Figure 2-3. The vectors used to find the dynamics of the robot 17
Figure 2-4. z-axis unit vectors of all joints of both robot legs.. 18
Figure 2-5. The link COG and vectors used to find its dynamics 18
Figure 2-6. The free body diagram of the ith link .. 19
Figure 2-7. The local inertia matrix .. 21
Figure 2-8. The orbit angular momentum .. 22
Figure 3-1. The vectors used to construct Jacobian matrix .. 26
Figure 3-2. To change and not to change the origin of kinematics trains 28
Figure 3-3. The vectors used to construct Fixed-Leg-Motion Jacobian matrix 29
Figure 3-4. The iteration used with both methods .. 31
Figure 3-5. Solved trajectory with F-Jacobian ... 32
Figure 3-6. Solved trajectory without F-Jacobian .. 32
Figure 3-7. Acceptable error vs. total iterations ... 33
Figure 3-8. The affected and unaffected parts of the joint rotation 35
Figure 3-9. The vectors used to construct COG Jacobian .. 36
Figure 3-10. The vectors used to construct fixed COG Jacobian 37
Figure 3-11. Linear momentum caused form the joint rotation 39
Figure 3-12. Linear momentum caused form the joint rotation of the stance leg 40
Figure 3-13. The parallel axis theorem in 3D space ... 41
Figure 3-14. Iterative inertia calculation .. 42
Figure 3-15. Orbit angular momentum caused by the rotation of the ith joint 43
Figure 3-16. Fixed angular momentum Jacobian ... 44
Figure 3-17. The scene of simulation for verifying the proposed IK solver 47
Figure 3-18. The robot motions for walking through the scene 47
Figure 3-19. Slipping rotation of the whole robot in z direction 48
Figure 4-1. Inverted pendulum model .. 54
Figure 4-2. Input-output relationship of the controller ... 58
Figure 4-3. The procedure by which the LQSI controller works 60
Figure 4-4. Control block diagram of the LQSI controller... 60
Figure 4-5. The role of the LQSI controller in the entire robot control system 61
Figure 4-6. Transient time of Sk by using final-state-free boundary condition 62

viii

Figure 4-7. Transient time of Sk by using S∞ as initial value ... 62
Figure 4-8. LQSI control preview gain of vs. different max. CZ acceleration 63
Figure 4-9. The preview gain of LQSI waving with CZ trajectory 64
Figure 4-10. COG height (Cz) input ... 65
Figure 4-11. Results of LQSI controller ... 66
Figure 4-12. Results of preview controller ... 66
Figure 4-13. Results of optimal controller for tracking .. 68
Figure 4-14. Results of modified optimal controller for tracking 68
Figure 4-15. Modified optimal controller for tracking with different QM,11 69
Figure 4-16. Modified optimal controller for tracking with different QM,33 69
Figure 4-17. Result of tuning QS,33 ... 71
Figure 4-18. Dynamic walking with LQSI controller in the first simulation 72
Figure 4-19. The ZMP tracking result in the first simulation ... 73
Figure 4-20. The scene and 3D COG/ZMP trajectories in the second simulation 74
Figure 4-21. Dynamic walking with LQSI controller in the second simulation 75
Figure 4-22. Walking on a plane with varying Cz .. 76
Figure 4-23. Angular velocity ω = 0... 77
Figure 4-24. Angular velocity ω = 4.5π.. 77
Figure 4-25. Average ZMP error under different maximum Cz acceleration 77
Figure 5-1. Procedure for optimizing COG height trajectory .. 84
Figure 5-2. The COG height training results .. 93
Figure 5-3. Cost against iterations .. 94
Figure 5-4. non-dimensionalized cost with different constant COG height 94
Figure 5-5. Torque, joint limit, and total cost with different constant Cz 95
Figure 5-6. Angle trajectory of the knee pitch joint ... 96
Figure 5-7. Torque trajectory of the knee pitch joint .. 96
Figure 5-8. Angle trajectory of the hip pitch joint .. 96
Figure 5-9. Torque trajectory of the hip pitch joint .. 97
Figure 5-10. Angle trajectory of the hip roll joint .. 97
Figure 5-11. Torque trajectory of the hip roll joint ... 97
Figure 5-12. Angle trajectory of the hip yaw joint ... 98
Figure 5-13. Torque trajectory of the hip yaw joint.. 98
Figure 5-14. Angle trajectory of the ankle pitch joint .. 98
Figure 5-15. Torque trajectory of the ankle pitch joint ... 99
Figure 5-16. Angle trajectory of the ankle roll joint ... 99
Figure 5-17. Torque trajectory of the ankle roll joint ... 99
Figure 6-1. System architecture of the whole control system 106
Figure 6-2. The architecture of joint controllers ... 108

ix

Figure 6-3. The USB-to-CAN-bus adaptor module ... 108
Figure 6-4. CAN-bus structure for the proposed humanoid robot 109
Figure 6-5. The priority and size of the communication object 112
Figure 6-6. The data encapsulation and header presentation ... 113
Figure 6-7. The flow chart of NSM for performing communication 115
Figure 6-8. Multi-robot control system with RTNET.. 116
Figure 6-9. Transmit the communication objects with a FIFO stack 118
Figure 6-10. Transmit the communication objects with RTNET 118
Figure 7-1. Human-sized humanoid robot .. 122
Figure 7-2. Small-sized humanoid robot .. 122
Figure 7-3. Real-time planning and control system ... 124
Figure 7-4. C30 state machine .. 126
Figure 7-5. C30-SA57 motor control module .. 127
Figure 7-6. C32 state machine and the FIFO queue ... 128
Figure 7-7. Tracking results of hip yaw axis .. 131
Figure 7-8. Tracking results of hip roll axis ... 131
Figure 7-9. Tracking results of hip pitch axis ... 132
Figure 7-10. Tracking results of knee pitch axis .. 132
Figure 7-11. Tracking results of ankle pitch axis ... 132
Figure 7-12. Tracking results of ankle roll axis .. 132
Figure 7-13. COG trajectory in experiment 1 (LQSI with constant Cz) 134
Figure 7-14. COG trajectory in experiment 2 (LQSI with optimized Cz) 134
Figure 7-15. The robot and the shaft .. 135
Figure 7-16. Sagittal COG trajectory tracking in experiment 2 136
Figure 7-17. Lateral COG trajectory tracking in experiment 2 136
Figure 7-18. Vertical COG trajectory in experiment 2 ... 137
Figure 7-19. Force data (LQSI with constant Cz trajectory) .. 138
Figure 7-20. Force data (LQSI with optimized Cz trajectory)...................................... 139
Figure 7-21. Torque data (LQSI with constant Cz trajectory) 139
Figure 7-22. Torque data (LQSI with optimized Cz trajectory) 139
Figure 7-23. Lateral ZMP in experiment 1 (LQSI with constant Cz) 140
Figure 7-24. Sagittal ZMP in experiment 1 (LQSI with constant Cz) 140
Figure 7-25. Lateral ZMP in experiment 2 (LQSI with optimized Cz) 141
Figure 7-26. Sagittal ZMP in experiment 2 (LQSI with optimized Cz) 141
Figure 7-27. Left knee torque in experiments 1 and 2 ... 142
Figure 7-28. Right knee torque in experiments 1 and 2 ... 143
Figure 8-1. Zero order hold and triangular hold for COG height 152

x

Nomenclature

Notations

Robotics

Kinematics

D0,i position of the ith joint in the world coordinates

h(θ) manipulability of the mechanism

H(θ) joint limit cost in WLN method

J Jacobian matrix of robot kinematics

J+ pseudoinverse of J

Jα Jacobian matrix in DLS method

JW,α Jacobian matrix in RWLN method

R0,i the rotation matrix of the ith joint in the world coordinates

T0,i the homogeneous matrix of the ith joint

W joint limit weighting matrix in WLN method

wi the ith diagonal element of W

zi unit vector along positive direction of the ith z-axis

X combined position/orientation vector of all end-effectors

Α the damping factor in DLS method

θ robot joint angle vector

 �̇� robot joint velocity vector

θi the ith joint angle

Φ null space of the solution of inverse kinematics

xi

Dynamics

 �⃑�𝑐,𝑖 acceleration of the COG of the ith link

 �⃑�𝑖 acceleration of the ith joint

 𝐴𝑀 total angular momentum

 𝐴𝑀,𝑠𝑠𝑖𝑠 total spin angular momentum

 𝐴𝑀,𝑜𝑜𝑜𝑖𝑜 total orbit angular momentum

 𝑓𝑖 force acts on the ith joint

 𝐼𝑖 moment of inertia of the ith link

 𝑟𝑖 vector form the ith to the (i+1)th joint

 𝑟𝑐,𝑖 vector from the ith joint to the COG of the ith link

 𝑟𝑠→𝑐,𝑖 vector from the support foot to the ith joint

 𝐿�⃑ 𝑀 total linear momentum

 𝐿�⃑ 𝑀,𝑖 linear momentum of the ith link

 𝑚𝑖�⃑� gravity force of the ith link

 �⃑�𝑐,𝑖 velocity of the COG of the ith link

 �⃑�𝑖 velocity of the ith joint

 �⃑�𝑖 angular acceleration of the ith joint

 �⃑�𝑐,𝑖 angular acceleration of the COG of the ith link

 𝜔��⃑ 𝑖 angular velocity of the ith joint

 𝜔��⃑ 𝑐,𝑖 angular velocity of the COG of the ith link

 𝜏𝑖 torque of the ith joint

xii

Whole Body Inverse Kinematics

 �̇� input speed vector of end-effectors in each IK loop

 �̇�𝑠𝑜𝑠𝑠𝑐𝑠 input speed vector of the stance leg

 �̇�𝑠𝑠𝑖𝑠𝑠 input speed vector of the swing leg

 𝐼𝑠 accumulated momentum of inertia

 𝐽𝐴𝑀 angular momentum Jacobian

 𝐽𝐶 COG Jacobian matrix

 𝐽𝑓→𝑋 Jacobian matrix describing the effect caused by the fixed leg

 𝐽𝐹 Fixed-Leg-Motion Jacobian matrix

 𝐽𝐿𝑀 linear momentum Jacobian

 𝐽𝑠𝑜𝑠𝑠𝑐𝑠 Jacobian matrix of the stance leg

 𝐽𝑠𝑠𝑖𝑠𝑠 Jacobian matrix of the swing leg

 𝑚𝑠 mass of a link affected by the movement of a specified joint

 𝑚𝑖 mass of the ith link

 m𝑢𝑠 mass of a link unaffected by the movement of a specified joint

 𝑀 total mass of the robot

 𝑀𝑠 total mass of links affected by the movement of a specified joint

 𝑀𝑢𝑠 total mass of links unaffected by the movement of a specified joint

 𝑟𝑠 position vector of the COG of the mass 𝑚𝑠

 𝑟𝐶𝐶𝐶 position vector of the COG of the robot

 𝑟𝑚,𝑖 position vector of the COG of the ith link in the world coordinates

 𝑟𝑖→𝑠𝑠𝑒 position vector of the ith joint to the end-effector

 𝑟𝑢𝑠 position vector of the COG of the mass 𝑚𝑢𝑠

 𝑣𝑠𝑠𝑒 linear velocity an end-effector

 𝜔𝑠𝑠𝑒 angular velocity an end-effector

xiii

Linear Quadratic State Incremental Control (LQSI Control)

Inverted Pendulum Model and State Space Model

A continuous time state matrix

Ak kth discrete time state matrix

B continuous time state matrix

Bk kth discrete time state matrix

C continuous time state matrix

Ck kth discrete time state matrix

g gravity constant

pk kth ZMP reference value

uk kth control input of the state space system

CX COG position in x direction

ZX ZMP position in x direction

CY COG position in y direction

ZY ZMP position in y direction

CZ COG position in z direction

ZZ ZMP position in z direction

LQSI Controller and Preview Controller

fp preview gain of LQSI controller and preview controller

J performance index of LQSI controller

 Kk
v feed-forward gain of LQSI controller

 𝐾𝑘x state feedback gain of LQSI controller

Q weighting of tracking error in the performance index

Qx weighting of state increment in the performance index

R weighting of control input in the performance index

xiv

Sk The kth iteration of S matrix of the Riccati equation

S∞ solution to the Riccati equation using constant state matrices

vk feed-forward control input of LQSI controller

 ∅ boundary condition of the performance index

3D COG optimization

Hj cost function of joint limit

I0,i moment of inertia of the ith link in local coordinates

 𝐽𝐶𝑥
+ joint angle change under unit COG position change in x direction

 𝐽𝐶𝑦
+ joint angle change under unit COG position change in y direction

 𝐽𝐶𝑧
+ joint angle change under unit COG position change in z direction

Pk totoal cost at the kth sampling time point

Wτ,j weighting of torque cost of the jth joint

Wθ,j weighting of joint limit cost of the jth joint

τj torque of the jth joint

η learning rate of COG height training

xv

Acronyms

COG Center Of Gravity

CAN Controller Area Network

DH method Denavit-Hartenberg Method

DSP Double Support Phase

FIFO First In First Out

FK Forward Kinematics

IK Inverse Kinematics

LIPM Linear Inverted Pendulum Model

LQ Linear Quadratic

LQI Linear Quadratic Integral

LQSI Linear Quadratic State Incremental

NSM Network Scheduling Mechanism

PON Priority Oriented Networking

RTNET Real-time Network

RWLN Robust Weighted Least Norm

SSP Single Support Phase

ZMP Zero Moment Point

1

Chapter 1 Introduction
The motivation, contributions, and overall framework of this dissertation are

discussed in this chapter. Advantages and disadvantages of different types of robot are

described in section 1.1. Section 1.2 shows several methods used for pattern generation

for humanoid robots. Section 1.3 compares different humanoid robots and control

systems. Section 1.4 shows the contributions of this dissertation. With this section, the

main ideas and their functions can be realized easily. Finally, section 1.5 describes the

overall framework of the dissertation and the relationship among all chapters.

1.1 Different Types of Robots

In order to achieve different goals and objectives, many different types of robots

are built, including wheeled robots, legged robots, industrial robots, etc. Wheeled robots

are most used as service robots and exploration robots. Simultaneous localization and

mapping (SLAM) [35][134], exploring and mapping [11], and motion planning [64]

algorithms are often verified on mobile robots. Legged robots are developed for rugged

terrains. Some quadruped robots can go through rugged terrains very successful, such as

the TITAN series [28][42] and the big dog (Boston Dynamics) [154]. Quadruped robots

or robots with more legs can go through rugged terrains stably since the supporting

polygon is much larger than biped robots. For biped robots, walking through rugged

terrains is still a challenge. Some researchers in America and Japan proposed their new

generation of robots and accomplish several difficult challenges, such as Petman

(Boston Dynamics) [154], ASIMO [110][153], and HRP series [47][56][57][59].

Different form legged robots, industrial robots can be classified according to their

2

objectives, such as industrial robot arms [22], grippers [116], and parallel robots

[120][138].

Nowadays, there are so many types of robots and they are built for their own

propose. Robots are still more expensive than other products and only industrial robots

for factory and small-sized robots for education or entertainment can be commercialized.

Nevertheless, we still have a dream that one day humanoid robots can be everywhere

around us. However, when walking through different types of environments, there are

still many problems must be solved for humanoid robots. For example, robots fall down

easily in unknown environments. The linearized inverted pendulum model (LIPM)

constrains humanoid robots to walk with constant COG height. Some optimizations of

robot motions cannot be processed in real-time. Humanoid robots are too heavy and the

endurance of batteries is not long enough for long-term operation. These problems are

solved one-by-one with the improvement of technology in these years. In this

dissertation, we attempt to develop a 3D optimized walking pattern generation and

real-time control system. By using the proposed system, the mobility of humanoid robot

can be improved and walking pattern generation in more types of environments can be

achieved.

1.2 Pattern Generation System for Humanoid Robots

Starting from the algorithms for solving inverse kinematics (IK), more

considerations are required for legged robots than robot arms or grippers. The balance

problem of biped robots is more critical and more constrained than other types of robots.

The switching between single support phase (SSP) and double support phase (DSP), and

how to manipulate the kinematics relationship in these phases are also important for

biped robots. In addition, some dynamics of the robots can be added to the kinematics

solver, such as the control of COG, linear and angular momentum, or other physics

3

properties of the robot. Researchers have proposed several solutions for COG Jacobian

[3][119][124] and momentum Jacobian [30][50]. Based on the well-known inverted

pendulum model [97][114][140], the control of COG is especially important for the

balance control of biped robots. Momentum compensation is also a good method to

improve the stability of robot and to generate more human-like walking patterns.

However, since conventional methods needs complex computation and coordinate

transformation, a generalized whole body IK solver is proposed in this dissertation to

simplify and generalize the IK solver. This will be discussed in chapters 2 and 3.

Based on the basic IK solver, the walking pattern generation algorithms can be

developed. The most used criterion to check the stability of biped walking is the (zero

moment point) ZMP method [136]. It is a simple and powerful criterion for the stability

of biped robots. By checking the position of ZMP, the status of stability can be verified.

Using the concept of ZMP, there are many methods to construct a walking pattern

generator. For example, methods using a controller [70][92][127], Fourier

series/transform [104][108][141], neural networks [51], genetic algorithm

[12][108][141], rapid-exploring random tree (RRT) and probabilistic roadmap (PRM)

[7][65], and motion capture [52] can generate walking patterns for humanoid robots.

Among these methods, controller based walking pattern generator is the most used one.

Each method has its own advantages and disadvantages. Learning algorithms can

generate optimized walking patterns but their computation/learning time is too long to

be used in real-time. Controller based methods need a more precise model for good

performance. RRT method is quick but it generates different results each time. Motion

capture method can generate the most natural and human-like results, but since the

mechanism and mass distribution of robots are different from humans, the stability of

the captured trajectories must be further verified. In this dissertation, a real-time LQ

4

(linear quadratic) control based method, the LQSI (linear quadratic state incremental)

controller, is proposed to achieve real-time walking pattern generation. The robot is

modeled as an inverted pendulum satisfying the COG/ZMP equations.

There are several models for modeling a humanoid robot, some are complex and

some are relatively simple, as shown in Figure 1-1.

Figure 1-1. Types of model for humanoid robots

Figure 1-1 shows five types of models used to control humanoid robots. In the

figure, (a) and (b) are the well-known cart-table model and the linear inverted pendulum

model (LIPM) [31][71]; they have the same governing equations and are basically the

same, (c) is the nonlinear inverted pendulum model [87], (d) is the three mass model

[127], and (e) is the most complex one, the multi-mass model [107][128]. In these

models, more complex models have less modeling errors, but they are more difficult to

be used for humanoid robots because of their high nonlinearity. In this dissertation, the

model of (c) is used for walking pattern generation and (e) is used for dynamic

computation and momentum compensation.

5

For walking pattern generation methods using inverted pendulum model, there are

three types of inverted pendulum models considering the relationship between COG and

ZMP. Each type of model has its advantages and disadvantages. The first type of model

is the most complex and nonlinear one. It considers both the motion of COG in vertical

direction and the multi-link effects of robot motions. Both terms make the COG/ZMP

equations nonlinear. Since the multi-link effects of robot motions cannot be handled and

calculated easily, the second type of model ignores this term in the COG/ZMP equations.

Fortunately, the multi-link effects of robot motions are relatively small and can be

ignored in most cases which have no large and exaggerated motions. The third type

linearizes the COG/ZMP equations by setting the COG height trajectory as a constant

and it also ignores the multi-link effects. The computation and implementation of the

third type is simple and quick. Since the third type of inverted pendulum model can be

used to generate stable walking patterns easily, it is most used among the three types of

model. The most well-known example is the cart-table model and the preview control

method [2][36][47]. In this dissertation, the second type of model is used to extend the

ability of motion when the robot needs to change its COG height in the environments

with stairs, slopes, or some obstacles must be avoided. The details of the proposed

method are described in chapter 4. Using the second type of model, because the

multi-link effects of robot motions are ignored and this will result in un-modeled torque

terms in the COG/ZMP equations. Momentum compensation can be used to reduce the

multi-link effects in x and y (horizontal) directions if the robot has redundant degrees of

freedom. In this dissertation, momentum compensation is used in z direction to reduce

the slipping around the z-axis in the world coordinate, the derivations and discussions

about momentum compensation are shown in chapter 3.

6

After achieving a walking pattern generator that can allow varying COG height

trajectories, the input COG height trajectories can be optimized to generate more

human-like and energy-saving walking patterns for humanoid robots. The LQSI

controller in chapter 4 is proposed to optimize the horizontal (sagittal and lateral) COG

trajectories, and the method in chapter 5 is proposed to optimize the vertical COG

trajectory. In chapter 5, the pseudoinverse matrix in the proposed IK solver and the

Newton-Euler dynamics are used to find the gradient of a cost function. And then the

COG height trajectory is optimized by minimizing the cost function.

1.3 Control System for Humanoid Robots

The selection of the control system for humanoid robots is very important for

real-time control for humanoid robots. Long time delay while transmitting and receiving

data is not allowed. There are many types of communication ports and protocols, some

are designed for computers and some are designed for vehicles. The communication

ports and protocols for computers have higher speed but lower robustness, different

from the them, the hardware and software design for communication ports for vehicles

needs more robustness against noise, this also make the speed lower.

Many devices use RS232 as communication port to control the platform since it is

easy and convenient. But RS232 is too slow and not robust enough for humanoid robots.

USB is a quick and generalized communication port. It is fast but can only be connected

back to the central controller one-by-one; serial connection is not allowed. Using

Ethernet to connect the nodes on the bus can achieve a very small time delay but the

circuit design is more complex. Considering the requirements of real-time and

robustness, CAN-Bus is used to construct the local control bus in this dissertation for

controlling the motors and receiving data from the sensors of the humanoid robot.

CAN-Bus has 1Mbps speed and good robustness against noise; serial connection is also

7

achievable. Only one set of wires is required for CAN-Bus communication, thus the

whole control system can be built without using a huge amount of wires. The proposed

humanoid robot contains several such CAN-Bus networks, and each local network is

controlled by the main computer through USB-to-CAN-Bus adaptors. Using the

proposed USB-to-CAN-Bus based control architecture, each cycle of motion control

and sensor reading of the whole robot can be done in 5ms. The whole architecture and

the protocol of the proposed control system are discussed in chapters 6 and 7.

1.4 Contributions

To improve the ability of motion of humanoid robots, this dissertation attempts to

develop a real-time walking pattern generation and control system. There are five main

contributions of this dissertation. They are listed as follows:

 The concept of Fixed-Leg-Motion Jacobian matrices.

 A whole body inverse kinematics solver for humanoid robots.

 The derivation and application of the LQSI controller for humanoid robots.

 A Newton-Euler dynamics based COG height trajectory optimization method.

 Architecture and implementation of a real-time control system for robots.

Fixed-Leg-Motion Jacobian

Using the concept of Fixed-Leg-Motion Jacobian matrices, we can build the

Jacobian matrices for solving IK of legged robots with a direct and neat way. Complex

computation and coordinate transformation can be avoided. In this dissertation, the

concept of Fixed-Leg-Motion Jacobian is derived and used on the conventional

Jacobian, the COG Jacobian, and the momentum Jacobian matrices. It can also be used

to construct other kind of Jacobian matrices describing other physical quantities for

legged robots.

8

Whole Body Inverse Kinematics Solver

The proposed whole body IK solver can be used to control all the end-effectors of

the robot, including the hands, arms, legs, head, and torso. In addition, physical

quantities which are directly relative to the dynamics of the robot can also be controlled,

including COG, linear momentum, and angular momentum. By using the proposed

Fixed-Leg-Motion Jacobian method, the proposed whole body IK solver can solve IK

without complex coordinate transformation.

LQSI COG/ZMP Pattern Generator

In order to ensure and improve the stability of humanoid robots when they are

walking in height-changing environments, the LQSI controller is proposed in this

dissertation. LQSI controller is a LQ control based controller with state-incremental

performance index. Since the proposed LQSI controller uses a linear time varying

version of inverted pendulum model for COG/ZMP walking pattern generation, the

input COG height trajectory can be arbitrarily assigned. Due to this property, humanoid

robots can walk on height-changing environments with the LQSI controller. LQSI

controller is also implemented using C++ for the proposed humanoid robot. Each

re-planning for COG patterns can be processed in 1ms. Real-time 3D COG/ZMP pattern

generation can be achieved using the proposed LQSI controller.

Optimized COG height Trajectory

When using the proposed LQSI controller for pattern generation, the COG height

trajectory is arbitrarily assigned. The COG trajectory is optimized in horizontal (sagittal

and lateral) directions. For generating more natural and energy-saving walking patterns,

the derivation and discussion of the optimization of the COG height trajectory is

proposed in this dissertation. A cost function including the terms of joint limit and joint

torque is minimized to optimize the COG height trajectory of the robot. The gradient of

9

the cost function is calculated by calculating the derivative of the cost function with

respect to COG height. And the derivatives are derived and calculated by using the

pesudoinverse matrix of the IK solver, Newton-Euler dynamics, and several kinematics

techniques.

1.5 Overall Framework of the Dissertation

The overall framework of the dissertation is shown in Figure 1-2.

Figure 1-2. The overall framework of the dissertation

In Figure 1-2, the main topics of the chapters are listed in each block. Chapters 2

and 3 are combined as a “Joint Motion Generation” block. Using the contents in

chapters 2 and 3, the trajectories of all joints of the robot can be generated. Chapter 4

focuses on the balance and stability of walking. The contents in chapters 2, 3, and 4 are

used to construct the proposed real-time walking pattern generator satisfying COG/ZMP

10

inverted pendulum equations. In this stage, the COG trajectory is optimized in

horizontal (sagittal and lateral) directions. The COG height trajectory is directly

calculated by considering the ground height of the environment. In chapter 5, an

optimization algorithm for COG height trajectory is proposed. The time required for

each optimization for different 3D ZMP input is about two minutes. As a future work,

real-time implementation of the method in chapter 5 can be achieved by constructing a

database of training results. Using the algorithms form chapters 2 to 5, an optimized 3D

COG walking pattern generation with 3D ZMP input can be achieved. For the

implementation part, chapters 6 and 7 discuss the protocol and the hardware used to

build the real-time control system in this dissertation. Using the algorithms and

techniques in this dissertation, optimized walking pattern generation and real-time

control are achieved.

11

Chapter 2 Kinematics and Dynamics

Basic kinematics and dynamics of robots are developed for many years. Equations

and descriptions of the behaviors of rigid body and the center of gravity (COG) of each

link are very important for constructing the model of robots. This chapter shows the

basic knowledge of kinematics and dynamics used in this dissertation. All equations and

concepts are used in the other chapters in this dissertation.

2.1 Introduction

Many researchers have proposed the solutions to the singularity problem and the

joint limit problem while solving Jacobian linearized IK. They include the damped least

square method (DLS) [137] and the robust damped least square method (RDLS) [89],

which are used for singularity avoidance. The weighted least-norm method (WLN) [14]

is used for joint limit avoidance. The combined method of RDLS and WLN [146] is

also proposed. Many other methods are proposed, such as the selectively damped least

squares methods (SDLS) [1], the gradient projection method (GPM) [76] and the

extended Jacobian method EJM [63][131]. In this dissertation, to improve the

performance of the IK solver, RWLN method [146] is used to achieve singularity

avoidance and joint limit avoidance. On the other hand, except the kinematics part, the

dynamics part of the robot must be considered. Newton-Euler dynamics [4][27][132] is

used to construct the dynamics part of the pattern generation algorithm, including the

prediction of torques and forces of the robot joints while motion planning and the data

analysis after experiments.

12

The rest of this chapter is organized as follows: section 2.2 describes the DH

method and forward kinematics. Section 2.3 shows the IK engine used in this

dissertation. Section 2.4 discusses about the Newton-Euler dynamics. Section 2.5 shows

the calculation of linear and angular momentum. Section 2.6 summarizes this chapter.

2.2 Forward Kinematics

The Denavit-Hartenberg (DH) method is used to construct the forward kinematics

(FK) of the robot system [133]. The homogeneous matrix describing the translation and

rotation of the robot is expressed in Eq. (2-1).

𝑇0,𝑖 = 𝑇0,1𝑇1,2𝑇2,3 ⋯𝑇𝑖−1,𝑖 (2-1)

𝑇0,𝑖 denotes the homogeneous matrix describing the ith joint in the world coordinate

and 𝑇𝑖−1,𝑖 denotes the homogeneous matrix from the (i-1)th to the ith joint. The

homogeneous matrix is composed of two main parts, the rotational part and the

translational part, shown as Eq. (2-2).

𝑇0,𝑖 = �𝑅0,𝑖 𝐷0,𝑖
0 1

� (2-2)

𝑅0,𝑖 denotes the rotation matrix of the ith link described in the world coordinate and

𝐷0,𝑖 denotes the position of the origin of the ith link in the world coordinates. The

physical meaning of 𝑅0,𝑖 is very important for describing and deriving the equations of

robot kinematics and dynamics. It is composed of the unit vectors of local x, y, and z

axes described in the world coordinates, as shown in Eq. (2-3) and Figure 2-1.

𝑅0,𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] (2-3)

13

Figure 2-1. The physical meaning of rotation matrix in the world coordinates

In the equation and figure above, 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 denote the unit vectors of local x, y,

and z axes described in the world coordinates; they are all 3-by-1 vectors.

By calculating forward kinematics using DH parameters, the relationship between

the end-effectors and the joint angles can be expressed as Eq. (2-4).

𝑥 = 𝑓(𝜃) (2-4)

In the equation, 𝑥 denotes the combined vector including the position and

direction of the end-effectors of the head and the limbs. The COG position is also a part

of the vector 𝑥, it is found by averaging all the position multiplied by the weight of

each link. On the right hand side, 𝜃 denotes all joint angles of the robot, as shown in

Eq. (2-5).

𝜃 = [𝜃1 𝜃2 ⋯ 𝜃𝑗 ⋯ 𝜃𝑠]𝑇 (2-5)

2.3 Inverse Kinematics

Using the Jacobian linearization method, the joint speed can be mapped to the

speed of 𝑥 with Jacobian matrix, as shown in Eq. (2-6).

14

�̇� = 𝐽�̇� (2-6)

where 𝐽 denotes the Jacobian matrix. It is not a square matrix when the system has

redundant degrees of freedom (DOFs). Pseudoinverse is used to solve the joint speed

for the desired �̇�, as shown in Eq. (2-7).

�̇� = 𝐽+�̇� (2-7)

When solving IK, singularity configurations may cause discontinuous solved

trajectory or the failure of the IK solver. This is solved with the robust damped least

squares method (RDLS) in section 2.3.1. And the other problem when solving IK is the

joint limit problem. When a joint of mechanism is reaching its joint limit, the

mechanism may crash and broken. The weighted least-norm (WLN) method is used to

solve the joint limit problem of the robot, shown in section 2.3.2.

2.3.1 Robust Damped Least Squares Method (RDLS)

If the determinant of 𝐽𝐽𝑇 is zero or close to zero, singularity occurs. In order to

avoid the singularity, robust damped least square method (RDLS) is applied. The idea

of the damped least square method (DLS) is to minimize ||�̇� − 𝐽�̇�||2 + 𝛼||�̇�||2, the sum

of the square of the residual error and the joint velocities. Here α is a positive damping

factor. Thus, the pseudoinverse matrix with DLS method is shown as Eq. (2-8).

𝐽𝛼+ = 𝐽𝑇(𝐽𝐽𝑇 + 𝛼𝐼𝑚)−1 (2-8)

where 𝐼𝑚 is an identity matrix with the same dimension as 𝐽𝐽𝑇 matrix. The damping

factor α helps to avoid singularity, but it also affects the solved �̇�. Thus, 𝛼 should not

be applied at nonsingular configurations. In RDLS method, the manipulability ℎ of the

mechanism [142] is defined as Eq. (2-9).

ℎ(𝜃) = �𝑑𝑑𝑑(𝐽𝐽𝑇) (2-9)

When ℎ approaches to zero, it is getting closer to singularity. Then 𝛼 is adjusted

automatically using Eq. (2-10).

15

𝛼 = �𝛼0(1 − ℎ/ℎ𝑠), ℎ < ℎ𝑠

0 , otherwise
 (2-10)

where ℎ𝑠 denotes the threshold value, 𝛼0 is the value of damping factor at singular

configurations. With the equation above, 𝛼 is effective only when the configuration is

near singular configurations.

2.3.2 Weighted Least-Norm Method (WLN)

The weighted least-norm method is designed from the idea of null space. The

general solution of �̇� for solving IK can be written as

�̇� = 𝐽+�̇� + (𝐼 − 𝐽+𝐽)𝜑 (2-11)

where 𝜑 is an arbitrary vector, 𝐽+�̇� is a particular solution, and (𝐼 − 𝐽+𝐽)𝜑 is the

homogeneous solution. Joint limit avoidance is important for humanoid robots in order

to act like human beings. A weighted least-norm (WLN) solution based scheme for

avoiding joint limits is proposed by Chan & Dubey [14]. In this method, a performance

criterion 𝐻(𝜃) is defined as

𝐻(𝜃) = �
1
4

�𝜃𝑖,𝑚𝑠𝑚 − 𝜃𝑖,𝑚𝑖𝑠�
2

�𝜃𝑖,𝑚𝑠𝑚 − 𝜃𝑖��𝜃𝑖 − 𝜃𝑖,𝑚𝑖𝑠�

𝑠

𝑖=1

 (2-12)

When any joint approaches its limit, the value of 𝐻(𝜃) grows very fast, and so is

its partial differentiation ∂𝐻(𝜃)/𝜕𝜃𝑖 . Thus, a weighting matrix is defined as Eqns.

(2-13) and (2-14).

𝑊 =

⎣
⎢
⎢
⎢
⎡
𝑤1 0
0 𝑤2

⋯

 0 0
 0

⋮ ⋱ ⋮
0
0 0

⋯

𝑤𝑠−1 0
0 𝑤𝑠⎦

⎥
⎥
⎥
⎤
 (2-13)

𝑤𝑖 = 1 + �
𝜕𝐻(𝜃)
𝜕𝜃𝑖

� (2-14)

The WLN method can be expressed as Eqns. (2-15) and (2-16).

𝐽𝑊 = 𝐽𝑊−1/2 (2-15)

�̇� = 𝑊−1/2𝐽𝑊+ �̇� + �𝑊−1/2𝐽𝑊+ − 𝐽+��̇� (2-16)

16

2.3.3 Robust Weighted Least Norm Method (RWLN)

The RWLN method is the combination of the RDLS method and the WLN method.

The equation used to solve IK with the RWLN method is shown as Eqns. (2-17) and

(2-18).

�̇� = 𝑊−1/2𝐽𝑊,𝛼
+ �̇� + �𝑊−1/2𝐽𝑊,𝛼

+ − 𝐽𝛼+��̇� (2-17)

𝐽𝑊,𝛼
+ = 𝐽𝑊𝑇 (𝐽𝑊𝐽𝑊𝑇 + 𝛼𝑊𝐼𝑚)−1 (2-18)

The procedure of solving IK is shown in Figure 2-2.

Figure 2-2. The procedure of solving inverse kinematics

In the figure, the end-effector trajectories are input to the IK solver. Firstly, the

robot posture and all positions of end-effectors are calculated with FK, and then the IK

solver updates the joint angles with pseudoinverse calculation. These two steps are

repeated till the robot end-effectors reach the target positions and orientations. Using

this procedure, the robot motions are solved one-by-one with the input trajectory.

2.4 Newton-Euler Dynamics

The joint angle, velocity and acceleration can be found using the method

introduced in sections 2.2 and 2.3. In this section, Newton-Euler Dynamics is used to

find the dynamics of the robot, including the velocity, acceleration, angular velocity,

angular acceleration, force, and torque of all joints of the robot described in the world

coordinate.

17

2.4.1 Forward Iteration

In the forward calculation stage of the Newton-Euler method, the velocity, angular

velocity, acceleration and angular acceleration of all joints and all COGs of each link of

the robot are calculated, as shown in Eqns. (2-19)–(2-22) and Figure 2-3.

Figure 2-3. The vectors used to find the dynamics of the robot

𝜔��⃑ 𝑖 = 𝜔��⃑ 𝑖−1 + 𝑧𝑖�̇�𝑖 (2-19)

�⃑�𝑖+1 = �⃑�𝑖 + 𝜔��⃑ 𝑖 × 𝑟𝑖 (2-20)

�⃑�𝑖 = �⃑�𝑖−1 + 𝑧𝑖�̈�𝑖 + 𝜔��⃑ 𝑖 × 𝑧𝑖�̇�𝑖 (2-21)

�⃑�𝑖+1 = �⃑�𝑖 + �⃑�𝑖 × 𝑟𝑖 + 𝜔��⃑ 𝑖 × (𝜔��⃑ 𝑖 × 𝑟𝑖) (2-22)

In the equations, 𝜔��⃑ , �⃑�, �⃑�, and �⃑� denote the angular velocity, the velocity, the

angular acceleration, and the acceleration of each joint of the robot in the world

coordinate. �̇� and �̈� denote the rotational speed and acceleration of each joint of the

robot. 𝑟𝑖 is the vector from the joint i to the joint i+1. 𝑧𝑖 is the unit vectors of the

z-axis of the ith joint, as shown in Figure 2-4.

18

Figure 2-4. z-axis unit vectors of all joints of both robot legs

The angular velocity, velocity, angular acceleration, and acceleration of each link

COG are derived as Eqns. (2-23) to (2-26) using the vectors in Figure 2-5.

Figure 2-5. The link COG and vectors used to find its dynamics

𝜔��⃑ 𝑐,𝑖 = 𝜔��⃑ 𝑖 (2-23)

�⃑�𝑐,𝑖 = �⃑�𝑖 + 𝜔��⃑ 𝑖 × 𝑟𝑐,𝑖 (2-24)

�⃑�𝑐,𝑖 = �⃑�𝑖 (2-25)

�⃑�𝑐,𝑖 = �⃑�𝑖 + �⃑�𝑖 × 𝑟𝑐,𝑖 + 𝜔��⃑ 𝑖 × �𝜔��⃑ 𝑖 × 𝑟𝑐,𝑖� (2-26)

19

where 𝑟𝑐,𝑖 is the vector from the ith joint to the COG of the ith link. In Eqns. (2-23) and

(2-25), the ith angular velocity and angular acceleration of the link COG is the same as

the ith joint angular velocity and angular acceleration. In Eqns. (2-24) and (2-26), the

calculation of the velocity and the acceleration of the ith link COG is the same as Eqns.

(2-20) and (2-22); in the equations, 𝑟𝑖 is replaced with 𝑟𝑐,𝑖.

2.4.2 Backward Iteration

In the forward calculation phase, the first joint is always the ankle of the stance leg.

The first joint switches between the left and right ankles during the walking process. In

the backward calculation stage of the Newton-Euler method, the force and torque are

calculated, as shown in Eqns. (2-27)–(2-28) and Figure 2-6.

𝑓𝑖+1 = 𝑓𝑖 − 𝑚𝑖�⃑� + 𝑚𝑖�⃑�𝑐,𝑖 (2-27)

𝜏𝑖+1 = 𝜏𝑖 + 𝐼𝑖�⃑�𝑖 + 𝜔��⃑ 𝑖 × (𝐼𝑖𝜔��⃑ 𝑖) − 𝑟𝑖→𝑖 × 𝑓𝑖 + 𝑟𝑖→𝑖+1 × 𝑓𝑖+1 (2-28)

f and τ denote the force and the torque of each joint of the robot. 𝑚𝑖 and 𝐼𝑖

denote the mass and inertia matrix of the ith link of the robot, calculated with CAD

software. 𝑟𝑖→𝑖 and 𝑟𝑖→𝑖+1 denote the vectors from the COG of the link to its two

end-points.

Figure 2-6. The free body diagram of the ith link

20

The derivative of Newton-Euler dynamics with respect to the COG height will be

derived and discussed in chapter 5. It is used to optimize the input COG height

trajectory of the robot when walking.

2.5 Linear Momentum and Angular Momentum

The calculation of linear momentum and angular momentum of the robot is

described in this section. Calculation of the momentum of rigid bodies can be found in

textbooks or papers [50][84].Considering the robot momentum can further improve the

balance of the robot walking. The momentum Jacobian will be discussed in section 3.5.

2.5.1 Linear Momentum

Since the velocity of the COG of the ith link is shown in Eq. (2-24), the linear

momentum of each link in the world coordinate is

𝐿�⃑ 𝑀,𝑖 = 𝑚𝑖�⃑�𝑐,𝑖 (2-29)

The total linear momentum of the robot is the summation of linear momentum of

all links of the robot as shown in Eq. (2-30).

𝐿�⃑ 𝑀 = �𝑚𝑖�⃑�𝑐,𝑖 (2-30)

2.5.2 Angular Momentum

The angular momentum of the robot contains two parts: spin and orbit angular

momentum, as shown in Eq. (2-31).

𝐴𝑀 = 𝐴𝑀,𝑠𝑠𝑖𝑠 + 𝐴𝑀,𝑜𝑜𝑜𝑖𝑜 (2-31)

Since the inertias of all parts of the robot changes in world coordinates with the

robot movements, the inertias in local coordinates should be used as references. The

inertias with respect to the COG of each link in local coordinates are constant matrices

and they can be calculated by using CAD software such as CATIA and SolidWorks.

The local inertia matrix with respect to the COG of the ith link of the robot is defined as

21

𝐼0,𝑖. The relationship between of the inertia matrices in local and in world coordinates is

shown as Eq. (2-32) and Figure 2-7.

𝐼𝑖 = 𝑅0,𝑖𝐼0,𝑖𝑅0,𝑖
𝑇 (2-32)

Figure 2-7. The local inertia matrix

𝐼𝑖 denotes the inertia matrix with respect to the COG of the ith link in the world

coordinates, 𝑅0,𝑖 is the rotation matrix part of the homogeneous matrix 𝑇0,𝑖 shown in

Eq. (2-2). The spin angular momentum can be calculated by summing all the product of

the momentum of inertia and the corresponding angular velocity in the world coordinate,

as Eq. (2-33).

𝐴𝑀,𝑠𝑠𝑖𝑠 = �𝐼𝑖𝜔��⃑ 𝑖 (2-33)

The orbit angular momentum with respect to the support point is calculated as Eq.

(2-34) and shown in Figure 3-13.

𝐴𝑀,𝑜𝑜𝑜𝑖𝑜 = ��𝑟𝑠→𝑐,𝑖 × 𝑚𝑖�⃑�𝑐,𝑖� (2-34)

22

Figure 2-8. The orbit angular momentum

where 𝑟𝑠→𝑐,𝑖 denotes the vector from support point to the COG of the ith link. The

support point of the robot is in the robot’s stance foot, thus the support point of the

momentum Jacobian in section 3.5.3 is chosen as the position of the ankle of the stance

leg.

2.6 Summary

In this chapter, the basic kinematics and dynamics engine in the whole dissertation

are introduced. The methods of forward and inverse kinematics are discussed in the first

half of this chapter and then the Newton-Euler dynamics and the calculation of

momentum are shown in the second half.

In the following chapters, the detailed part and constraints for solving IK, and more

detailed momentum calculation are shown in chapter 3. Newton-Euler dynamics is used

to optimize the COG height trajectory in chapter 5.

23

Chapter 3 Jacobian Based Inverse Kinematics

Solver

In this dissertation, IK is solved using pseudoinverse method. The Jacobian matrix

can describe the linearized relationship between the joint velocity and the end-effectors

of the robot, including the conventional Jacobian matrix, the COG Jacobian matrix,

momentum Jacobian matrix, and the Fixed-Leg-Motion Jacobian matrix. All the

discussions and calculations in this chapter use the concept of the physical meaning of

the robot Jacobian matrix: Fixing all the other joints and calculate the component

caused by the movement of the ith joint. The concept of Fixed-Leg_Motion Jacobian is

also proposed in this chapter and it is a quick and easy concept to deal with the

constraint that the stance foot is fixed on the ground and has zero linear and angular

velocity.

3.1 Introduction

In robot applications, IK is a common method to solve joint trajectories to follow

the assigned end-effector trajectories. There are many methods to solve IK, including

analytical displacement analysis method, Jacobian linearization method, searching

method, etc. The analytical displacement analysis method [29][34][73] is to find the

relationship between the joints and the links using sine and cosine functions directly;

this is convenient for simple mechanisms to solve IK but very difficult and highly

nonlinear for multi-link or redundant mechanisms. Jacobian linearization method is

most used in applications of robot arms and robot legs; by linearizing the kinematics

relationship of the mechanism, this method can solve IK after several iterations. There

24

are two types of Jacobian linearization methods. One is to use the analytical solution

[15][103] of the mechanism to find the Jacobian matrix and the other is to use the

cross-product method [9][90][109][123][130]. Same as the analytical displacement

analysis method, the Jacobian matrix found by using analytical method is also highly

nonlinear and very complex for humanoid robots. Compared with the Jacobian matrix

calculated using the analytical method, to calculate it using cross product method does

not need to deal with the highly nonlinear equations and its calculation is also very fast.

Searching methods include random search method [46][135] and motion capture and

database method [102]. Random search methods can be very fast and it gives different

results in each test. On the other hand, database methods need large memory for

complex mechanisms and the motion capture method must have a good mapping

algorithm or the robot will become unstable since the shape and mass distribution of the

robot is different from human. In this dissertation, the Jacobian matrix calculated by

using cross product method is used since it is fast and convenient.

This chapter is organized as follows: section 3.2 shows the conventional Jacobian

matrix which describes the linearized relationship between the motion of the

end-effector and joint angles, section 3.3 derives and describes the proposed

Fixed-Leg-Motion Jacobian concept which can be used to all types of Jacobian matrices

for legged robots, section 3.4 shows the calculation of COG and the COG Jacobian

matrix, section 3.5 further describes the calculation of momentum and derives the

momentum Jacobian matrix, section 3.6 combines all Jacobian matrices discussed in

this chapter to a global Jacobian matrix, and finally section 3.8 summarizes this chapter.

3.2 Conventional Jacobian Matrix

After constructing the DH parameters, the Jacobian matrix can be found by the

cross product method, and then the limbs and the head can be controlled independently

25

with the Jacobian matrix. The ankles, the fingertips and the head are chosen as

end-effectors. But if we solve IK for the limbs and the head of the robot independently,

it is difficult to decide where the positions of the end-effectors should be in local

coordinates because DH forward kinematics method constructs the joint positions and

orientations in its own coordinates instead of the world coordinates, and all positions of

the end-effectors in the world coordinates are influenced by the movements of the

stance leg. Thus the trajectories of the end-effectors should be decided in the world

coordinates directly. Eq. (3-1) describes the conventional Jacobian matrix that is used

while solving IK independently.

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝐿𝐿
�̇�𝑅𝐿
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐽𝐿𝐿 0 0
0 𝐽𝑅𝐿 0
0 0 𝐽𝐿𝐴

0
0
0

0
0
0

0 0 0 𝐽𝑅𝐴 0
0 0 0 0 𝐽𝐻⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝐿𝐿
�̇�𝑅𝐿
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 (3-1)

where �̇� denotes the vector composed of the differences of position and orientation

from the current end-effector to the desired end-effector in its own coordinates; LL, RL,

LA, RA, and H denotes left leg, right leg, left arm, right arm, and head, respectively. If

we just want to control the limbs and the head of the robot independently, it is enough

to solve IK with the equation above in one iteration if �̇� is given appropriately (not too

large).

The linearized relationship of the end-effector and all joints that decides its

position and orientations in the world coordinates can be described as the format in the

following. Figure 3-1 shows the vectors used to construct the conventional Jacobian

matrix.

26

Figure 3-1. The vectors used to construct Jacobian matrix

In Figure 3-1, 𝑟𝑖→𝑠𝑠𝑒 and 𝑧𝑖 vectors denote the vector from the position of the ith

joint to the end-effector and the unit vector of the rotation axis of the ith joint. The

construction of the conventional Jacobian matrix of the left leg is used as an example.

From Eq. (3-1), the relationship between the end-effector and the joints can be written

as

�̇�𝐿𝐿 = 𝐽𝐿𝐿�̇�𝐿𝐿 = �
𝑣𝑠𝑠𝑒,𝐿𝐿
𝜔𝑠𝑠𝑒,𝐿𝐿

� (3-2)

�̇�𝐿𝐿 is the 6-by-1 vector composed of the linear velocity and angular velocity of

the end-effector described in the world coordinates. 𝑣𝑠𝑠𝑒,𝐿𝐿 and 𝜔𝑠𝑠𝑒,𝐿𝐿 denote the

linear velocity and angular velocity; both vectors are 3-by-1 vector. For an n-axis leg

mechanism, Eq. (3-2) can be further rewritten as Eqns. (3-3) and (3-4).

vend,LL = �(z⃑i × r⃑i→end)θı̇
n

i=1

 (3-3)

𝜔𝑑𝑠𝑑,𝐿𝐿 = �𝑧𝑖𝜃�̇�

𝑠

𝑖=1

 (3-4)

27

𝑧𝑖 × 𝑟𝑖→𝑠𝑠𝑒 is the position change under unit rotation of the ith joint and thus the

𝑣𝑠𝑠𝑒,𝐿𝐿 is the summation of the position change due to the motion of each joint. On the

other hand, because the angular velocity change under unit rotation of the ith joint is 𝑧𝑖,

the 𝜔𝑠𝑠𝑒,𝐿𝐿 is the summation of the angular velocities due to the motion of all joints.

The conventional Jacobian matrix in Eq. (3-2) can be found by rearrange the Eqns. (3-3)

and (3-4) in matrix form, as shown in Eq. (3-5).

𝐽𝐿𝐿�̇�𝐿𝐿 = �
𝑧1 × 𝑟1→𝑠𝑠𝑒 𝑧2 × 𝑟2→𝑠𝑠𝑒 ⋯ 𝑧𝑖 × 𝑟𝑖→𝑠𝑠𝑒 ⋯ 𝑧𝑠 × 𝑟𝑠→𝑠𝑠𝑒

𝑧1 𝑧2 ⋯ 𝑧𝑖 ⋯ 𝑧𝑠 �

⎣
⎢
⎢
⎢
⎢
⎢
⎡�̇�1,𝐿𝐿

�̇�2,𝐿𝐿
⋮

�̇�𝑖,𝐿𝐿
⋮

�̇�𝑠,𝐿𝐿⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (3-5)

where 𝐽𝐿𝐿 is a 6-by-n matrix. Rather than using the partial derivative method in

common text books to find the Jacobian matrix, it is easier and neater to use the

cross-product method in Eq. (3-5).

3.3 Fixed-Leg-Motion Jacobian Matrix

Since the stance leg is “fixed” on the floor, the movements of the joints of the

stance leg change the positions and orientations of other end-effectors. The concept of

the “Fixed-Leg-Motion” Jacobain matrix describing the linearized relationship among

the stance leg and the end-effectors is proposed in this dissertation. With the proposed

Fixed-Leg-Motion Jacobian method, rather than change the origin point of all the

forward kinematics trains to the stance foot or using the complex transformation

formula, the original kinematics trains can be used very conveniently to construct the

Jacobian matrix of the robot, as shown in Figure 3-2.

28

Figure 3-2. To change and not to change the origin of kinematics trains

In the figure, “base point” denotes the origin point of the kinematics trains of the

robot. The concept of the Fixed-Leg-Motion Jacobian matrix is used to find how the

joints in stance leg affect the positions and orientations of the end-effectors directly

using the original kinematics trains. It can also be used on COG Jacobian, momentum

Jacobian and other linearized relationships, as shown in the following sections.

Same as the conventional Jacobian matrix, the Fixed-Leg-Motion Jacobian matrix

is also a 6-by-n matrix. It is defined as

𝐽𝐹 = �
𝐽𝐹,𝑇𝑜𝑠𝑠𝑠𝑙𝑠𝑜𝑖𝑜𝑠𝑠𝑙
𝐽𝐹,𝑅𝑜𝑜𝑠𝑜𝑖𝑜𝑠𝑠𝑙

� , 𝐽𝐹 ∈ 𝑅6×𝑠 (3-6)

𝐽𝐹,𝑇𝑜𝑠𝑠𝑠𝑙𝑠𝑜𝑖𝑜𝑠𝑠𝑙 and 𝐽𝐹,𝑅𝑜𝑜𝑠𝑜𝑖𝑜𝑠𝑠𝑙 denote the translational and rotational parts of

the Fixed-Leg-Motion Jacobian matrix. The 𝐽𝐹,𝑅𝑜𝑜𝑠𝑜𝑖𝑜𝑠𝑠𝑙 is defined as

𝐽𝐹,𝑅𝑜𝑜𝑠𝑜𝑖𝑜𝑠𝑠𝑙 = −[𝑧1 𝑧2 ⋯ 𝑧𝑖 ⋯ 𝑧𝑠] (3-7)

where 𝑠 denotes the total number of joints of the stance leg, 𝑧𝑖 are unit normal

vectors of the joints of the stance leg. The minus sign is multiplied since when a joint of

the stance leg rotates clockwise in its coordinates, the body rotates counterclockwise in

29

the world coordinates. On the other hand, the 𝐽𝐹,𝑇𝑜𝑠𝑠𝑠𝑙𝑠𝑜𝑖𝑜𝑠𝑠𝑙 is calculated as Eq. (3-8)

using the vectors in Figure 3-3.

𝐽𝐹,𝑇𝑜𝑠𝑠𝑠𝑙𝑠𝑜𝑖𝑜𝑠𝑠𝑙
𝑇 = −

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑧1 × 𝑟1,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓

𝑧2 × 𝑟2,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓
⋯

𝑧𝑖 × 𝑟𝑖,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓
⋯

𝑧𝑠 × 𝑟𝑠,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3-8)

Figure 3-3. The vectors used to construct Fixed-Leg-Motion Jacobian matrix

In Eq. (3-8), the 𝑟𝑖,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓 denotes the vector from the ith joint of the stance leg

to each end-effector, the cross product 𝑧𝑖 × 𝑟𝑖,𝐹→𝑠𝑠𝑒_𝑠𝑓𝑓 is its vector change under unit

rotation of the ith joint. The Fixed-Leg-Motion Jacobian matrix can be applied to all

other end-effectors, as shown in Eq. (3-9).

30

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐽𝑠𝑜𝑠𝑠𝑐𝑠 0 0 0 0
𝐽𝑓→𝑠 𝐽𝑠𝑠𝑖𝑠𝑠 0 0 0
𝐽𝑓→𝐿𝐴 0 𝐽𝐿𝐴 0 0
𝐽𝑓→𝑅𝐴 0 0 𝐽𝐿𝐴 0
𝐽𝑓→𝐻 0 0 0 𝐽𝐻⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 (3-9)

In the equation, 𝐽𝑓→𝑋 denotes the F-Jacobian matrices; the subscript “X” denotes

the end-effector affected by the movement of the joints of the stance leg, such as the

swing leg, the fingertips, and the head.

In the world coordinates, when using the conventional Jacobian to solve IK, each

kinematics train (head, arm, or leg) is considered separately. The effect from other

kinematics train (i.e. the stance leg) is not considered. On the other hand, the

Fixed-Leg-Motion Jacobian matrix considers the movements of the stance leg. For

example, multiply the second row and the angular speed vector of Eqns. (3-1) and (3-9),

we can find Eqns. (3-10) and (3-11).

�̇�𝑠𝑠𝑖𝑠𝑠 = 𝐽𝑠𝑠𝑖𝑠𝑠�̇�𝑠𝑠𝑖𝑠𝑠 (3-10)

�̇�𝑠𝑠𝑖𝑠𝑠 = 𝐽𝑓→𝑠�̇�𝑠𝑜𝑠𝑠𝑐𝑠 + 𝐽𝑠𝑠𝑖𝑠𝑠�̇�𝑠𝑠𝑖𝑠𝑠 (3-11)

Eq. (3-10) can solve IK using the same iterations as Eq. (3-11) if the end-effector

trajectories of each kinematics train are input independently. Eq. (3-11) can solve faster

when the motions of the stance leg affects the position of the other end-effectors. Eq.

(3-11) has better computation efficiency in real cases, as shown in Figure 3-4.

31

Figure 3-4. The iteration used with both methods

The graphics above show the computation time and the iterations per step of the

pseudoinverse method with and without F-Jacobian method. Step 1 and step 2 are initial

steps, so they are with different iterations per step. The proposed method, F-Jacobian,

saved 65.73% iterations per step. Except initial steps, each step contains 27

configurations. In the 27 configurations, the first three and last three points need no

iteration because they are at the same position. The proposed method, F-Jacobian, can

solve each configuration in only one computation when the acceptable error is 0.2mm

(0.0712% of the length of legs). “Acceptable error” means the acceptable position error

value when solving IK. If the position error is smaller than the acceptable error, the next

trajectory knot will be inputted to the IK solver. If the position error is still larger than

the acceptable error, the same trajectory knot will be inputted to the solver again. Since

the input to the IK solver are close and smooth enough, the proposed method can get

smooth trajectories and solve each configuration in one iteration. But for the same input,

IK without F-Jacobian makes the joints oscillate and needs about 3 iterations to solve

one configuration. Figure 3-5 and Figure 3-6 show the solved trajectories of the left

ankle (end-effector) with and without F-Jacobian.

32

Figure 3-5. Solved trajectory with F-Jacobian

Figure 3-6. Solved trajectory without F-Jacobian

Without F-Jacobian, the solved trajectories are not all useable. Only points that are

in the acceptable error range are useable. We can reduce the number of useless points

with F-Jacobian method. The robot walks from 0 to -400mm in the simulation. Only

some configurations in the initial steps are not solved in one computation since the

home configuration of the robot is near singularity. After initial steps, the robot has bent

its knees, and hence keeps the robot away from the singular configurations. All the

configurations after initial steps are solved in one computation.

Because the Fixed-Leg-Motion Jacobian method can describe the relationship

between end-effector and joints more accurately than conventional Jacobian method, the

33

error decay rate when solving IK is also faster. Figure 3-7 shows the acceptable error

versus the total iterations of the IK computation (for 232 trajectory knots) with and

without F-Jacobian method.

Figure 3-7. Acceptable error vs. total iterations

From Figure 3-7, we can see the number of total iterations for conventional

Jacobian method grows much faster than the F-Jacobian method when we choose the

acceptable error from 2mm to 0.0002mm.

3.4 COG Jacobian

The COG trajectory of walking pattern of the robot is generated with the inverted

pendulum model. In the model, the mass of the robot is assumed to be a point (the

COG). The position, velocity and acceleration of COG are highly related with whether

the robot falls or not. Thus the trajectory of the COG is directly relative to the stability

of the robot. In order to control the robot COG, the relationship between the COG and

all joints of the robot must be derived. The generation and optimization of the COG

trajectory will be discussed in chapters 4 and 5. In this section, the calculation of COG

and the method to control the COG position using the joints of the robot is discussed.

34

3.4.1 Calculation of COG

The position of COG can be easily computed by averaging the sum of the product

of the link masses and their position vectors, as shown in Eq. (3-12). Note that 𝑟𝐶𝐶𝐶 is

a 3-by-1 vector described in world coordinates.

𝑟𝐶𝐶𝐶 =
∑ 𝑚𝑖 ∙ 𝑟𝑚,𝑖
𝑠
𝑖=1
∑ 𝑚𝑖
𝑠
𝑖=1

 (3-12)

where 𝑟𝐶𝐶𝐶 is the position vector of the robot COG, 𝑚𝑖 denotes the mass of the ith

link, and 𝑟𝑚,𝑖 denotes the position vector of the COG of the ith link in the world

coordinate.

3.4.2 COG Jacobian

With the same technique in section 3.4.1, when a joint rotates, only parts of the

robot are rotated, while the others are not rotated. Separating the rotated parts and the

fixed parts (without rotating), we obtain Eq. (3-13). This is used to calculate the COG

Jacobian matrix.

𝑀 ∙ 𝑟𝐶𝐶𝐶 = ��𝑚𝑠,ℎ ∙ 𝑟𝑠,ℎ
ℎ

+ �𝑚𝑢𝑠,𝑘 ∙ 𝑟𝑢𝑠,𝑘
𝑘

��
𝑗𝑜𝑖𝑠𝑜=𝑖

 (3-13)

where 𝑀 denotes the total mass of the robot, subscript “a” denotes the parts that are

affected by the rotation, subscript “ua” denotes the parts that are unaffected by the

rotation, 𝑚𝑠,ℎ and 𝑚𝑢𝑠,𝑘 denote the mass that are affected and unaffected by the joint

i, and the vectors 𝑟𝑠,ℎ and 𝑟𝑢𝑠,𝑘 denote the position of the COG of each affected part

and each unaffected part. The equation can also be written as

𝑀 ∙ 𝑟𝐶𝐶𝐶 = (𝑀𝑠 ∙ 𝑟𝑠 + 𝑀𝑢𝑠 ∙ 𝑟𝑢𝑠)|𝑗𝑜𝑖𝑠𝑜=𝑖 = 𝑀𝑠,𝑖 ∙ 𝑟𝑠,𝑖 + 𝑀𝑢𝑠,𝑖 ∙ 𝑟𝑢𝑠,𝑖 (3-14)

where 𝑀𝑠,𝑖 and 𝑀𝑢𝑠,𝑖 denote the total mass of the parts affected and unaffected by the

motion of the ith joint , 𝑟𝑠,𝑖 and 𝑟𝑢𝑠,𝑖 denote the position vector of the COG of the

affected and unaffected parts, as shown in Figure 3-8.

35

Figure 3-8. The affected and unaffected parts of the joint rotation

Note that the members of affected and unaffected parts change with different joint i,

and they also depend upon each different mechanism. The position change of 𝑟𝐶𝐶𝐶

caused by the rotation of joint j can be approximated as

∆𝑟𝐶𝐶𝐶,𝑖 =
𝑀𝑠,𝑖

𝑀
∙ ∆𝑟𝑠,𝑖 +

𝑀𝑢𝑠,𝑖

𝑀
∙ ∆𝑟𝑢𝑠,𝑖 (3-15)

Since 𝑟𝑢𝑠,𝑖 is unaffected by the rotation of the ith joint, ∆𝑟𝑢𝑠,𝑖 is always equal to

zero. ∆𝑟𝐶𝐶𝐶,𝑖 denotes the displacement of the whole robot’s COG caused by the

rotation of the ith joint. Thus, the COG Jacobian can be obtained as

∆𝑟𝐶𝐶𝐶,𝑖 =
𝑀𝑠,𝑖

𝑀
∙ ∆𝑟𝑠,𝑖 = 𝐽𝐶𝐶𝐶,𝑖 ∙ �̇�𝑖 (3-16)

where 𝐽𝐶𝐶𝐶,𝑖 and �̇�𝑖 denote the COG Jacobian and the angular speed of the ith joint.

The COG Jacobian matrix of the joints on the limbs except the joints on the stance leg

can be found as Eq. (3-17) using the vectors shown in Figure 3-9.

36

𝐽𝐶𝐶𝐶,𝑖 =
𝑀𝑠

𝑀
𝑧𝑖 × 𝑟𝑠𝑐,𝑖 (3-17)

Figure 3-9. The vectors used to construct COG Jacobian

In Figure 3-9, because the ith joint is an axis of the hip joint, 𝐶𝑂𝐺𝑠,𝑖 denotes the

COG of the whole swing leg; 𝑟𝑠𝑐,𝑖 denotes the vector from the ith joint to 𝐶𝑂𝐺𝑠,𝑖. In

Eq. (3-17), 𝑧𝑖 × 𝑟𝑠𝑐,𝑖 denotes the position change of 𝐶𝑂𝐺𝑠,𝑖 under unit rotation of the

ith joint. Because the mass of 𝐶𝑂𝐺𝑠,𝑖 is 𝑀𝑠, the effect to the total COG position

change is multiplied by 𝑀𝑠/𝑀.

3.4.3 Fixed COG Jacobian

Using the concept of Fixed-Leg-Motion Jacobian, the COG Jacobian of the joints

in stance leg is calculated as Eq. (3-18) using the vectors shown in Figure 3-10.

∆𝑟𝐶𝐶𝐶,𝑖 = 𝐽𝐶𝐶𝐶,𝑖 ∙ �̇�𝑖 = −
𝑀𝑠,𝑖

𝑀
∙ 𝑧𝑖 × 𝑟𝑠𝑐,𝑖�̇�𝑖 (3-18)

37

Figure 3-10. The vectors used to construct fixed COG Jacobian

Same as the Fixed-Leg-Motion Jacobian for end-effectors of the limbs, the

Fixed-Leg-Motion Jacobian for COG has a minus sign in Eq. (3-18) because the

rotation of the ith joint gives the robot body an angular velocity along −𝑧𝑖 direction.

With the COG Jacobian matrix, the whole Jacobian matrix including the constraint

of COG position is expressed as

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻
�̇�𝐶𝐶𝐶 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐽𝑠𝑜𝑠𝑠𝑐𝑠 0 0 0 0
𝐽𝑓→𝑠 𝐽𝑠𝑠𝑖𝑠𝑠 0 0 0
𝐽𝑓→𝐿𝐴 0 𝐽𝐿𝐴 0 0
𝐽𝑓→𝑅𝐴 0 0 𝐽𝑅𝐴 0
𝐽𝑓→𝐻 0 0 0 𝐽𝐻
𝐽𝑓→𝐶 𝐽𝑠→𝐶 𝐽𝐿𝐴→𝐶 𝐽𝑅𝐴→𝐶 𝐽𝐻→𝐶⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 (3-19)

In Eq. (3-19), the COG Jacobian matrix is added to the original Jacobian matrix. In

order to control the COG position of the robot, three DOFs of the robot must be used to

achieve the COG position constraint (x, y, and z directions). The original Jacobian

38

matrix described in Eq. (3-9) controls the position and direction of the stance leg and six

DOFs are required (three for position and three for orientation). Because the robot does

not have enough DOFs in its legs, it is impossible to control both the positions of the

stance leg and COG, while keeping the orientation constraints. The constraints of the

position of the stance leg is released and replaced by the COG position constraints. Thus

the Jacobian matrix of the stance leg has only three rows for the three orientation

constraints. The stance leg is attached on the ground, thus the positions of all joints of

the robot can still be calculated by using forward kinematics.

3.5 Momentum Jacobian

In addition to tracking the COG trajectory, linear and angular momentum can also

be considered to further stabilize humanoid robots while walking. Researchers proposed

methods to manipulate the linear and angular momentum of the robot

[50][95][121][152]. In this section, momentum Jacobian matrix using the proposed

Fixed-Leg-Motion Jacobian concept is derived and described. It is also combined to the

proposed global Jacobian matrix shown in section 3.6.

3.5.1 Linear Momentum Jacobian

To calculate the linear momentum Jacobian, the linear momentum caused form the

rotation of each joint must be calculated first. Since the linear momentum is calculated

as Eq. (2-29), the linear momentum caused form the rotation of each joint can be

derived as Eq. (3-20) using the vectors shown in Figure 3-11.

𝐿�⃑ 𝑀,𝑖 = 𝑚𝑠,𝑖�𝑧𝑖 × 𝑟𝑠𝑐,𝑖��̇�𝑖 (3-20)

𝑚𝑠,𝑖 = 𝑚𝑠,𝑖+1 + 𝑚𝑖 (3-21)

39

Figure 3-11. Linear momentum caused form the joint rotation

𝐿�⃑ 𝑀,𝑖 denotes the linear momentum caused form the rotation of the ith joint, 𝑚𝑠,𝑖

denotes the accumulated (resultant) mass from the final link back to the ith link as

shown in Eq. (3-21), 𝑟𝑠𝑐,𝑖 denotes the vector from the ith joint to the COG position of

the accumulated mass. From Eq. (3-20), the linear momentum Jacobian caused from

unit rotation of the ith joint is

𝐽𝐿𝑀,𝑖 = 𝑚𝑠,𝑖�𝑧𝑖 × 𝑟𝑠𝑐,𝑖� (3-22)

where 𝐽𝐿𝑀,𝑖 is a 3-by-1 column vector; it shows the Jacobian matrix of the joints not

belong to stance leg. For the joints of the stance leg, using the concept of the

Fixed-Leg-Motion Jacobian, the accumulated mass contains all the mass above the joint

and a minus sign must be added to the 𝑧𝑖 vector, as shown in Eq. (3-23) and Figure

3-12.

𝐽𝐿𝑀,𝑖 = 𝑚𝑠,𝑖�−𝑧𝑖 × 𝑟𝑠𝑐,𝑖� (3-23)

40

Figure 3-12. Linear momentum caused form the joint rotation of the stance leg

where 𝑚𝑠,𝑖 denotes the whole mass above the ith joint of the stance leg, and 𝑟𝑠𝑐,𝑖

denotes the vector from the ith joint to the COG of the accumulated mass. The linear

momentum Jacobian matrix is almost the same as the translational part of the

conventional Jacobian matrix; the only difference is the linear momentum Jacobiam

matrix has the accumulated mass term in the equations.

3.5.2 Iterative Calculation of Moment of Inertia

To find the angular momentum Jacobian matrix, the spin and orbit angular

momentum caused by unit rotation of robot axes must be found first. Same as the

arrangement in section 2.5, the spin part of angular momentum is discussed first in this

section.

To calculate the spin angular momentum caused by unit rotation of all robot joints,

the iterative equations describing the accumulated inertia of the robot must be derived,

as shown in Eqns. (3-24)-(3-30). The derivation starts from calculating the inertia

41

matrix with respect to an arbitrary point. The parallel axis theorem in 3D space is used

for these calculations, as shown in Eq. (3-24) and Figure 3-13. This is used to combine

the inertia matrices of different links with respect to their averaged COG position.

𝐼𝑠,𝑖 = 𝐼𝑖 + 𝑟𝑠𝑇𝑟𝑠𝐸3 − 𝑟𝑠𝑟𝑠𝑇 (3-24)

Figure 3-13. The parallel axis theorem in 3D space

where Ip, i is the inertia matrix with respect to an arbitrary point, 𝑟𝐶𝐶𝐶,𝑖 denotes the

position vector of the ith link COG in the world coordinates, 𝑟𝑠 denotes the vector

from the COG of the ith link to an arbitrary point, 𝑟𝑠𝑇𝑟𝑠 is a scalar, E3 denotes a 3-by-3

identity matrix, and 𝑟𝑠𝑟𝑠𝑇 is a 3-by-3 symmetry matrix. Define 𝑟𝑠 as

𝑟𝑠 = �
𝑥𝑜𝑠
𝑦𝑜𝑠
𝑧𝑜𝑠

� (3-25)

Thus Eq. (3-25) can be further written as

𝐼𝑠,𝑖 = 𝐼𝑖 + 𝑚𝑖 �
𝑦𝑜𝑠2 + 𝑧𝑜𝑠2 −𝑥𝑜𝑠𝑦𝑜𝑠 −𝑥𝑜𝑠𝑧𝑜𝑠
−𝑥𝑜𝑠𝑦𝑜𝑠 𝑥𝑜𝑠2 + 𝑧𝑜𝑠2 −𝑦𝑜𝑠𝑧𝑜𝑠
−𝑥𝑜𝑠𝑧𝑜𝑠 −𝑦𝑜𝑠𝑧𝑜𝑠 𝑥𝑜𝑠2 + 𝑦𝑜𝑠2

� (3-26)

42

Using Eqns. (2-32) and (3-24) the inertia matrices of all robot links can be found with

backward iterations, as shown in Eqns. (3-27)-(3-30) and Figure 3-14.

𝑟𝑠,𝑖 =
𝑚𝑠,𝑖+1𝑟𝑠,𝑖+1 + 𝑚𝑖𝑟𝐶𝐶𝐶,𝑖

𝑚𝑠,𝑖 (3-27)

Figure 3-14. Iterative inertia calculation

where 𝑟𝑠,𝑖 denotes position vector of the COG of these links, 𝑚𝑠,𝑖 is shown as Eq.

(3-21). 𝑟𝑒,𝑖 and 𝑟𝑒,𝑖+1 denotes the vectors from the original accumulated COG and the

ith link COG to the new accumulated COG, as

𝑟𝑑,𝑖 = 𝑟𝑎,𝑖 − 𝑟𝐶𝑂𝐺,𝑖 (3-28)

𝑟𝑑,𝑖+1 = 𝑟𝑎,𝑖 − 𝑟𝐶𝑂𝐺,𝑖+1, 1𝑠𝑑 𝑠𝑑𝑑𝑟𝑎𝑑𝑠𝑐𝑠

 𝑟𝑑,𝑖+1 = 𝑟𝑎,𝑖 − 𝑟𝑎,𝑖+1, 𝑐𝑑ℎ𝑑𝑟𝑤𝑠𝑠𝑑

(3-29)

Using the equations above, the accumulated moment of inertia 𝐼𝑠,𝑖 is calculated as

𝐼𝑠,𝑖 = 𝐼𝑠,𝑖+1 + 𝐼𝑖 + 𝑚𝑖�𝑟𝑒,𝑖
𝑇 𝑟𝑒,𝑖𝐸3 − 𝑟𝑒,𝑖𝑟𝑒,𝑖

𝑇 �

+ 𝑚𝑠,𝑖+1�𝑟𝑒,𝑖+1
𝑇 𝑟𝑒,𝑖+1𝐸3 − 𝑟𝑒,𝑖+1𝑟𝑒,𝑖+1

𝑇 �

(3-30)

3.5.3 Angular Momentum Jacobian

Using the results in section 3.5.2, the spin angular momentum caused by the

rotation of the ith joint can be found as

43

𝐴𝑀,𝑠𝑠𝑖𝑠,𝑖 = 𝐼𝑠,𝑖𝑧𝑖�̇�𝑖 (3-31)

Note that the summation of Eq. (3-31) is equal to Eq. (2-33), as shown in Eq.

(3-32). The summation of Eq. (3-31) considers joint rotation and Eq. (2-33) considers

link rotation to calculate the total spin angular momentum; these two methods get the

same results.

𝐴𝑀,𝑠𝑠𝑖𝑠 = �𝐼𝑖𝜔��⃑ 𝑖 = �𝐼𝑠,𝑖𝑧𝑖�̇�𝑖 (3-32)

After calculating the spin angular momentum, the momentum caused by the

rotation of the ith joint can be found by adding the orbit angular momentum to it. The

orbit angular momentum caused by the rotation of the ith joint can be calculated using

the vectors shown in Figure 3-15 as Eq. (3-33).
𝐴𝑀,𝑜𝑜𝑜𝑖𝑜,𝑖 = 𝑟𝑠→𝑐,𝑖 × �𝑚𝑠,𝑖𝑧𝑖�̇�𝑖 × 𝑟𝑠𝑐,𝑖� (3-33)

Figure 3-15. Orbit angular momentum caused by the rotation of the ith joint

Eq. (3-33) can be used for the limbs except the stance leg. Figure 3-15 shows the

orbit angular momentum with respect to the support point. In the application of

humanoid robot, the support point is the ankle of the stance foot.

44

Using the results above, the angular momentum caused by the rotation of the ith

joint is calculated by summing the spin part and the orbit part of the angular momentum,

as

𝐴𝑀,𝑖 = 𝐼𝑠,𝑖𝑧𝑖�̇�𝑖 + 𝑟𝑠→𝑐,𝑖 × �𝑚𝑠,𝑖𝑧𝑖�̇�𝑖 × 𝑟𝑠𝑐,𝑖� (3-34)

Since the joint rotation speed �̇�𝑖 is a scalar, Eq. (3-34) can be rearranged as

𝐴𝑀,𝑖 = �𝐼𝑠,𝑖𝑧𝑖 + 𝑟𝑠→𝑐,𝑖 × �𝑚𝑠,𝑖𝑧𝑖 × 𝑟𝑠𝑐,𝑖�� �̇�𝑖 = 𝐽𝐴𝑀,𝑖�̇�𝑖 (3-35)

where 𝐽𝐴𝑀,𝑖 denotes the 3-by-1 angular momentum Jacobian. For the joints of the

stance leg, the concept of the Fixed-Leg-Motion Jacobian is again used. Minus sign is

multiplied and the accumulated mass and inertia of the parts are replaced by that of the

parts above the ith joint, as shown in Eq. (3-36) and Figure 3-16.

𝐴𝑀,𝑖 = −�𝐼𝑠,𝑖𝑧𝑖 + 𝑟𝑠→𝑐,𝑖 × �𝑚𝑠,𝑖𝑧𝑖 × 𝑟𝑠𝑐,𝑖�� �̇�𝑖 = 𝐽𝐴𝑀,𝑖�̇�𝑖 (3-36)

Figure 3-16. Fixed angular momentum Jacobian

45

Total angular momentum of the whole robot can be calculated as Eq. (3-37). It is

equal to Eq. (2-33).

𝐴𝑀 = �𝐽𝐴𝑀,𝑖�̇�𝑖 (3-37)

Eq. (3-37) is more complex and it is derived for calculating the momentum

Jacobian. The difference between the two equations is that Eq. (2-33) uses the concept

of the rotation of each link and Eq. (3-37) uses the concept of the rotation of each joint.

3.6 Global Jacobian

Using the conventional Jacobian, COG Jacobian, momentum Jacobian, and the

Fixed-Leg-Motion Jacobian, the global Jacobian matrix for controlling the whole

humanoid robot can be constructed, as

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻
�̇�𝐶𝐶𝐶
�̇�𝐿𝑀
�̇�𝐴𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐽𝑠𝑜𝑠𝑠𝑐𝑠 0 0 0 0
𝐽𝑓→𝑠 𝐽𝑠𝑠𝑖𝑠𝑠 0 0 0
𝐽𝑓→𝐿𝐴 0 𝐽𝐿𝐴 0 0
𝐽𝑓→𝑅𝐴 0 0 𝐽𝑅𝐴 0
𝐽𝑓→𝐻 0 0 0 𝐽𝐻
𝐽𝑓→𝐶 𝐽𝑠→𝐶 𝐽𝐿𝐴→𝐶 𝐽𝑅𝐴→𝐶 𝐽𝐻→𝐶
𝐽𝑓→𝐿𝑀 𝐽𝑠→𝐿𝑀 𝐽𝐿𝐴→𝐿𝑀 𝐽𝑅𝐴→𝐿𝑀 𝐽𝐻→𝐿𝑀
𝐽𝑓→𝐴𝑀 𝐽𝑠→𝐴𝑀 𝐽𝐿𝐴→𝐴𝑀 𝐽𝑅𝐴→𝐴𝑀 𝐽𝐻→𝐴𝑀⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 (3-38)

Compared with Eq. (3-19), the linear and angular momentum Jacobian matrices are

added to the whole Jacobian matrix. If the robot has enough DOFs, all the motion of

end-effectors, COG position and momentum can be controlled with Eq. (3-38). Since

the robot has limited DOFs in the legs, arms and torso, not all of them can be controlled.

The Jacobian matrix used to control the proposed humanoid robot is shown as Eq.

(3-39).

46

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻
�̇�𝐶𝐶𝐶
�̇�𝐴𝑀,𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐽𝑠𝑜𝑠𝑠𝑐𝑠 0 0 0 0
𝐽𝑓→𝑠 𝐽𝑠𝑠𝑖𝑠𝑠 0 0 0
𝐽𝑓→𝐿𝐴 0 𝐽𝐿𝐴 0 0
𝐽𝑓→𝑅𝐴 0 0 𝐽𝑅𝐴 0
𝐽𝑓→𝐻 0 0 0 𝐽𝐻
𝐽𝑓→𝐶 𝐽𝑠→𝐶 𝐽𝐿𝐴→𝐶 𝐽𝑅𝐴→𝐶 𝐽𝐻→𝐶
𝐽𝑓→𝐴𝑀,𝑧 𝐽𝑠→𝐴𝑀,𝑧 𝐽𝐿𝐴→𝐴𝑀,𝑧 𝐽𝑅𝐴→𝐴𝑀,𝑧 𝐽𝐻→𝐴𝑀,𝑧⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝑠𝑜𝑠𝑠𝑐𝑠
�̇�𝑠𝑠𝑖𝑠𝑠
�̇�𝐿𝐴
�̇�𝑅𝐴
�̇�𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 (3-39)

In Eq. (3-39), although the Jacobian matrices of linear and angular momentum are

derived, only the angular momentum in z direction is controlled. This is because the

angular momentum in z direction is directly related to the slipping rotation of the robot

in z direction. When the robot turn left, it needs a counterclockwise moment in z

direction to change its facing direction and vise versa; when the robot is going straight

forward, the z direction moment must be as small as possible to prevent the robot from

slipping and rotating about z-axis. The linear momentum Jacobian and angular

momentum Jacobian in x and y directions can be used in future applications. The other

parts of the Eq. (3-39) are the same as Eq. (3-19). By using Eq. (3-39), the control of

arm motions, robot walking, COG trajectory tracking, and z direction angular

momentum can be achieved. Versatile tasks can be achieved with the proposed IK

solver.

3.7 Simulation

The physical model of the robot is constructed in SolidWorks (CAD software), and

is imported to ADAMS (the physics engine), which is served as the control plant. In this

section, the physical properties of the walking pattern generated with the proposed IK

solver are verified. Figure 3-17 shows the scene of simulation for verifying the

properties of the proposed IK solver.

47

Figure 3-17. The scene of simulation for verifying the proposed IK solver

In the simulation, the robot goes onto a step and steps down to a lower plane. The

COG trajectories inputted to the proposed IK solver are generated with the LQSI

controller proposed in chapter 4. This simulation shows that the proposed IK solver can

generate walking pattern with COG and momentum constraints.

Figure 3-18. The robot motions for walking through the scene

Figure 3-18 shows the robot can walk through the scene successfully. In this scene,

the slipping rotations with and without angular momentum constraint in z direction are

compared, as shown in Figure 3-19. Zero angular momentum in z direction is set as the

constraint in the proposed solver. This is achieved with the DOFs of waist and arms in

the solver. The solved trajectory of waist and arms will compensate the angular

momentum caused by the swing motion of the robot leg automatically. However, the

48

real angular momentum will not be zero because of modeling error and impact forces,

but it will be smaller than using an IK solver without momentum constraint. Since the

time differentiation of angular momentum is smaller, the reaction torque acted on the

stance foot is also smaller. This will reduce the slipping rotation of the robot when

walking. In addition, because the robot will twist the waist and swing the arms, the

solved motions are more human-like than the motions without momentum constraints.

In the simulation, the robot can walk with smaller slipping rotation by enabling the

angular momentum constraint in z direction. There are larger slipping rotations when

the robot going onto or going down the step. A larger impact occurred when landing to

the lower plane and caused a larger direction change to the robot. With zero angular

momentum constraint, the robot can walk with smaller slipping rotation even when the

landing impact occurred.

Figure 3-19. Slipping rotation of the whole robot in z direction

3.8 Summary

In this chapter, the concept of Fixed-Leg-Motion Jacobian is proposed and

described. It is very convenient because no transformation of the coordinate system is

49

required and the same kinematics chains of the robot can be used while changing the

support phase during walking. Using the concept of the Fixed-Leg-Motion Jacobian

method, the effects of the end-effector positions and orientations, the COG position, and

the linear and angular momentum caused by the motions of the stance leg can be

expressed easily. The global Jacobian matrix used for controlling humanoid robots is

also proposed and derived in this chapter. Using the global Jacobian matrix, the

end-effectors, COG, and the momentum of the robot can be controlled.

The IK solver used in this dissertation is derived and described in this chapter; the

next point this dissertation focuses on is the planning and optimization of 3D COG/ZMP

trajectories in chapters 4 and 5.

50

Chapter 4 Linear Quadratic State Incremental

Control

Many researchers have proposed walking pattern generation methods with

COG/ZMP (zero moment point / center of gravity) constraints. Some of the researchers

used a neural-networks method (NN), a central pattern generator (CPG), or a genetic

algorithm (GA) to solve COG/ZMP pattern generation problems. However, the

parameters used in those methods are too many, and the procedure to learn or to search

them cost too much computation time. Other researchers designed controllers or used

analytical solution method to generate the COG trajectories. These methods can

generate the COG/ZMP pattern very quickly, but the COG height is limited to a

constant to linearize the inverted pendulum model of the robot. Due to this limitation,

the robots cannot walk freely on surfaces that change in height. In order to solve this

problem, researchers start to use the original nonlinear inverted pendulum model to

make the COG height value changeable, such as using a numerical method or a

feedback controller. In this chapter, a pattern generator that can allow non-constant

COG height is proposed. The proposed pattern generator is based on an optimal control

method with a state-incremental performance index. It can solve sagittal and lateral

COG patterns with arbitrarily assigned COG height and ZMP trajectories in real-time.

Thus, dynamic walking with a natural COG trajectory on height-changing surfaces can

be achieved.

51

4.1 Introduction

In recent years, researchers have focused on many interesting aspects, such as

artificial intelligence, human-machine interaction [44], trajectory/pattern generation

[13], and mechanical design. In these research areas, walking pattern generation is very

important for biped robots because inappropriately planned walking patterns may cause

the robot to fall down and even to damage itself. Honda ASIMO [110], the AIST HRP

series [47][56][57][59], Waseda University WABIAN [100], KAIST HUBO

[101][105][106], and Fujitsu Hoap series [83][148] are the most successful humanoid

robots in the world. Their methods for generating walking patterns are different but all

consider the ZMP information.

Most walking pattern generation methods are restrained by unchangeable COG

height, long computation time, or too many parameters needed to be tuned. Compared

with using the original nonlinear inverted pendulum model, the computation cost will be

much smaller if the COG height is set to be a constant to linearize the inverted

pendulum model. Researchers used the preview control based [25][47][48][125] and the

analytical solution based [37][38] walking pattern generator with the linearized model

to construct their walking control systems. Real-time pattern generation can be achieved

by doing this but the robot must bend its knees more while walking in order to maintain

the same COG height, and this also limits the ability of the robot to walk on surfaces

with height change. Researchers also discuss the effect of COG height change to

walking pattern generators and provide their solutions. Nishiwaki [91] extended the

preview control method to the one with changeable COG height by tuning the control

gains from the pre-calculated database under different COG height. Sugihara [122] also

provided an analytical solution method to generate the walking pattern in real-time. In

the method, the COG height can be changed if the height change is not very large.

52

Morisawa et al. [87] proposed a method to construct the walking patterns in parametric

surface. The method can generate walking pattern on the order of millisecond with COG

height change by using numerical method. The WABIAN robot was designed with extra

DOFs for its waist to keep its knee straight [98]. The walking pattern of the WABIAN

robot was done with GA [100]. It is very good to keep the knee of the stance foot of the

robot straight because it saves energy. The only drawback is that the GA is too slow to

be used for real-time planning problems. The method in [148] used a CPG and a

piecewise linear pattern generator to generate the walking pattern of the Hoap-3 robot.

In that method, many parameters must be tuned with a neural network. It takes a long

time to find each set of parameters for different tasks.

In other researches, the CPG [62], NN [60][61][118], and Fourier series/transform

methods [18][99] were used to learn and to generate the walking patterns. The CPG

method can generate a COG height changeable pattern in real-time, but it is hard to tune

well and is not robust for different situations. NN methods can learn to adapt to

different situations, but the learning time is not fast enough for real-time

implementation. The Fourier series/transform methods can generate walking patterns

fast enough, but they are difficult to adapt to various situations. Although the COG

height is changeable, the searching and learning algorithms have some difficulty to be

implemented in real-time.

It is always desirable to make the robot move and act smoothly and in real-time;

thus a real-time algorithm to generate walking patterns is required. In this dissertation, a

real-time pattern generator with changeable COG height is proposed. The proposed

LQSI controller can generate walking pattern with arbitrarily assigned COG height

trajectory in real-time. It is based on optimal control schemes with a specially designed

performance index. Optimal control schemes are very useful for nonlinear time-varying

53

problems. Instead of tuning numerous parameters, only a few parameters in the

performance index need to be tuned to get the desired performance of the control system.

Although the optimal controllers need more computation power to solve backward

recursive equations and calculate all the feedback and feed-forward gains, the proposed

LQSI controller can be implemented on the order of millisecond.

The rest of this chapter is organized as follows: section 4.2 describes COG/ZMP

equations and inverted pendulum model. Many researches used a linear one to simplify

the equation but the COG heights were constrained to constant values. In this chapter, a

linear quadratic control based controller is proposed to solve this problem by using the

original nonlinear inverted pendulum model. Section 4.3 introduces the well-known

preview control method widely used by many robots. Preview control provides a very

neat and fast solution to COG/ZMP walking pattern generation. Section 4.4 shows the

control equations of the proposed LQSI controller and discusses the properties of it

compared with preview controller. Detailed derivation of the LQSI controller can be

found in APPENDIX A and APPENDIX B. Section 4.5 shows the simulation settings

and results in MATLAB and ADAMS using the LQSI controller. Section 4.6

summarizes this chapter.

4.2 Inverted Pendulum Model and COG/ZMP Equations

As in most COG/ZMP pattern generation algorithms [17][38][45][47][69], the

inverted pendulum model used to model the biped robot as shown in Figure 4-1.

54

Figure 4-1. Inverted pendulum model

The governing equation in sagittal and lateral directions of the inverted pendulum

model is shown in Eqns. (4-1) and (4-2).

𝑍𝑋 = 𝐶𝑋 − �̈�𝑋 �
𝐶𝑍 − 𝑍𝑍

𝑔 + 𝐶𝑧 − 𝑍𝑧
� (4-1)

𝑍𝑌 = 𝐶𝑌 − �̈�𝑌 �
𝐶𝑍 − 𝑍𝑍

𝑔 + 𝐶𝑧 − 𝑍𝑧
� (4-2)

where the subscripts X, Y, and Z denote the trajectories in x, y, and, z directions in the

world coordinates. Capital C denotes the COG, capital Z denotes the ZMP, and g

denotes the gravitational acceleration, 9810 mm/s2. In the proposed method, the CZ (t)

and ZZ (t) trajectories can be arbitrarily assigned. The robot system is decoupled as two

inverted pendulum systems: one is in X-Z plane and the other is in Y-Z plane. The two

systems use the same CZ (t) and ZZ (t) trajectories. Since the two systems have the same

characteristics when solving the pattern generation problem, the COG position in x and

y directions are replaced by a state variable “x” below. Since the COG height (Cz) is

changeable, the height of the ground is also changeable in the pattern generator. Thus,

CZ = CZ (t) and ZZ = ZZ (t). Z(t) = CZ (t) – ZZ (t) is defined to simplify the equations; it

yields the height from the COG to the ground. Eq. (4-1) can be rewritten in state-space

representation as

55

𝑑
𝑑𝑑
�
𝑥
�̇�
𝑝
� = 𝐴 �

𝑥
�̇�
𝑝
� + 𝐵𝐵 (4-3)

𝐴 = �
0 1 0

𝑠+�̈�(𝑜)
𝑍(𝑜) 0 −𝑠+�̈�(𝑜)

𝑍(𝑜)
0 0 0

�

𝐵 = [0 0 1]𝑇

(4-4)

where x denotes 𝐶𝑋 or 𝐶𝑌, 𝑝 denotes the corresponding ZMP position, and 𝐵 is the

differentiation of the ZMP position. In order to track the reference ZMP, the output y of

Eq. (4-3) is chosen as

𝑦 = 𝐶 �
𝑥
�̇�
𝑝
� , 𝐶 = [0 0 1] (4-5)

Eqns. (4-3) and (4-5) are the continuous time version of the control system. For

simulations and real implementations, it must be discretized. After discretization, the

equations become

�
𝑥𝑘+1
�̇�𝑘+1
𝑝𝑘+1

� = 𝐴𝑘 �
𝑥𝑘
�̇�𝑘
𝑝𝑘
� + 𝐵𝑘𝐵𝑘 (4-6)

𝑦𝑘 = 𝐶𝑘 �
𝑥𝑘
�̇�𝑘
𝑝𝑘
� (4-7)

Eqns. (4-3) to (4-7) represent the time-varying state-space model [55]. The ZOH

(zero order hold) based method will be used to find 𝐴𝑘, 𝐵𝑘, and 𝐶𝑘 is described as

follows.

Eqns. (4-3) and (4-4) denote a linear time varying system and it is rewritten as Eq.

(4-8) for simplification. State matrix 𝐴 changes after each sampling time. It can be

rewritten as Eqns. (4-9) and (4-10).

�̇� = 𝐴𝑥 + 𝐵𝐵 (4-8)

56

𝐴 = �
0 1 0
𝜔𝑘
2 0 −𝜔𝑘

2

0 0 0
� (4-9)

𝜔𝑘
2 =

𝑔 + �̈�(𝑘𝑇)
𝑍(𝑘𝑇) (4-10)

where 𝜔𝑘 changes with 𝑍(𝑘𝑇) function. We also use ZOH on the control input 𝐵,

thus the discretized relationship between 𝑥𝑘 and 𝑥𝑘+1 can be solved as

𝑥𝑘+1 = 𝑑𝐴𝑇𝑥𝑘 + � 𝑑𝐴(𝑘𝑇+𝑇−𝜏)𝐵𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇
𝐵𝑘 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘 (4-11)

Because 𝐴𝑘 are all the same format with different 𝑍(𝑘𝑇), we can find the

solution of 𝑑𝐴𝑇 in advance in order to speed up the discretization of the system. Using

Laplace transform, it can be obtained as

𝑑𝐴𝑇 = 𝐴𝑘 =

⎣
⎢
⎢
⎢
⎡ 𝑐𝑐𝑠ℎ(𝜔𝑘𝑇)

1
𝜔𝑘

𝑠𝑠𝑠ℎ(𝜔𝑘𝑇) 1 − 𝑐𝑐𝑠ℎ(𝜔𝑘𝑇)

𝜔𝑘𝑠𝑠𝑠ℎ(𝜔𝑘𝑇) 𝑐𝑐𝑠ℎ(𝜔𝑘𝑇) −𝜔𝑘𝑠𝑠𝑠ℎ(𝜔𝑘𝑇)
0

0

1 ⎦

⎥
⎥
⎥
⎤
 (4-12)

� 𝑑𝐴(𝑘𝑇+𝑇−𝜏)𝐵𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇
= 𝐵𝑘 =

⎣
⎢
⎢
⎢
⎡𝑇 −

1
𝜔𝑘

𝑠𝑠𝑠ℎ(𝜔𝑘𝑇)

1 − 𝑐𝑐𝑠ℎ(𝜔𝑘𝑇)
𝑇 ⎦

⎥
⎥
⎥
⎤
 (4-13)

The output of the state space system in Eqns. (4-3) to (4-5) is the ZMP position;

𝐶𝑘 is a constant matrix, as shown in Eq. (4-14).

𝐶𝑘 = [0 0 1] (4-14)

4.3 Preview Control

The preview controller used in humanoid robots was proposed by Kajita and et al

[47][55]. It is widely used in many approaches. In the controller, the COG height is

assumed to be a constant; thus, the state matrices 𝐴𝑘 and 𝐵𝑘 are set to be the value

under the average COG height in this dissertation, as shown in Eq. (4-15). It is also

called linear inverted pendulum model (LIPM), or the cart-table model [47].

𝑍(𝑑) = �̅�𝐶 𝐴𝑘 = 𝐴0 𝐵𝑘 = 𝐵0 (4-15)

57

The performance index of the preview controller is shown in equation (4-16).

𝐽 = ��𝑄�𝑝𝑗
𝑜𝑠𝑓 − 𝑝𝑗�

2
+ 𝑅𝐵𝑗2�

∞

𝑗=1

 (4-16)

where the 𝑝𝑗
𝑜𝑠𝑓 is the reference ZMP input. The control algorithms are listed in Eqns.

(4-17)–(4-19)

𝐵𝑘 = −𝐾𝑥𝑘 + [𝑓1,𝑓2,⋯𝑓𝑁] �
𝑝𝑘+1
𝑜𝑠𝑓

⋮
𝑝𝑘+𝑁
𝑜𝑠𝑓

� (4-17)

𝐾 = (𝑅 + 𝐵0𝑇𝑃𝐵0)−1𝐵0𝑇𝑃𝐴0 (4-18)

𝑓𝑖 = (𝑅 + 𝐵0𝑇𝑃𝐵0)−1𝐵0𝑇(𝐴0 − 𝐵0𝐾)𝑇(𝑖−1)𝐶𝑇𝑄 (4-19)

where 𝑃 is the solution of the Riccati equation in Eq. (4-20).

𝑃 = 𝐴0𝑇𝑃𝐴0 + 𝐶𝑇𝑄𝐶 − 𝐴0𝑇𝑃𝐵0(𝑅 + 𝐵0𝑇𝑃𝐵0)−1𝐵0𝑇𝑃𝐴0 (4-20)

The parameters are chosen as

𝑄 = 106 𝑅 = 0.001 (4-21)

In order to compare the performances in the next section, the parameters in the

performance index of the LQSI controller are chosen as Eq. (4-22). The same 𝑄 and 𝑅

are used in both controllers.

𝑄𝑚 = �
10 0 0
0 0 0
0 0 1

� 𝑄 = 𝑄𝑁 = 106 𝑅 = 0.001 (4-22)

4.4 Linear Quadratic State-Incremental Control (LQSI)

The linear quadratic integral (LQI) control technique is a well-known method that

uses a state-incremental and input-incremental performance index [32][49][117]. The

previewable reference inputs are useful to control the systems; however, it can only be

used for linear time invariant systems. For a time varying inverted pendulum system, in

order to track the reference input ZMP well, an optimal control method with a

state-incremental performance index is proposed in this dissertation.

58

Before deriving and describing the controller, the control goal is stated first. The

robot should track reference ZMP input with the sagittal and lateral (x and y directions)

COG trajectories generated by the controller. The inputs to the controller are ZMP in x,

y, and z directions, and COG in z direction. The outputs are the COG trajectories in x

and y directions, as shown in Figure 4-2.

Figure 4-2. Input-output relationship of the controller

The proposed linear quadratic state-incremental control (LQSI), which is based on

optimal control method, can solve the tracking problems for time-varying system. The

performance index of the LQSI method is shown as

𝐽 =
1
2
�((𝑥𝑘+1 − 𝑥𝑘)𝑇𝑄𝑚(𝑥𝑘+1 − 𝑥𝑘)
∞

𝑘=𝑖

+ (𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘)

(4-23)

where (𝑥𝑘+1 − 𝑥𝑘) denotes the state increment, (𝐶𝑘𝑥𝑘 − 𝑟𝑘) denotes the tracking

error, 𝑟𝑘 is the tracking reference, and 𝐵𝑘 denotes the control input. 𝑄𝑚, 𝑄, and 𝑅

denote the weighting of each term in the performance index, respectively. 𝑄 and 𝑅

are symmetric positive definite matrices and 𝑄𝑚 is a symmetric positive semi-definite

matrix. Large 𝑄𝑚 reduces the state change in each control step, but it allows the

accumulated state to be large. Large 𝑄 improves the tracking performance, and large

𝑅 reduces the power of the control input. By solving the optimal control problem with

the constraint in Eq. (4-24), the LQSI control law can be found as Eqns. (4-25)–(4-27).

The detailed derivation and proof can refer to APPENDIX A.

59

𝑓𝑘 = 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘 (4-24)

𝐵𝑘 = −𝐾𝑘𝑚𝑥𝑘 + 𝐾𝑘𝑣𝑣𝑘+1 (4-25)

𝐾𝑘𝑚 = 𝑀𝑘
−1𝐵𝑘𝑇�𝑄𝑚𝐴𝐼,𝑘 + 𝑆𝑘+1𝐷𝑘−1𝑊𝑘� (4-26)

𝐾𝑘𝑣 = 𝑀𝑘
−1𝐵𝑘𝑇(𝐼 − 𝑆𝑘+1𝐷𝑘−1𝐵𝑘𝑀𝑘

−1𝐵𝑘𝑇) (4-27)

The elements in Eqns. (4-25)–(4-27) are defined in Eqns. (4-28)–(4-31).

𝑀𝑘 = 𝐵𝑘𝑇𝑄𝑚𝐵𝑘 + 𝑅 (4-28)

𝐴𝐼,𝑘 = 𝐴𝑘 − 𝐼 (4-29)

𝐷𝑘 = 𝐼 + 𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑆𝑘+1 (4-30)

𝑊𝑘 = 𝐴𝑘 − 𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘 (4-31)

𝑆𝑘 and 𝑣𝑘 derived from the Lagrange multiplier method can be obtained as

𝑆𝑘 = 𝑃𝑘𝑇𝑃𝑘 + 𝐴𝑘𝑇𝑆𝑘+1𝐷𝑘−1𝑊𝑘 (4-32)

𝑣𝑘 = 𝐴𝑘𝑇(𝐼 − 𝑆𝑘+1𝐷𝑘−1𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇)𝑣𝑘+1 + 𝐶𝑘𝑇𝑄𝑟𝑘 (4-33)

where the 𝑃𝑘𝑇𝑃𝑘 is a positive definite matrix and is defined as

𝑃𝑘𝑇𝑃𝑘 = 𝑁𝑘𝑇𝑄𝑚𝑁𝑘 + 𝐴𝐼,𝑘𝑇 𝑄𝑚𝐵𝑘𝑀𝑘
−1𝑅𝑀𝑘

−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘 + 𝐶𝑘𝑇𝑄𝐶𝑘 (4-34)

𝑁𝑘 = 𝑊𝑘 − 𝐼 (4-35)

Eqns. (4-25)–(4-35) describe the infinite time LQSI optimal control law. It can be

derived as a finite time case by changing the performance index to be Eq. (4-36) and

solving the boundary conditions of the final-state-free problems in Eq. (4-37) [74].

𝐽 = 𝜙(𝑥𝑁,𝐵𝑁) +
1
2
��∆𝑥𝑘𝑇𝑄𝑚∆𝑥𝑘 + (𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘�
𝑁−1

𝑘=0

 (4-36)

𝜕𝜙
𝜕𝑥𝑁

= 𝜆𝑁 (4-37)

More details about the boundary condition and the derivation can be found in

section 4.4.1 and APPENDIX B. Figure 4-3 is the procedure by which the proposed

LQSI controller works. In the “Generate Command” phase, the trajectories of the COG

height, the ZMP trajectory on the ground and the height of the ground can be

determined by a higher-level trajectory planner. In the “Modeling” phase, with the

60

trajectory inputs, the 𝐴𝑘 and 𝐵𝑘 of the inverted pendulum system can be calculated.

In the “Backward Recursion” phase, the state feedback gain 𝐾𝑘𝑚 and the feed-forward

gain 𝐾𝑘𝑣 are calculated with Eqns. (4-25)–(4-35). Finally, in the “Optimal Control”

phase, with the feedback and feed-forward gains, the control input to the system is

obtained to find the COG pattern every time step that the robot should follow by

forward iterations.

Figure 4-3. The procedure by which the LQSI controller works

Figure 4-4 shows the control block diagram of the LQSI control: the plant is

modeled as an inverted pendulum system which is linear time varying. The

feed-forward and feedback gains 𝐾𝑘𝑣 and 𝐾𝑘𝑚 are calculated by the LQSI control laws

in the “Backward Recursion” phase; the input 𝑣𝑘+1 is calculated in the same phase

with the reference ZMP input information.

Figure 4-4. Control block diagram of the LQSI controller

Figure 4-5 shows the role that the LQSI controller plays in the entire robot system.

In the figure, before deciding the commands to the robot, the robot must know

information about the environment. Then the robot can do trajectory planning for

walking in the environment. After trajectory planning, the LQSI controller decides the

61

sagittal and the lateral COG positions. Then the joint angles of the robot are generated

by using IK. In the feedback control loop, the LQSI controller also corrects the COG

trajectories in order to track the reference ZMP input.

Figure 4-5. The role of the LQSI controller in the entire robot control system

4.4.1 Boundary Condition of the LQSI Controller

The boundary condition of the LQSI controller is derived in APPENDIX B. The

initial values, 𝑆𝑁 and 𝑣𝑁, for backward recursion can be found as classical finite-time

final-state-free optimal control problems. With these initial values, 𝑆𝑘 becomes stable

after some iterations. Before 𝑆𝑘 becomes stable, the tracking performance is not very

good. This is a common problem of optimal controllers. To solve this problem, two

methods can be used. The first is to extend the final state N to far future and then cut the

part with transient 𝑆𝑘. The second choice is to treat the problem as an infinite time

problem, and set the COG height change as zero in far future. In the second choice, we

need to find the solution to time-invariant version of Eq. (4-32), the Riccati equation of

LQSI controller, as shown in Eq. (4-38).

62

𝑆∞ = 𝑃𝑇𝑃 + 𝐴𝑇𝑆∞(𝐼 + 𝐵𝑀−1𝐵𝑇𝑆∞)−1𝑊 (4-38)

The definition of the elements of Eq. (4-38) can be found in the beginning of

section 4.4. Because the COG height change in far future is assumed zero, thus the state

matrices become the same as the matrices used in preview control, as in Eq. (4-15). The

variables, 𝑃, 𝐵, 𝑀, and 𝑊, in (4-38) are also constant matrices. By iterating Eq. (4-38)

with a nonzero initial 𝑆 matrix, the solution 𝑆∞ can be found. This 𝑆∞ can be used as

the initial value for backward iteration. Simulation results show that we can get much

shorter transient time if we treat the problem as an infinite time one and set 𝑆∞ as the

initial value, as shown in Figure 4-6 and Figure 4-7. In the figures, 𝑆𝑘 is waving with

the CZ input.

Figure 4-6. Transient time of Sk by using final-state-free boundary condition

Figure 4-7. Transient time of Sk by using S∞ as initial value

Because 𝑆∞ is the solution of the Riccati equation of the time-invariant version of

LQSI controller, the transient time is shorter. To give extra 0.3sec future command

input is enough for waiting 𝑆𝑘 to become stable.

63

4.4.2 Preview Gain of the LQSI Controller

Same as the preview controller, the preview gain of the LQSI controller can be

found. The preview gain (it is also the feed-forward gain of the future command input.)

can be found by rewriting the Eq. (4-33). Before rewriting, a variable 𝐿𝑘 is defined to

simplify Eq. (4-33), as shown in Eq. (4-39).

𝐿𝑘 = 𝐴𝑘𝑇(𝐼 − 𝑆𝑘+1𝐷𝑘−1𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇) (4-39)

Then, the Eq. (4-33) can be rewritten as

𝑣𝑘 = 𝐶𝑘𝑇𝑄𝑟𝑘 + � �𝐿𝑘𝐿𝑘+1 ⋯𝐿𝑠−1�𝐶𝑘𝑇𝑄𝑟𝑠 + (𝐿𝑘𝐿𝑘+1 ⋯𝐿𝑘+𝑁)𝑣𝑘+𝑁+1

𝑘+𝑁

𝑠=𝑘+1

 (4-40)

When the preview time is far enough from 𝑘, 𝐿𝑘𝐿𝑘+1⋯𝐿𝑘+𝑁 becomes very small.

Thus, the effect of 𝑣𝑘+𝑁+1 to 𝑣𝑘 can be ignored and so is 𝑟𝑘+𝑁+1. The preview gain

𝑓𝑘 can be calculated with Eqns. (4-25), (4-27) and (4-40), as shown in Eq. (4-41).

𝑓𝑘 = 𝑀𝑘
−1𝐵𝑘𝑇𝐴𝑘−𝑇𝐿𝑘𝐿𝑘+1 ⋯𝐿𝑠−1𝐶𝑘𝑇𝑄�𝑠=𝑘+1

𝑠=𝑘+𝑁
 (4-41)

The preview gain of LQSI controller under different CZ input is shown in Figure

4-8. The frequency of the CZ is 0, 10, 16.33 rad/s, to make the maximum acceleration of

the CZ to be 0, 3000, 8000 mm/s2, respectively.

Figure 4-8. LQSI control preview gain of vs. different max. CZ acceleration

In Figure 4-8, when 𝜔 is zero, the values of the preview gain of the LQSI

controller are almost the same as the preview gain of the preview controller calculated

64

with Eq. (4-19). Figure 4-9 shows the preview gain of the LQSI controller waves as the

Cz trajectory.

Figure 4-9. The preview gain of LQSI waving with CZ trajectory

4.4.3 Minimum Required Future Reference Input

Since the preview gain of the LQSI controller is highly relevant to the value of 𝑆𝑘,

the time of 0.3 seconds is required for waiting 𝑆𝑘 to become stable from its initial

value, 𝑆∞. Then 𝑆𝑘 will become stable within this time period, as shown in section

4.4.1. In addition, the preview gain of the LQSI controller converges to zero

exponentially, as shown in Figure 4-8 and Figure 4-9. At the preview time about 1.6

seconds, the gain becomes very small and the effect of the reference input farther than

1.6 second can be ignored. It is the same as the result of preview controller shown in

[47][55]. Thus, the minimum required length of future reference input for the LQSI

controller is 1.9 seconds long. The LQSI controller is very similar to the preview

controller. If 𝑄 and 𝑅 are set the same in both the LQSI controller and the preview

controller and set the 𝑄𝑚 in LQSI controller much smaller than 𝑄, then the LQSI

controller can be regarded as a time-varying version of preview controller. Furthermore,

if the Cz input to the LQSI controller is also set as a constant, we can get the same

solution to Riccati equation and the same preview gain of both controllers.

65

4.5 Simulation and Results

In this section, the properties and performances of the LQSI controller and preview

controller are compared. Basic parameter settings of the two controllers are the same;

i.e., gravity 𝑔 = 9810mm/𝑠2 and the sampling time 𝑇 = 0.005𝑠. The system state

space matrices are 𝐴𝑘, 𝐵𝑘, and 𝐶𝑘 in Eqns. (4-12)-(4-14). The reference input to the

controllers is the desired ZMP trajectory.

4.5.1 Simulation Using Inverted Pendulum Model

The simulation using inverted pendulum model is done in MATLAB. Under the

COG height (Cz) reference input shown in Figure 4-10, the ZMP tracking performances

of the LQSI controller, conventional optimal controller and the preview controller are

compared. In this section, the humanoid robot is modeled as an inverted pendulum in

MATLAB. All the mass of the robot is in one point. The dynamics of linkage motions

are neglected here. The main goal of this section is to discuss the modeling error of the

preview control under varying COG height trajectory and the parameter tuning in each

controller. Since the characteristic in both sagittal and lateral directions are all the same

in the controllers when using the inverted pendulum model. Only the results in lateral

direction are shown in this section.

Figure 4-10. COG height (Cz) input

In Figure 4-10, the COG height varies for three seconds and then stops varying.

The tracking performances are shown in Figure 4-11 and Figure 4-12.

66

Figure 4-11. Results of LQSI controller

Figure 4-12. Results of preview controller

In Figure 4-11, the LQSI controller can track the ZMP input well with the COG

height trajectory. In Figure 4-12, because the preview controller does not consider the

COG height change, tracking error is caused by the un-modeled dynamics. Compared

with the preview control, COG height change can be modeled by using conventional

optimal controller. Two types of conventional optimal controller are shown as follows,

the optimal tracking controller and the modified optimal tracking controller. Eqns. (4-42)

and (4-43) show the performance index and its boundary condition of the conventional

optimal controller.

𝐽 = 𝜙(𝑥𝑁 ,𝐵𝑁) +
1
2
�[(𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘]
𝑁−1

𝑘=0
(4-42)

𝜙(𝑥𝑁,𝐵𝑁) = (𝐶𝑁𝑥𝑁 − 𝑟𝑁)𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁)

(4-43)

In the applications of the conventional optimal controller, the weightings of the

tracking performance term and the input term can be tuned to get the desired

performance. The control algorithms are shown in Eqns. (4-44)–(4-48).

67

𝐵𝑘 = −𝐾𝑘𝑚𝑥𝑘 + 𝐾𝑘𝑣𝑣𝑘+1

(4-44)

𝐾𝑘𝑚 = (𝐵𝑘𝑇𝑆𝑘+1𝐵𝑘 + 𝑅)−1𝐵𝑘𝑇𝑆𝑘+1𝐴𝑘 (4-45)

𝐾𝑘𝑣 = (𝐵𝑘𝑇𝑆𝑘+1𝐵𝑘 + 𝑅)−1𝐵𝑘𝑇 (4-46)

𝑆𝑘 = 𝐴𝑘𝑇𝑆𝑘+1(𝐴𝑘 − 𝐵𝑘𝐾𝑘𝑚) + 𝐶𝑘𝑇𝑄𝐶𝑘 𝑆𝑁 = 𝐶𝑁𝑇𝑄𝑁𝐶𝑁 (4-47)

𝑣𝑘 = (𝐴𝑘 − 𝐵𝑘𝐾𝑘𝑚)𝑇𝑣𝑘+1 + 𝐶𝑘𝑇𝑄𝑟𝑘 𝑣𝑁 = 𝐶𝑁𝑇𝑄𝑁𝑟𝑁 (4-48)

where the parameters 𝑄 and 𝑅 are tuned as the preview and the LQSI controllers, as

𝑄 = 106 𝑅 = 0.001 (4-49)

The modified optimal tracking controller is slightly different from the conventional

optimal tracking controller; the cost of the state, 𝑥𝑘𝑇𝑄𝑚𝑥𝑘, is added to the cost function

as shown in Eqns. (4-50)–(4-51).

𝐽 = 𝜙(𝑥𝑁,𝐵𝑁) +
1
2
��𝑥𝑘𝑇𝑄𝑚𝑥𝑘 + (𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘�
𝑁−1

𝑘=0

 (4-50)

𝜙(𝑥𝑁,𝐵𝑁) = (𝐶𝑁𝑥𝑁 − 𝑟𝑁)𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁) + 𝑥𝑁𝑇𝑄𝑚𝑁𝑥𝑁
(4-51)

A small 𝑄𝑚 can be used to prevent the state from diverging, and the value of 𝑄𝑚

cannot be too large because it will affect the tracking performance.

The control algorithms of the conventional and modified optimal tracking

controller are almost the same; the differences between them are the Riccati equation

and the boundary condition, as shown in Eq. (4-52).

𝑆𝑘 = 𝐴𝑘𝑇𝑆𝑘+1(𝐴𝑘 − 𝐵𝑘𝐾𝑘𝑚) + 𝐶𝑘𝑇𝑄𝐶𝑘 + 𝑄𝑚 𝑆𝑁 = 𝐶𝑁𝑇𝑄𝑁𝐶𝑁 + 𝑄𝑚

(4-52)

The parameters are tuned as

𝑄𝑚 = �
0 0 0
0 0.001 0
0 0 0

� 𝑄 = 𝑄𝑁 = 106 𝑅 = 0.001

(4-53)

Using the same COG height input as shown in Figure 4-10, the tracking results of

the conventional and modified optimal tracking controllers are shown in Figure 4-13

and Figure 4-14.

68

Figure 4-13. Results of optimal controller for tracking

Figure 4-14. Results of modified optimal controller for tracking

In Figure 4-13, the state, the COG position, diverges to infinity because the value

of the COG position does not affect the value of the performance index. Thus the term,

𝑥𝑘𝑇𝑄𝑚𝑥𝑘, is added to the performance index in the modified optimal controller for

stabilizing the COG position. The COG trajectory and tracking results are very similar

to the results of the LQSI controller as shown in Figure 4-14. The difference between

the LQSI controller and the modified optimal controller is discussed in the following.

In order to compare the controllers, some parameters in the performance index are

defined as Eqns. (4-54) and (4-55).

𝑄𝑚𝑆 = �
𝑄𝑆,11 𝑄𝑆,12 𝑄𝑆,13
𝑄𝑆,21 𝑄𝑆,22 𝑄𝑆,23
𝑄𝑆,31 𝑄𝑆,32 𝑄𝑆,33

�

(4-54)

𝑄𝑚𝑀 = �
𝑄𝑀,11 𝑄𝑀,12 𝑄𝑀,13
𝑄𝑀,21 𝑄𝑀,22 𝑄𝑀,23
𝑄𝑀,31 𝑄𝑀,32 𝑄𝑀,33

� (4-55)

where 𝑄𝑚𝑆 is the weighting matrix of the state-incremental cost term in Eq. (4-36),

𝑄𝑚𝑀 is the weighting matrix of the state cost term in Eq. (4-50). From the performance

69

index in Eq. (4-36), 𝑄𝑆,11 and 𝑄𝑆,22 R affect the first-order and the second-order

difference of the COG position (i.e., the velocity and the acceleration). 𝑄𝑆,33 affects the

change in the first-order difference (i.e., velocity) of the ZMP position. These three

terms can be seen as the regulation weightings of the COG velocity, COG acceleration,

and the ZMP velocity. On the other hand, from the performance index in Eq. (4-50),

𝑄𝑀,11, 𝑄𝑀,22 and 𝑄𝑀,33 are the regulation weightings of the COG position, COG

velocity, and ZMP position, respectively. 𝑄𝑀,11 and 𝑄𝑀,33 pull the COG trajectory

and the ZMP trajectory to zero. So, when the center of the robot is not near the origin

(zero), COG and ZMP cannot fit the desired trajectory well, with non-zero 𝑄𝑀,11 and

𝑄𝑀,33. They must be zero for good tracking performance. The effect of 𝑄𝑀,11 and

𝑄𝑀,33 are shown in Figure 4-15 and Figure 4-16 In these figures, the tracking

performance weighting, 𝑄, and the input cost weighting, 𝑅, are the same as in Eq.

(4-49) (i.e. 𝑄 = 106, 𝑅 = 0.001). The robot is assumed to be one meter (1000 mm)

away from the origin.

Figure 4-15. Modified optimal controller for tracking with different QM,11

Figure 4-16. Modified optimal controller for tracking with different QM,33

70

In Figure 4-15, the parameters are set as below.

𝑄𝑚𝑀 = �
𝑄𝑀,11 0 0

0 10 0
0 0 0

� (4-56)

In Eq. (4-56), 𝑄𝑀,11, changes from 0 to 100. For a reasonable and nature walking

pattern, the COG must converge to the desired ZMP when the robot stops; thus the only

choice for the 𝑄𝑀,11 R is zero.

The parameters in Figure 4-16 are set as

𝑄𝑚𝑀 = �
0 0 0
0 10 0
0 0 𝑄𝑀,33

� (4-57)

In Eq. (4-57), 𝑄𝑀,33, changes from 0 to 20000. ZMP deviation becomes larger

with the increasing 𝑄𝑀,33. It is very important to have an accurate ZMP trajectory. For

robust and stable walking, 𝑄𝑀,33 R must be zero. The other non-diagonal elements in

𝑄𝑚𝑀 must also be zero, because they are the coupling terms of the COG position and

the ZMP position. Thus, the only tunable parameter in 𝑄𝑚𝑀 is 𝑄𝑀,22.

Compared with 𝑄𝑚𝑀, more characteristics of the control system can be tuned from

tuning 𝑄𝑚𝑆 of the proposed LQSI controller. The cost of COG velocity, COG

acceleration, and ZMP velocity can be tuned by 𝑄𝑆,11, 𝑄𝑆,22, and 𝑄𝑆,33, respectively.

The other coupling terms in 𝑄𝑚𝑆 can also be tuned to change the characteristics of the

control system. Tuning of 𝑄𝑆,33 R changes the sensitivity to the ZMP position change of

the LQSI control system. Smoother ZMP trajectory provides a more stable and more

human-like walking pattern. Eq. (4-58) gives the parameters of the LQSI controller in

Figure 4-17. The weighting 𝑄𝑆,33 is set to tune the ZMP position change rate.

𝑄𝑚𝑆 = �
10 0 0
0 0.1 0
0 0 106

� (4-58)

71

Figure 4-17. Result of tuning QS,33

In Figure 4-17, the output ZMP is smoothed by setting 𝑄𝑆,33 = 106 in Eq. (4-58).

4.5.2 Simulation Using Physical Model in ADAMS

Using the same IK solver and simulation engine in chapter 3, the simulation of

physical properties of the LQSI controller is verified. There are two simulations

represented in this section. In the first simulation, the human-sized humanoid robot

lowers its COG to avoid an obstacle and then step onto another block. In the second

simulation, the small-sized humanoid robot walks through a more complex environment

including a slope and several blocks with different height. The environment parameters

and settings in ADAMS are shown in Table 4-1. The contact model is modeled as

mass-spring-damper system with a very strong spring (108 N/m of stiffness). Penetration

depth is the penetration which ADAMS/solver turns on full damping.

Table 4-1: Environment parameters and settings in ADAMS
Gravity acceleration 9810 mm/s2

Stiffness (contact model) 108 N/m

Damping (contact model) 104 N-sec/m

Force exponent (contact model) 2.2

Penetration depth (contact model) 0.1 mm

Static friction coefficient 0.3

Dynamic friction coefficient 0.3

72

During the first simulation, the robot must lower its COG to avoid its head hitting

the red block, and raise its COG to step onto the green block. After passing the red

block, the robot can recover the COG to the normal height. It is easy to accomplish this

task with the static walking algorithm. Figure 4-18 shows the results of dynamic

walking using the proposed LQSI controller. And Figure 4-19 shows the ZMP tracking

results.

Figure 4-18. Dynamic walking with LQSI controller in the first simulation

73

Figure 4-19. The ZMP tracking result in the first simulation

In Figure 4-19, the red line is the reference input ZMP trajectory to the LQSI

controller, and the dots are the measured ZMP in ADAMS. In the figure, the deviation

of ZMP occurs when the swing leg touches the ground. In each step, after the impulse

from the swing leg contacting the ground, the ZMP trajectory is tracked better. In the

figure, it is observed that every step has an impulse when the swing leg contacts the

ground. This is caused by the penetration of the contact model in ADAMS. In ADAMS

simulation, the contacting objects penetrate each other. The penetration in the

simulation is unavoidable. Thus, when the swing leg contacts the ground, the stance leg

is slightly lower than the ground surface. The impacts in the simulation occurred

because of this error of the estimated ground position.

74

At the position near 500mm in the sagittal direction, the robot slows its pace to

prepare for stepping onto the green block. And then the robot goes onto the block

successfully. Finally, the robot recovers its COG height and the first simulation ends.

In the following is the second simulation. The robot must walk through a complex

environment. This simulation is designed to test the performance of the proposed LQSI

controller and the whole body inverse kinematics solver in ADAMS. The left part of

Figure 4-20 shows the scene which the robot walks through in the second simulation.

Firstly, the robot walks forward to the slope and then the robot rotates its swing foot to

go onto the slope. After going onto the slope, the robot starts to prepare to walk onto the

steps for going down. After doing this, the robot stops between the two square columns.

The right part of Figure 4-20 shows 3D trajectories of COG and ZMP. The ZMP

trajectory is generated along the footsteps that the robot follows. It swaps between left

and right as the robot changes the support leg. The input COG height is also changing

with the height of the surface of the scene. The horizontal COG trajectory (in x and y

directions) is solved with the proposed LQSI controller.

Figure 4-20. The scene and 3D COG/ZMP trajectories in the second simulation

75

Using the 3D COG trajectory and the trajectories of all end-effectors, all joint

trajectories of the robot are generated and inputted to the robot model in ADAMS. The

results shows that the robot can walk through the scene stably using the trajectory

generated with the proposed LQSI controller as shown in Figure 4-21.

Figure 4-21. Dynamic walking with LQSI controller in the second simulation

4.5.3 Comparison of LQSI and Preview Controller Using ADAMS

In this section, the ZMP tracking performance of the LQSI controller and the

preview controller are compared with different COG height (Cz) input. The COG height

trajectory is designed as Eq. (4-59). And the robot is walking on a flat floor without any

obstacle.

𝐶𝑧 = 200 + 𝐴𝑚𝑠𝑠𝑠(𝜔𝑑), 𝐴𝑚 = 30, 𝜔 = 0~16.713 (4-59)

𝜔 in Eq. (4-59) is tuned to make the maximum Cz acceleration vary from 0 to

8380mm/s2.

The simulation in the section is mainly used to verify the performance of the

controllers under varying COG height trajectory. Due to the speed limitation of real

robot and in order to protect the robots from damage, large 𝜔 cannot be used in real

76

experiments. Thus in this section, only simulations are used to show the control

performance of the LQSI controller under rapid COG height changing. The estimated

maximum achievable 𝜔 of the robot in real experiment is about 2 rad/s.

There are two reasons why the angular velocity is chosen to be the factor to

compare the ZMP tracking performance. The first one is when we fix the 𝜔 to be

2π/0.8 (the robot walks 0.8 seconds per step), the robot reaches its joint limit at

𝐴𝑚 = 55. At this time, the maximum Cz acceleration is just 2171.3mm/s2. This cannot

change the dynamics of Eqns. (4-3) and (4-4) too much from the average one. The

second reason is that the acceleration term in Eqns. (4-3) and (4-4) plays an important

role. If we set the Cz acceleration larger, the variation of the dynamics of the equation

will also become larger. In ADAMS, the robot walks as shown in Figure 4-22, and the

results are shown in Figure 4-23 to Figure 4-25.

Figure 4-22. Walking on a plane with varying Cz

Figure 4-23 shows the results that the robot walks without COG height change. In

the figure, the LQSI controller and the preview controller have almost the same ZMP

tracking performance. Figure 4-24 shows that the robot walks with COG height change,

77

the maximum Cz acceleration is 6000mm/s2. Because of the modeling error of the

preview control, the error of ZMP tracking is larger. Figure 4-25 shows the relationship

between the average ZMP tracking error and the maximum Cz acceleration.

Figure 4-23. Angular velocity ω = 0

Figure 4-24. Angular velocity ω = 4.5π

Figure 4-25. Average ZMP error under different maximum Cz acceleration

In the figure, the average ZMP tracking error grows as the max Cz acceleration

grows. The value grows faster as the Cz acceleration approaches to the gravitational

acceleration. With the LQSI controller, the robot falls down when the maximum Cz

acceleration is larger than 8337 mm/s2. On the other hand, with the preview controller,

78

the robot falls down when the maximum Cz acceleration is larger than 6680 mm/s2. By

considering the Cz change, the LQSI controller can sustain larger maximum Cz

acceleration and has smaller average ZMP tracking error than the preview controller.

4.5.4 Computation Complexity of the LQSI Controller

In this section, the LQSI controller is implemented on a PC with Intel Core2 Duo

E8400 processor, 32bit Windows XP. The C++ compiler is Microsoft Visual Studio

2005. Optimal controllers have a common problem that the feed-forward gain and the

feedback gain in the future should be recalculated if any state matrix changes. Since the

calculation is a recursive process, the computation load is too heavy for online

computation on low cost micro-controllers or embedded systems. However, due to the

improvement of technology, implementation of online optimal control becomes possible

on PC-based solutions. In Table 4-2, the average computation time of the LQSI

controller and the preview controller are compared. We use inline assembly to construct

a matrix operation library to optimize add, minus and multiply operations of both

controllers. And the matrix inversion is done by using open source library CLAPACK

[155].

Table 4-2: Average computation time of the controllers using C++
 LQSI Preview

Initialization/
memory allocation

Only once Only once
0.68ms 0.06ms

Calculation of feedback
and feed-forward gains

Re-plan for change of
state matrix

Only once

0.86ms 0.038ms

In Table 4-2, the minimum required future input lengths are used, 1.9 seconds for

the LQSI controller and 1.6 seconds for the preview controller. We choose the sampling

time of the control system as 5ms to test the computation speed of the control

algorithms. The computation of LQSI controller is much heavier than the preview

79

controller. All the control gains of the preview controller need to be calculated only

once because it is a time invariant controller. On the other hand, from Eqns. (4-32) and

(4-33), both 𝑆𝑘 and 𝑣𝑘 are relevant to the state matrices and only 𝑣𝑘 is relevant to

the reference ZMP input. If the reference ZMP input is changed in lateral or sagittal

directions, 𝑣𝑘 will be changed. In this case, no re-plan of control gains is needed

because the state matrices and the preview gain are calculated before. But if we change

the COG height or the ZMP height trajectory, all the state matrices and the control gains

should be recalculated and the time required is 0.86ms. Table 4-3 shows the comparison

of computation time of re-planning for different situations among learning algorithm,

the LQSI controller, and the preview controller.

Table 4-3: Comparison of computation time of re-planning for different situations
 Learning LQSI Preview

Need of
Training/database

Yes No No

Real-time on
micro-controller or
embedded systems

No No Yes

Real-time on
PC/notebook

No Yes Yes

Memory usage
(double precision)

100~10000Kbytes
or more

220Kbytes 0.4Kbytes

Order of time for
initialization

Offline training < 1ms < 0.1ms

Order of time for
re-planning

Offline training < 1ms
Doesn’t need
re-planning

Cz changeable Yes Yes Slightly changeable

Although the Cz is changeable when using learning algorithm to generate walking

patterns, the computation is too heavy to be real-time. The memory usage is also huge.

The LQSI controller can be regarded as the time varying version of the preview

controller. Its computation load and memory usage is much larger than the preview

80

control but can still be processed within 1ms for each re-planning. From the

implementation result using C++, real-time control with the LQSI controller can be

achieved on PC or notebook. Although the preview control requires less memory and

computation power, its capability to handle variable Cz is limited.

4.6 Summary

In this chapter, LQSI control is proposed to provide a more versatile walking

pattern generator. It solves the sagittal and lateral COG trajectories with the input

trajectories, vertical COG and ZMP in a 3D space. With the arbitrarily assigned Cz

trajectory, the robot does not have to stop walking in order to change its COG height.

Real-time dynamic walking with arbitrary COG height trajectory is thereby achieved.

While using the calculated feedback gains in the LQSI algorithm, we need to know

the values of the states (COG position, COG velocity, and ZMP position). The present

ZMP position can be calculated by force sensors on the robot’s legs, but the COG states

must be estimated. In this chapter, we have discussed the COG state values obtained

directly from the iterations of the state-space model, where the only feedback is the

ZMP position. In future investigations, observers or estimators should be designed for

more accurate COG states in order to improve the performance of ZMP tracking.

The LQSI controller can also be used for reducing the torques on the robot’s legs,

especially on knee joints because the robot does not have to bend its knees to keep the

COG height constant. In chapter 5, a method that can optimize the COG height

trajectory is proposed and verified.

81

Chapter 5 Optimized 3D COG trajectory

Generation

Many recent methods have achieved stable walking patterns for biped robots, but

discussions about their optimization are relatively scarce. In this chapter, a COG

trajectory optimization method is proposed to minimize the weighted cost of torque and

joint limit (performance index) of the robot. The COG height trajectory is updated and

optimized by calculating the derivative of the performance index with respect to COG

height. To achieve this, the derivative of the Newton-Euler dynamics is also derived.

The proposed LQSI controller in chapter 4 can optimize the COG trajectories in sagittal

and lateral directions with the updated COG height trajectory in each COG height

training iteration. The COG height training results show that the proposed method can

reduce the joint torque of the robot when walking, and generate a more human-like

walking pattern.

5.1 Introduction

In recent years, the humanoid robot has become a popular research topic. Such

robots use more complex multi-axis control systems than mobile robots do. They also

have to overcome the problem of stability while walking; they are, however, adaptable

to many more terrain types. Many different approaches have been proposed to achieve

stabile walking. Some are successful and well known, such as ASIMO [26][110][126],

the HRP series [56][57][59], WABIAN [40], PETMAN, and HUBO [16]. Their

research topics cover a very broad area, including motion control and trajectory

82

generation [39], path and motion planning [1][63], human-robot interaction [6][143],

and mechanical design [1][98] among many interesting topics.

Many researchers have devised walking pattern generation algorithms. The most

used methods employ the COG/ZMP (Center of Gravity/Zero Moment Point) equations

and inverted pendulum model. Early researchers focused on constant Cz (linear inverted

pendulum model or cart-table model) for walking pattern generation, and the preview

control method [47][48] is widely used in many studies to solve linear inverted

pendulum problems.

More and more methods have recently been proposed that involve the use of

changeable Cz to generate the walking pattern, as mentioned in section 4.1. The

non-constant Cz trajectory means that the inverted pendulum problem is nonlinear. The

solution to the varying Cz problem is solved, but the optimization of the Cz trajectory

remains relatively little discussed. For the same robot model, if the Cz trajectory is well

defined, the gait of the robot will be more human-like and energy-saving than the

walking gaits with arbitrarily assigned Cz trajectories. In this dissertation, LQSI

controller in chapter 4 is used to solve the nonlinear inverted pendulum problem, and

the Cz trajectory is optimized by minimizing the performance index with the derivative

of the Newton-Euler dynamics in this chapter. Note that, there are many aspects to make

the walking pattern more natural and more energy-saving. The proposed method is used

for the walking patterns for non-passive robots since the energy consumptions of each

active-controlled robot joints are directly relative to the currents passing through the

motors. And the currents passing through the motors are directly relative to the joint

torques.

The rest of this chapter is organized as follows. Section 5.2 introduces the

performance index and optimization procedure. In section 5.3, the derivative of the

83

basic vectors and the Newton-Euler dynamics with respect to Cz is derived. All the

required parameters used to optimize the performance index in section 5.2 can be found

in section 5.3. Section 5.4, presents and discusses the parameter setting and training.

Finally, section 5.5 summarizes this chapter and shows the conclusions and future

works.

5.2 Goal and Procedure of Optimization

The optimization of COG trajectory in sagittal and lateral (x and y) directions in

the world coordinates is described in chapter 4. In order to achieve optimized 3D COG

trajectory generation for more natural and energy-saving walking pattern, the

optimization of COG trajectory in z direction is discussed in the following.

5.2.1 Performance Index

The performance index for COG trajectory optimization in z direction is chosen as

Eq. (5-1). It is minimized by updating the Cz trajectory using the method proposed in

this chapter.

𝑃𝑘 =
1
2
�𝑊𝜏,𝑗𝜏𝑗2
𝑠

𝑗=1

+
1
2
�𝑊𝜃,𝑗𝐻𝑗2
𝑠

𝑗=1

 (5-1)

The performance index is non-dimensionalized with the weightings 𝑊𝜏,𝑗 and

𝑊𝜃,𝑗, where 𝑊𝜏,𝑗 denotes the weighting of the joint torque cost of the jth joint, 𝑊𝜃,𝑗

denotes the weighting of the joint limit cost of the jth joint, τ denotes the joint torque

and the 𝐻2 denotes the joint limit cost, as Eq. (5-2). The suffix 𝑘 denotes the kth

sampling point of the Cz trajectory.

𝐻𝑗2 =
1

�𝜃𝑀𝑠𝑚,𝑗 − 𝜃𝑗�
2
�𝜃𝑗 − 𝜃𝑚𝑖𝑠,𝑗�

2 (5-2)

𝜃𝑀𝑠𝑚,𝑗 and 𝜃𝑚𝑖𝑠,𝑗 denote the upper and lower joint limits of the jth joint. When

the joint angle approaches the joint limit, 𝐻2 will become larger and larger to prevent

the robot from reaching its joint limit.

84

5.2.2 Optimization Procedure

To minimize the performance index by updating Cz trajectory, its derivative with

respect to Cz must be found, as shown in Eq. (5-3).

𝑑𝑃𝑘
𝑑𝐶𝑧

= �𝑊𝜏,𝑗
𝑑𝜏𝑗
𝑑𝐶𝑧

𝜏𝑗

𝑠

𝑗=1

+
1
2
�𝑊𝜃,𝑗

𝑑𝐻𝑗
𝑑𝐶𝑧

𝐻𝑗

𝑠

𝑗=1

 (5-3)

To calculate Eq. (5-3), the Newton-Euler dynamics and its derivative with respect

to Cz are required, as shown in section 2.4 and section 5.3. The COG-height-updating

equation is shown as

𝐶𝑧,𝑠𝑠𝑚𝑜 = 𝐶𝑧,𝑐𝑢𝑜𝑜𝑠𝑠𝑜 − 𝜂
𝑑𝑃
𝑑𝐶𝑧

 (5-4)

where 𝐶𝑧,𝑠𝑠𝑚𝑜 and 𝐶𝑧,𝑐𝑢𝑜𝑜𝑠𝑠𝑜 denote the COG height trajectory in the next and current

iteration, η denotes the learning rate, and 𝑑𝑃/𝑑𝐶𝑧 denotes the trajectory of 𝑑𝑃𝑘/𝑑𝐶𝑧

for all sampling points. The COG height optimization procedure is shown in Figure 5-1.

Figure 5-1. Procedure for optimizing COG height trajectory

85

The COG-height-optimization procedure starts with an original 𝐶𝑧 trajectory. It is

simply assigned as a constant. The second step is to solve the COG trajectory in the

sagittal (x) and lateral (y) directions, using the proposed LQSI controller. At this step,

the COG trajectories of all three axes (x, y, and z) are all available. In the third step, the

3D COG trajectory and the trajectories of the end-effectors (such as that of the swing

leg) are used to solve IK and thus find all the joint-angle trajectories for walking. In the

fourth step, with the joint-angle trajectories known, Newton-Euler dynamics [21] can be

found as Eqns. (2-19)-(2-28). After calculating the Newton-Euler dynamics, the

concepts of Jacobian matrix and pseudoinverse are used to find the derivatives of the

basic variables and Newton-Euler dynamics with respect to Cz. In the final step, the

derivative of the performance index can be calculated with the variables calculated in

steps 2-5 above, and Cz trajectory is updated as Eq. (5-4). Because numerical

differentiation is used in step 5, the input trajectories of the end-effectors of the robot

for solving IK in step 3 must be smooth and differentiable. To achieve this, all

interpolations of the end-effector trajectories are performed using polynomial functions.

5.3 The Derivatives with Respect to COG Height

To find the derivatives, it is first necessary to find the derivatives of the basic

elements. Chapter 4 describes the use of the proposed LQSI solver and inverted

pendulum model, of the COG optimized trajectories in the sagittal and lateral directions;

these need to be known first as they will change with the Cz input to the solver. Section

5.3.1 describes the change of the horizontal COG (sagittal and lateral) trajectory

generated by LQSI controller with respect to the change of the vertical COG trajectory

(Cz trajectory). The derivatives of the joint z-axis vector z and the link vector r are

derived in section 5.3.2. The Newton-Euler dynamics is also described in chapter 2.

86

These results allow the calculation of the derivatives of Newton-Euler dynamics with

respect to Cz change, as described in this section.

5.3.1 Horizontal COG Change with Respect to Vertical COG Change

As shown in chapter 4, Eqns. (4-24)–(4-35) enable the generation of the COG

walking pattern in both sagittal and lateral directions. Based on the results from chapter

4, in order to find the deviation under unit Cz change, a small constant deviation is

added to the original Cz trajectory, as shown in Eq. (5-5).

𝐶𝑧,𝑠𝑠𝑜𝑜𝑢𝑜𝑜𝑠𝑒(𝑑) = 𝐶𝑧,𝑜𝑜𝑖𝑠𝑖𝑠𝑠𝑙(𝑑) + ∆𝐶𝑧(𝑑) (5-5)

Given the perturbed and original Cz trajectories, two sets of sagittal and lateral

COG trajectories can be generated. The deviation under unit Cz change of the COG

trajectories in sagittal and lateral direction can be found by comparing the perturbed and

the original trajectories, as shown in Eqns. (5-6) and (5-7).

𝑑𝐶𝑚
𝑑𝐶𝑧

=
1
∆𝐶𝑧

�𝐶𝑚,𝑠𝑠𝑜𝑜𝑢𝑜𝑜𝑠𝑒 − 𝐶𝑚,𝑜𝑜𝑖𝑠𝑖𝑠𝑠𝑙� (5-6)

𝑑𝐶𝑦
𝑑𝐶𝑧

=
1
∆𝐶𝑧

�𝐶𝑦,𝑠𝑠𝑜𝑜𝑢𝑜𝑜𝑠𝑒 − 𝐶𝑦,𝑜𝑜𝑖𝑠𝑖𝑠𝑠𝑙� (5-7)

To find the all the derivatives with respect to COG position, it is important to find

the joint angle change of all joints with respect to the COG position change, and this is

accomplished by using the pseudoinverse matrix, as shown in Eqns. (5-8)–(5-10).

𝐽𝐶𝑚+ = 𝐽+[0 0 ⋯ 0 1 0 0]𝑇 (5-8)

𝐽𝐶𝑦+ = 𝐽+[0 0 ⋯ 0 0 1 0]𝑇

(5-9)

𝐽𝐶𝑧+ = 𝐽+[0 0 ⋯ 0 0 0 1]𝑇

(5-10)

Eqns. (5-8)–(5-10) show the joint angle change of all joints for unit COG position

change in each direction. These intermediate variables are important for the derivations

described in the following sections in this chapter.

The deviation of joint angles for unit Cz change is the resultant of the effects of the

COG position change in all three directions, as shown in Eq. (5-11).

87

𝑑𝜃
𝑑𝐶𝑧

= 𝐽+ �0 0 ⋯ 0
𝑑𝐶𝑚
𝑑𝐶𝑧

𝑑𝐶𝑦
𝑑𝐶𝑧

1�
𝑇

 (5-11)

Using Eqns. (5-8)–(5-10), (5-11) can be rewritten as Eq. (5-12).
𝑑𝜃
𝑑𝐶𝑧

=
𝑑𝐶𝑚
𝑑𝐶𝑧

𝐽𝐶𝑥
+ +

𝑑𝐶𝑦
𝑑𝐶𝑧

𝐽𝐶𝑦
+ + 𝐽𝐶𝑧

+ (5-12)

Eq. (5-12) shows that the derivative of the joint angles is the summation of the

COG deviation in each direction multiplied by the corresponding column of the

pseudoinverse matrix.

5.3.2 Derivatives of Basic Vectors

The time series of joint angles can be obtained by using the IK solver. To find the

joint speeds and joint accelerations, fourth order numerical differentiation is used, as

shown in Eq. (5-13).

𝑑
𝑑𝑑
𝑓𝑠 =

𝑓𝑠−2 − 8𝑓𝑠−1 + 8𝑓𝑠+1 − 𝑓𝑠+2
12ℎ

+ 𝑂(ℎ4) (5-13)

𝑓 denotes an arbitrary variable, ℎ denotes the time interval and 𝑝 denotes the

𝑝th sample in the series. Eq. (5-13) is the numerical method used to find the velocity

and the acceleration of the joint angle, as shown in Eqns. (5-14) and (5-15), where Δ𝑑

denotes the sampling time of the joint trajectory.

�̇�𝑠 ≈
𝜃𝑠−2 − 8𝜃𝑠−1 + 8𝜃𝑠+1 − 𝜃𝑠+2

12∆𝑑
= 𝑉�𝜃𝑠� (5-14)

�̈�𝑠 ≈
�̇�𝑠−2 − 8�̇�𝑠−1 + 8�̇�𝑠+1 − �̇�𝑠+2

12∆𝑑
= 𝐴�𝜃𝑠� (5-15)

Eq. (5-12) is an n-by-1 column vector and is rewritten as Eq. (5-16).

𝑑𝜃
𝑑𝐶𝑧

= �
𝑑𝜃1
𝑑𝐶𝑧

𝑑𝜃2
𝑑𝐶𝑧

⋯
𝑑𝜃𝑖
𝑑𝐶𝑧

⋯
𝑑𝜃𝑠
𝑑𝐶𝑧

�
𝑇

 (5-16)

𝑑𝜃𝑖/𝑑𝐶𝑧 denotes the ith element of 𝑑𝜃/𝑑𝐶𝑧, it is the ith joint angle change under

unit Cz change. Because the joint velocity is approximated as a linear combination of

the joint angle, the derivative of joint velocity with respect to the Cz can be written as

Eq. (5-17). It can also be rewritten as Eq. (5-18).

88

𝑑�̇�𝑠
𝑑𝐶𝑧

≈
1

12∆𝑑
�
𝑑𝜃𝑠−2
𝑑𝐶𝑧

− 8
𝑑𝜃𝑠−1
𝑑𝐶𝑧

+ 8
𝑑𝜃𝑠+1
𝑑𝐶𝑧

−
𝑑𝜃𝑠+2
𝑑𝐶𝑧

� (5-17)

𝑑�̇�
𝑑𝐶𝑧

= �𝑑�̇�1
𝑑𝐶𝑧

𝑑�̇�2
𝑑𝐶𝑧

⋯
𝑑�̇�𝑠
𝑑𝐶𝑧

�
𝑇

 (5-18)

From Eq. (5-16), the total derivatives of 𝑧 and 𝑟 vectors can be expressed as

Eqns. (5-19) and (5-20).

𝑑𝑧𝑖
𝑑𝐶𝑧

= ��
𝑑𝑧𝑖
𝑑𝜃𝑘

𝑑𝜃𝑘
𝑑𝐶𝑧

�
𝑖−1

𝑘=1

= ��(𝑧𝑘 × 𝑧𝑖)
𝑑𝜃𝑘
𝑑𝐶𝑧

�
𝑖−1

𝑘=1

𝑑𝑧𝑖
𝑑𝜃𝑘

= 0�⃑ , 𝑘 ∈ {𝑠, 𝑠 + 1,⋯ ,𝑠}

(5-19)

𝑑𝑟𝑖
𝑑𝐶𝑧

= ��
𝑑𝑟𝑖
𝑑𝜃𝑘

𝑑𝜃𝑘
𝑑𝐶𝑧

�
𝑖

𝑘=1

= ��(𝑧𝑘 × 𝑟𝑖)
𝑑𝜃𝑘
𝑑𝐶𝑧

�
𝑖

𝑘=1

𝑑𝑟𝑖
𝑑𝜃𝑘

= 0�⃑ , 𝑘 ∈ {𝑠 + 1, 𝑠 + 2,⋯ ,𝑠}

(5-20)

As shown in Figure 2-4, the rotation of joint i changes only the position and

orientation of the joint i+1 to joint n. All joints movements from joint 1 to joint i–1

change the status of joint i. Thus in Eq. (5-19), the summation starts at joint 1 and ends

at joint i–1. This is why the total, rather than the partial, derivative is used here. The

cross-product with 𝑧𝑘 means that the vector changes under unit rotation along the 𝑧𝑘

vector. In Eq. (5-20), the summation stops at joint i because the vector 𝑟𝑖 is the position

vector from joint i to joint i+1. It will be affected by the rotation of the ith joint.

5.3.3 Derivatives of Newton-Euler Dynamics

With the derivations in section 2.4, all the variables of in both forward and

backward calculations can be found. The derivatives of angular velocity, velocity,

angular acceleration, and acceleration with respect to the Cz change can be found using

chain rule, as shown in Eqns. (5-21)–(5-24).

𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

=
𝑑𝜔��⃑ 𝑖−1
𝑑𝐶𝑧

+
𝑑𝑧𝑖
𝑑𝐶𝑧

�̇�𝑖 + 𝑧𝑖
𝑑�̇�𝑖
𝑑𝐶𝑧

 (5-21)

89

𝑑�⃑�𝑖+1
𝑑𝐶𝑧

=
𝑑�⃑�𝑖
𝑑𝐶𝑧

+
𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

× 𝑟𝑖 + 𝜔��⃑ 𝑖 ×
𝑑𝑟𝑖
𝑑𝐶𝑧

 (5-22)

𝑑�⃑�𝑖
𝑑𝐶𝑧

=
𝑑�⃑�𝑖−1
𝑑𝐶𝑧

+
𝑑𝑧𝑖
𝑑𝐶𝑧

�̈�𝑖 + 𝑧𝑖
𝑑�̈�𝑖
𝑑𝐶𝑧

+

𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

× 𝑧𝑖�̇�𝑖 + 𝜔��⃑ 𝑖 ×
𝑑𝑧𝑖
𝑑𝐶𝑧

�̇�𝑖 + 𝜔��⃑ 𝑖 × 𝑧𝑖
𝑑�̇�𝑖
𝑑𝐶𝑧

(5-23)

𝑑�⃑�𝑖+1
𝑑𝐶𝑧

=
𝑑�⃑�𝑖
𝑑𝐶𝑧

+
𝑑�⃑�𝑖
𝑑𝐶𝑧

× 𝑟𝑖 + �⃑�𝑖 ×
𝑑𝑟𝑖
𝑑𝐶𝑧

+
𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

× (𝜔��⃑ 𝑖 × 𝑟𝑖) +

𝜔��⃑ 𝑖 × �
𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

× 𝑟𝑖� + 𝜔��⃑ 𝑖 × �𝜔��⃑ 𝑖 ×
𝑑𝑟𝑖
𝑑𝐶𝑧

�
(5-24)

From the equations above, the derivatives of force and torque can be found as Eqns.

(5-25) and (5-26).

𝑑𝑓𝑖+1
𝑑𝐶𝑧

=
𝑑𝑓𝑖
𝑑𝐶𝑧

+ 𝑚𝑖
𝑑�⃑�𝑖
𝑑𝐶𝑧

 (5-25)

𝑑𝜏𝑖+1
𝑑𝐶𝑧

=
𝑑𝜏𝑖
𝑑𝐶𝑧

+
𝑑𝐼𝑖
𝑑𝐶𝑧

�⃑�𝑖 + 𝐼𝑖
𝑑�⃑�𝑖
𝑑𝐶𝑧

+
𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

× (𝐼𝑖𝜔��⃑ 𝑖) +

 𝜔��⃑ 𝑖 × �
𝑑𝐼𝑖
𝑑𝐶𝑧

𝜔��⃑ 𝑖� + 𝜔��⃑ 𝑖 × �𝐼𝑖
𝑑𝜔��⃑ 𝑖
𝑑𝐶𝑧

� −
𝑑𝑟𝑖→𝑖
𝑑𝐶𝑧

× 𝑓𝑖 −

 𝑟𝑖→𝑖 ×
𝑑𝑓𝑖
𝑑𝐶𝑧

+
𝑑𝑟𝑖→𝑖+1
𝑑𝐶𝑧

× 𝑓𝑖+1 + 𝑟𝑖→𝑖+1 ×
𝑑𝑓𝑖+1
𝑑𝐶𝑧

(5-26)

Recall Eq. (2-2), to find the derivative of the inertia matrix in world coordinates,

the rotation matrix 𝑅0,𝑖 in the DH homogeneous matrix is rewritten as Eq. (5-27).

𝑇0,𝑖 = �𝑅0,𝑖 𝐷0,𝑖
0 1

� (2-2)

𝑅0,𝑖 = 𝑅0,1𝑅1,2𝑅2,3 ⋯𝑅𝑖−1,𝑖 (5-27)

where 𝑅𝑖−1,𝑖 denotes the rotation part in each homogeneous matrix; it represents the

rotation from the (i-1)th to the ith joint. Using Eq. (5-27) and recall Eq. (2-32), the

inertia matrix represented in the world coordinate can be written as Eq. (5-28).

𝐼𝑖 = 𝑅0,𝑖𝐼0,𝑖𝑅0,𝑖
𝑇 (2-32)

𝐼𝑖 = 𝑅0,1𝑅1,2𝑅2,3⋯𝑅𝑖−1,𝑖𝐼0,𝑖𝑅𝑖−1,𝑖
𝑇 ⋯𝑅2,3

𝑇 𝑅1,2
𝑇 𝑅0,1

𝑇 (5-28)

Eq. (5-28) enables the derivative of the inertia matrix in world coordinates to be

found with Eqns. (5-29)–(5-31).

90

𝑑𝐼𝑖
𝑑𝐶𝑧

=
𝑑𝑅0,𝑖

𝑑𝐶𝑧
𝐼0,𝑖𝑅0,𝑖

𝑇 + 𝑅0,𝑖𝐼0,𝑖
𝑑𝑅0,𝑖

𝑇

𝑑𝐶𝑧

= ��
𝑑𝑅0,𝑖

𝑑𝜃𝑘
𝑑𝜃𝑘
𝑑𝐶𝑧

� 𝐼0𝑅0,𝑖
𝑇

𝑖

𝑘=1

+ 𝑅0,𝑖𝐼0��
𝑑𝑅0,𝑖

𝑇

𝑑𝜃𝑘
𝑑𝜃𝑘
𝑑𝐶𝑧

�
𝑖

𝑘=1

(5-29)

𝑑𝑅0,𝑖

𝑑𝐶𝑧
= 𝑅0,1𝑅1,2 ⋯

𝑑𝑅𝑘−1,𝑘

𝑑𝜃𝑘
⋯𝑅𝑖−2,𝑖−1𝑅𝑖−1,𝑖 (5-30)

𝑑𝑅0,𝑖
𝑇

𝑑𝐶𝑧
= 𝑅𝑖−1,𝑖

𝑇 𝑅𝑖−2,𝑖−1
𝑇 ⋯

𝑑𝑅𝑘−1,𝑘
𝑇

𝑑𝜃𝑘
⋯𝑅1,2

𝑇 𝑅0,1
𝑇

 (5-31)

5.4 Training Results

With the procedure of Figure 5-1, the training starts from a constant Cz trajectory

and the parameters of walking are set as Table 5-1.

Table 5-1. Parameters of Walking

Stride length 100 mm

Step height 30 mm

Step time (each stride) 2.0 s

Double support phase (DSP) 0.4 s

Single support phase (SSP) 1.6 s

Sampling time 0.005 s

When the robot is standing on both feet, it is said to be in the double support phase

(DSP) of its stride, whereas it has only one foot on the ground during the single support

phase (SSP). Sampling time is the interval between each time point.

The weightings of joint torque and joint limit in DSP and SSP are set as shown in

Table 5-2. The directions of pitch, roll, and yaw are defined in Figure 2-4. The proposed

robot has three joints in each hip, one in each knee, and two in each ankle. The hip can

move in all pitch, roll, and yaw directions, the knee joint only in pitch direction, and the

ankle joint can move in both pitch and roll directions.

91

To achieve a more natural walking pattern, the robot knee joint must not bend too

much, so the weightings of the knee joint are larger than those of the other joints under

all conditions. In SSP, the torque weighting of the knee joint of stance leg is 0.9wa (wa

= 0.05). It is larger and more important than the weightings of the other joints. None of

the swing leg joints takes much torque, so their weightings are all 0.1wa. In DSP, both

legs support the robot, so the torque weighting of each knee, the most important of all

the joints, is 0.5wa. Because the all the joint limits are the same during both SSP and

DSP, the joint-limit weightings remain the same throughout. To allow for the

human-like knee-stretching motion, the knee must approach its joint limit, and, in order

to prevent a singularity when solving IK, its joint-limit weighting is larger than the

weightings for the other joints, at 1.0wb (wb = 22.5).

92

Table 5-2. Torque and joint-limit weightings for all joints

Axis
DSP

(torque)
wa = 0.05

SSP (left support)

(torque)
wa = 0.05

SSP (right support)

(torque)
wa = 0.05

DSP & SSP

(joint limit)
wb = 22.5

Left Hip Yaw Wτ,1 0.10wa Wτ,1 0.10wa Wτ,1 0.10wa Wθ,1 0.10wb

Left Hip Roll Wτ,2 0.30wa Wτ,2 0.40wa Wτ,2 0.10wa Wθ,2 0.15wb

Left Hip Pitch Wτ,3 0.30wa Wτ,3 0.70wa Wτ,3 0.10wa Wθ,3 0.20wb

Left Knee Pitch Wτ,4 0.50wa Wτ,4 0.90wa Wτ,4 0.10wa Wθ,4 1.00wb

Left Ankle Pitch Wτ,5 0.30wa Wτ,5 0.70wa Wτ,5 0.10wa Wθ,5 0.20wb

Left Ankle Roll Wτ,6 0.30wa Wτ,6 0.40wa Wτ,6 0.10wa Wθ,6 0.15wb

Right Hip Yaw Wτ,7 0.10wa Wτ,7 0.10wa Wτ,7 0.10wa Wθ,7 0.10wb

Right Hip Roll Wτ,8 0.30wa Wτ,8 0.10wa Wτ,8 0.40wa Wθ,8 0.15wb

Right Hip Pitch Wτ,9 0.30wa Wτ,9 0.10wa Wτ,9 0.70wa Wθ,9 0.20wb

Right Knee Pitch Wτ,10 0.50wa Wτ,10 0.10wa Wτ,10 0.90wa Wθ,10 1.00wb

Right Ankle Pitch Wτ,11 0.30wa Wτ,11 0.10wa Wτ,11 0.70wa Wθ,11 0.20wb

Right Ankle Roll Wτ,12 0.30wa Wτ,12 0.10wa Wτ,12 0.40wa Wθ,12 0.15wb

93

Figure 5-2. The COG height training results

The training result is shown in Figure 5-2. Training occurs over 2 ~ 6 s, during

which two strides are taken (one with each leg). The Cz curve converges at the 1200th

iteration (cost change rate is less than 0.00001%). The plot of the total cost to the

number of iterations is shown in Figure 5-3.

The Cz trajectory can be divided into several regions, described as follows:

a. Initial phase: the robot moves all joints from home position to the initial
configuration.

b. DSP: the robot switches from initial configuration to left support phase.
c. SSP: the left leg supports the robot and the right leg is the swing leg.
d. DSP: the robot switches from left support to right support.
e. SSP: the right leg supports the robot and the left leg is the swing leg.
f. DSP: the robot switches from right support to double support, preparing

to stop walking.
g. Ending phase: the robot stops walking and the iteration ends.

In Figure 5-2, the Cz trajectory rises as the robot raises its leg in SSP. In DSP, the

robot is shifting from left to right (or right to left) support. In these two strides, although

the robot lacks a toe mechanism, the training result shows a COG height trajectory

similar to a human’s [33][67][149]. The proposed algorithm can be used on humanoid

robots with toe and heel mechanisms in the future. With toe and heel mechanisms, the

94

joint-limit cost will be smaller during the DSP of the walking period. This will make the

trained Cz trajectory smoother and higher during DSP.

Figure 5-3. Cost against iterations

Figure 5-4. non-dimensionalized cost with different constant COG height

In Figure 5-3, τ2 cost and H2 cost denote the summation of the torque cost and the

joint-limit cost for each iteration. τ2 + H2 cost is the total cost. It converges at the 1200th

iteration. To reduce torque cost, the robot must stretch its leg during walking, but as this

means it must approach its joint limit, the cost of joint limit increases. The torque cost

of the joints is directly relative to the Cz trajectory and the joint angles of the robot. The

95

straighter the legs when walking, the smaller the torque cost will be. Figure 5-4 shows

the non-dimensionalized cost of the walking pattern with different constant input Cz

trajectory.

In Figure 5-4, the red line shows the cost when the robot walks with the optimized

Cz trajectory. The blue line shows the total cost using constant Cz trajectory. The total

cost reduces as the constant Cz value increases in the beginning. When the constant Cz

value exceeds 500mm, some joints of the robot reach their limits. This causes the rapid

increment of the joint limit cost, thus the total cost become higher although the torque

cost becomes lower, as shown in Figure 5-5. Compared with the constant Cz trajectory,

the optimized Cz trajectory can keep higher position and have lower cost. In Figure 5-4,

the average height of the optimized COG trajectory is 507.3mm and results in the cost

value of the red line. The blue curve stops at 503mm constant Cz since the robot reaches

the joint limit.

Figure 5-5. Torque, joint limit, and total cost with different constant Cz

In the following, the joint angle and joint torque trajectories of the robot are

discussed. The trajectories are shown in Figure 5-6–Figure 5-17.

96

Figure 5-6. Angle trajectory of the knee pitch joint

Figure 5-7. Torque trajectory of the knee pitch joint

Figure 5-8. Angle trajectory of the hip pitch joint

97

Figure 5-9. Torque trajectory of the hip pitch joint

Figure 5-10. Angle trajectory of the hip roll joint

Figure 5-11. Torque trajectory of the hip roll joint

98

Figure 5-12. Angle trajectory of the hip yaw joint

Figure 5-13. Torque trajectory of the hip yaw joint

Figure 5-14. Angle trajectory of the ankle pitch joint

99

Figure 5-15. Torque trajectory of the ankle pitch joint

Figure 5-16. Angle trajectory of the ankle roll joint

Figure 5-17. Torque trajectory of the ankle roll joint

100

Because the trajectories of angle and torque are very similar for each leg, only

those for the left leg are shown in Figure 5-6–Figure 5-17, covering the initial phase,

double support phase (DSP), swing phase and support phase (both SSP).

The discussion below looks at two aspects depicted in Figure 5-6–Figure 5-17: the

movement directions of the joints (pitch, roll, and yaw), and the different support phases

(swing, support and double support).

The three pitch axes in the hip, knee, and ankle change significantly with the COG

height training iterations because they are directly related to the COG height. With the

training iterations, the joint angle becomes smaller and smaller, so that the robot leg

becomes straighter and straighter when walking. The joint torque values of these axes

also become smaller. In the hip and the ankle joints, however, the joint torque values of

the roll axes do not change significantly with the training iterations, as they are used to

match the constraints of the lateral COG trajectory and the roll angle of the end-effector.

The trajectories of the roll axes do change slightly with training iterations, because the

Cz trajectory becomes higher as the training process continues. The longer the inverted

pendulum (COG height is also higher) gets, the smaller the amplitude of the pendulum

swing (lateral and sagittal COG motions) becomes. The amplitudes of the roll angles

thus become smaller with training iterations. Because the walking trajectory for training

is a straight line, the yaw angle trajectory is zero, and the yaw torque is much smaller

than pitch and roll torques, and the yaw-angle trajectories do not change during COG

height training.

In the swing phase, the shape of the joint-angle trajectories change very little

because the swing motion is constrained by the desired motion of the end-effector (three

translational and three rotational). The same applies to the joint-torque trajectories

101

because the motors of the swing leg need only to drive the swing motion and do not

have to support the body weight.

In the support phase, the joints of the leg support the whole body weight and

sustain a larger joint torque than in the swing phase. During the COG height training

iterations, compared with other joints, the torque trajectories of the hip and knee pitch

joints undergo more significant changes than other joints. After optimization, the

minimum torque of the knee joint becomes much smaller, from 29.98 N-m to 14.59

N-m.

During the DSP, one leg is switching roles from swing to support (and vice versa

for the other leg). In this phase, none of the joint-torque trajectories changes very much

with training iterations, and the robot bends its knee slightly because the six-axis robot

leg has no toe mechanism to facilitate landing or leaving the ground.

With the proposed optimization method, the loads on the joints (especially the knee)

become much smaller, and a more human-like COG height trajectory and walking

pattern can be generated.

5.5 Summary

In this chapter, a COG trajectory optimization method is proposed. By minimizing

the performance index, the proposed pattern generator can generate a more human-like

walking pattern with smaller joint torque. The same COG optimization method can be

used on different robot models. The robot model for training in this chapter has no toe

mechanisms, thus a COG height optimization algorithm that does include toe use can be

achieved in the future to generate an even more natural walking pattern.

With the proposed COG trajectory optimization method, the COG patterns under

different circumstances and conditions can be generated in advance as a walking pattern

102

database, which can then be used to achieve online control with optimized COG height

trajectory.

103

Chapter 6 Real-time Control Architecture of

Humanoid Robots

In this chapter, a network communication approach named real-time network

(RTNET) is designed and implemented for humanoid robots. The proposed five network

objects – alarm, condition, message, mail, and file are used to represent the task and

priority of the communication data. Compared to the existing protocols, the network

scheduling mechanism of RTNET more efficiently arranges the priority and flow

control of the five network communication objects to meet real-time requirements for

the limited bandwidth of the local area network (LAN). RTNET can be further

integrated with controller area networks (CAN-Bus) for local control systems, such as

mobile robots or humanoid robots, to improve the communication mechanism. The

RTNET can also be used over Ethernet to connect each subsystem and to exchange

information among those systems. The RTNET has been implemented on the NTU

humanoid robot control system with CAN-Bus.

6.1 Introduction

The development of the microprocessor, microelectronics, communication method,

and computer are very rapid. Robotics systems are often composed of many units such

as computers, controllers, actuators, and sensors. Commands and data must be sent

among those units in order to gain the desired performance. As the number of the units

grows, the commands and data format become more and more complex. Humanoid

robots often have more than one hundred units and they are distributed in multiple

104

locations. In such a large system, a real-time and well-scheduled communication system

becomes very important.

Some robots were designed with the centralized control architecture

[41][57][58][68][86][93][111][112] including IEEE-1394, local ISA, VME, RS-232 and

PCI bus. Their communication interfaces have high communication speed but the wire

systems are too heavy and complicated. The other robots or platforms used distributed

control/computation architecture such as CAN-Bus [75][82][94][115][144], Ethernet

[24][79][81][85][145], Ethernet-CAN [77][78][139][147][151] to achieve their

real-time control and communication systems. Communication systems using CAN-Bus

are reliable and can achieve real-time control, but the bandwidth may not be enough

when the nodes in the bus are too many. Communication systems using Ethernet has

high bandwidth, but the requirements for using in local microprocessors are higher and

the wire system and protocol for Ethernet is more complex. The universal serial bus

(USB) is a good solution for communication devices. It has high bandwidth and can be

implemented in real-time. But it is designed as a master-slave structure rather than a

distributed system. Thus, if we control several nodes, it needs the same number of

cables to control the nodes. If there are many nodes, the wires may be a big problem if

we just use USB as the communication interface to construct the system. Another

problem is how to achieve peer to peer communication by using USB devices and

reduce the number of wires. Each communication device and protocol has their

advantages and disadvantages. In order to find a balance between them, Ethernet, USB

and CAN-Bus are integrated. To merge those different communication systems, it is

necessary to define how to transmit the data among those systems. There are many

methods to solve this problem. It is usual to add a microcontroller as the buffer, to

connect different types of data structures between different communication networks.

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=structure##
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=structure##

105

The easiest methods to coordinate different communication networks are to implement

them in the application layer.
The above protocols using Ethernet, CAN-Bus, and USB do not provide the

mechanism of priority scheduling. The reason we need the priority scheduling is in that

the data in distributed computation and control are all stored in a queue. If we use a

first-in-first-out (FIFO) mechanism to send them, important data may be jammed and

delayed. There are several types of communications that should be sent with a higher

priority, for example, the alarm caused from the failure in control systems or the error

signals from computers and microcontrollers on the robots.

RTNET is developed as a communication tool among robots, equipment, devices,

personal computers and workstations in versatile platforms. It is designed and

implemented to satisfy the following goals:

1. Real-time communication with network priority scheduling.

2. Unified approach for small to large scale systems.

3. Satisfaction for control, computation, manufacturing, and general applications.

4. Ease of use.

In this chapter, the humanoid robot networking system will be shown in section 6.2

and how does RTNET work is shown in section 6.3. In section 6.3, five network

communication objects which are used to represent the tasks and properties of

communications are also proposed. The network scheduling mechanism used to deal

with the five network objects will be described in section 6.4. Section 6.5 shows the

simulation and implementation using RTNET on humanoid robots and distributed

computation and control systems. Finally, section 6.6 summarizes this chapter.

RTNET is implemented on both Ethernet and CAN-Bus for command/data

transmission. The Ethernet based RTNET is used to connect the PCs, laptop computers

106

and workstations, and the CAN-Bus based RTNET is used to control each sub-systems.

The whole system architecture is shown in Figure 6-1.

Figure 6-1. System architecture of the whole control system

Clearly, personal computers, workstations and laptop computers can be connected

using Ethernet based RTNET. Each node in the Ethernet based RTNET can contain one

or more CAN-Bus based RTNETs as sub control systems. For example, in a humanoid

robot control system, a laptop computer is used as one node in the Ethernet based

RTNET. It is also the central control computer of the robot. In addition, we can use

several CAN-Bus based RTNETs to control the arms, the hands and the legs. The

CAN-Bus based RTNETs are connected to the laptop computer with USB-to-CAN-Bus

adaptors.

6.2 Networking for Humanoid Robot Control System

Humanoid robots often have more than one hundred units and they are distributed

in different parts of the robot. A neat, real-time and well-scheduled communication

system is very important for such complex systems.

107

6.2.1 Control Bus of the Humanoid Robot

The proposed human-sized humanoid robot system has 50 motors and 102 sensors.

In such a large system, reducing the number of wires is very important for the setup and

maintenance of the robot. To find an optimal solution for real-time control and the wire

system, the limbs and sensors on the robot are connected to the central control laptop

computer with several USB-to-CAN-Bus adaptors, and the limbs and sensors are

connected in several CAN-Buses.

In each CAN-Bus, all nodes can be connected with four wires (Vcc, Gnd, CANH

and CANL). Two wires are digital power lines and two wires are for CAN-Bus

communication. This can reduce a large number of wires compared to directly

connecting the devices using RS232, I2C and USB or other methods.

6.2.2 Joint Controllers and Nodes of the Robot

Micro controller units, PIC (dsPIC30F4011), are used as the digital signal

processing (DSP) nodes in the CAN-Bus. It has 9-Channel 10-bit Analog to Digital

Converters (ADC), 3 pulse width modulation (PWM) modules, 1 encoder module and

DSP functions. The hardware of each node is composed of one joint controller and

motor unit. The architecture is shown in Figure 6-2.

In the DSP unit shown in Figure 6-2, the PWM modules and encoder module are

used for motor control, and the ADCs can be used to acquire the signals from the

sensors near the node. The DSP unit has one CAN-Bus module. With this module, it can

connect to the local CAN-Bus based RTNET to transmit the data of the sensors and

receive the commands form higher-lever controllers.

108

Figure 6-2. The architecture of joint controllers

The local control node communicates with other nodes through CAN-Bus.

However, the computer communicates with other computers through Ethernet. The

communication between these two networks, the adaptor of USB-to-CAN-Bus is

designed, as shown in Figure 6-3. With this adaptor module, laptop computer can send

control commands to each sub CAN-Bus to achieve real-time multi-axis motor control

and multi-sensor reading. To transfer the data in the network effectively, RTNET is

implemented in the DSP to manage data transmission of each node in the bus.

Figure 6-3. The USB-to-CAN-bus adaptor module

109

6.2.3 Multi-Node Control Structure for the Humanoid Robot

Because the maximum baud rate of CAN-Bus is 1Mbps, the command update rate

will be too slow if there are too many nodes in one local CAN-Bus. To solve this

problem, several USB-to-CAN adaptors are used to share the data flow from the laptop

computer to CAN-Bus. In the C++ program in the laptop computer, multi-thread

program is used to send control commands through the USBs in parallel.

The number of nodes in each CAN-Bus should be determined in terms of the

requirement of command update rate. For example, for walking robots, high speed

control and sensor feedback are required in order to improve the walking stability. High

speed control and sensor feedback are also required for robot arms because the robot

arms will vibrate under non-smooth (slow) position commands. On the other hand, for

the facial expression control on the robot head, the command update rate can be slower

because the requirement of fast and accuracy motion control for facial expressions is

less than robot arms and robot legs. The configuration of CAN-Bus in the proposed

humanoid robot is shown in Figure 6-4.

Figure 6-4. CAN-bus structure for the proposed humanoid robot

110

As shown in Figure 6-4, eight USB-to-CAN-Bus adaptors are used to connect each

part of the robot and the laptop computer, two for the arms, two for hands, two for the

legs, one for the torso and one for the head. In the head, body and limbs of the robot,

each CAN node is used for controlling motors and collecting the data from the sensors

near the node.

Although the control system is divided into many parts to improve the command

update rate and reduce the data flow in each bus, a good scheduling and data

transmitting mechanism are still needed for large and multiple data transmission. A

reliable, real-time and well-scheduled networking algorithm will be described in section

6.3.

6.2.4 Multi-Robot Control and Communication System

RTNET is used to construct a communication system for one robot, but how about

the communication among many robots? When executing multi-robot works, a

communication protocol must be defined among the robots, the laptop computers, and

the workstations. The interface among them is constructed by using Ethernet with the

priority oriented networking protocol, the Ethernet based RTNET, as described in the

following.

Note that the CAN-Bus based RTNET is used for data flow and control under one

laptop computer or one workstation. The Ethernet based RTNET can provide the

communication and dataflow among robots, laptop computers, and workstations.

6.3 Priority Oriented Networking (PON)

Network communications are various and flexible. Properties of the network

communication objects and their priorities should be well-defined in order to have good

performance on data transmission and can send emergency alarms in real-time. For

example, the communication to carry emergency alarms should be treated as the first

111

priority, and the communication to perform the handshaking between processes should

be treated as another level of priority. There are many other types of communications

which must be dealt with, such as mail and file transmissions.

6.3.1 Objects of Network Communications

RTNET has five basic network communication objects called alarm, condition,

message, mail and file. Each communication object is assigned a corresponding priority.

They also represent the classification of information flow on the control systems. The

five network objects of RTNET are defined as follows.

Alarm communication

The alarm of network communication is used to indicate that the system is

damaged, malfunctioning, or there is some emergency. For example, the programmed

machine needs to send an alarm to indicate that the problem is serious and maintenance

is needed. A computer may send an alarm to notify and ask the remote operator to reset

or repair the robot, control system, or other units.

Condition communication

Many network communications are used to facilitate cooperation between the

system state and the process units. For example, two or more computers can use the

communication to perform handshaking. One robot/computer can use the

communication to know the condition of the other robot/computer, and then perform the

corresponding action. This type of network object is very desirable in networking

applications. Such network communications are called “the condition object.”

Message communication

Data transfer can be done in network communications. In other words, the data can

be simultaneously shared by different applications in the networks. The message objects

112

are the objects that are not very large in file size and they are readable by human

directly.

Mail communication

The mail communication is used to transfer mail text in network. Its function is the

same as E-mail. Its file size is larger than message and can contain some text files. It

can be used to transfer text data for human reading.

File communication

The file communication is used to transfer files which can be in any format, such

as robot configuration/command file, video, audio, picture, data, and so on. The

function of the file communication is the same as the FTP (file transfer protocol).

6.3.2 Priority and Size of Network Objects

Since the “Alarm” object is absolutely essential, it has the highest priority. For the

sake of network interaction, the communication object “Condition” has the second high

priority.

Figure 6-5. The priority and size of the communication object

113

The communication object “Message” which transfer messages among the devices

has the third high priority. The communication object “Mail” has the fourth high priority.

The communication object “File” has the lowest priority since it may be huge and time

consuming. In general, the above priority arrangement is opposite to the size of the

communication data, as shown in Figure 6-5. This fact also shows the fitness of the five

network objects that have been classified.

6.3.3 Common Properties of the Network Objects

Each network object has some properties which represent the network object itself.

However, some properties are common for the network objects, i.e., the destination of

communication, which type of network object, and its size.

Figure 6-6. The data encapsulation and header presentation

Our method to deliver the information through the network objects is to add a

network header before each communication. Since the RTNET is stacked on the TCP/IP

and CAN-Bus, the data encapsulation and header presentation are also stacked on it, as

shown in Figure 6-6.

Although the stacked data and commands in TCP/IP based and CAN-Bus based

RTNET can be transmitted through a first-in-first-out (FIFO) data transmission

114

mechanism, the network priority scheduling mechanism of RTNET will achieve a better

performance. This will be presented and discussed in section 6.4.

6.4 Network Scheduling

One of the special features of RTNET is the queuing mechanism which stores the

request for transmissions and it can be performed in background. Once there are five

network objects requested to be sent and received in the background of the application,

how does so many communications be processed in background? A scheduling

mechanism is provided to arrange the network objects to be sent in RTNET. In this

section, the scheduling method and how it works are presented.

6.4.1 Network Scheduling Mechanism

When transferring data in the network, a scheduling mechanism is required for

preventing the important data from being jammed in the queue of communication

objects. The network scheduling mechanism (NSM) of RTNET can find the

communication objects in queue with higher priority and send them first. For example,

if an alarm is triggered when a large file is being transmitted through RTNET, the

RTNET will interrupt the file transmission and then send the alarm first.

6.4.2 Flow Control of the Scheduling Mechanism

The flow control of the NSM is performed by setting the scanning time of the

algorithm. In our system, the scanning time is set as 0.005 second. Within this time

interval, RTNET scans if there are any communication objects with higher priority than

the object which is being transmitted. The scanning procedure is shown in Figure 6-7.

When the interval is set smaller, the communication objects with higher priority can be

sent more quickly. At the same time, more interruptions will occur when transmitting

large files.

115

The efficiency of sending larger files will be reduced by the time delay caused by

the interruptions. On the other hand, if we choose a larger scanning time, the alarm will

be delayed but the efficiency of transmitting files will be higher. With these

considerations, a suitable scanning rate should be chosen for gaining an acceptable

delay of alarms and the best file transmitting efficiency. It is set as 0.005 seconds in the

proposed humanoid robot.

Figure 6-7. The flow chart of NSM for performing communication

6.5 Simulation and Implementation

The RTNET structure is implemented in the proposed humanoid robot, as shown in

Figure 6-4. In the humanoid robot, CAN-Bus based RTNET is used to construct the

control/computation system for locomotion control. Robots, computers, and

workstations can be connected with the Ethernet based RTNET networking, as shown in

Figure 6-8.

116

Figure 6-8. Multi-robot control system with RTNET

6.5.1 Ethernet Based RTNET

RTNET can also be implemented on a multi-robot control system. The upper-end

RTNET is Ethernet-based, and the PCs, laptop computers or workstations can be

connected to this RTNET. Each node can control robots, machine tools or control

systems, as shown in Figure 6-8.

In the multi-robot control system, CAN-Bus based RTNET is also used as the

lower-ends, as shown in the figure. The upper and lower RTNETs are connected through

USB-to-CAN-Bus adaptors which can buffer and adapt the upload/download dataflow.

By using RTNET, better scheduling, data transfer, and control performance are

achieved.

6.5.2 CAN-Bus Based RTNET for Local Networks

Following the concept of the Ethernet based RTNET, the CAN-Bus Based RTNET

is designed. Similar to the Ethernet based RTNET, the CAN-Bus based RTNET has the

same objects of network communications: alarm, condition, message, mail and file.

117

Because the CAN controllers can only store the message, mail and file in their RAM

(random access memory), large data cannot be sent over the CAN-Bus based RTNET.

Except this limitation, the CAN-Bus based RTNET can have the same function as the

Ethernet-based RTNET in its local network.

6.5.3 Performance on Data Transmission through RTNET

The performance between a FIFO communication mechanism and the proposed

RTNET is compared in the following. In both the FIFO communication and the RTNET,

the size and the communication rate of the communication objects are listed in Table

6-1. The bandwidth of the LAN is set as the bandwidth of the IEEE 802.11g wireless

LAN, 54Mbps (in limited distance).

Table 6-1 Size and Rate of the Objects

Communication Object Size Rate

File about 100MB 5 files, fixed

Mail about 8MB 0.2% in each sampling interval

Message about 500KB 0.9% in each sampling interval

Condition about 10KB every 5 seconds

Alarm about 1KB 0.7% in each sampling interval

Because the speed of the wireless LAN are the same in both tests, the total time for

FIFO transmission and RTNET transmission are almost the same. Also, the number and

probability of all communication objects are set the same in both tests. Five “files”

which might exhaust the bandwidth of the wireless LAN are set. “mails” and “messages”

are sent randomly with fixed probabilities. The “condition” is used to check the

condition of the nodes in the network. It will be triggered every 5 seconds. Finally, the

“alarm” indicates the alarms in the network. It will be triggered with a fixed probability.

The results of using FIFO transmission and RTNET are shown in Figure 6-9 and Figure

118

6-10. In the figures, the x-axis shows the time in second, and the y-axis shows the

accumulated amount or size of each communication objects.

Figure 6-9. Transmit the communication objects with a FIFO stack

Figure 6-10. Transmit the communication objects with RTNET

119

The communication objects transmitted with a FIFO stack and RTNET are

illustrated in Figure 6-9 and Figure 6-10. Since the size of the communication object

“file” is too larger to be sent in a short time with the bandwidth of the wireless LAN, the

communication objects will be stacked in a queue. When using the FIFO, the

communication object which is in the first position in the queue will be transmitted first.

When a “file” object is transmitted, the “alarm” signals might be blocked. In Figure 6-9,

the number of the alarm is accumulated to 10 because the alarms are queued later than

other large objects. Time delay of alarms might cause serious damage to humans, robots

or machines. The “condition” is important because it indicates the status of each node in

the network. In Figure 6-9, the condition objects are also delayed for waiting for larger

objects. In Figure 6-10, because the RTNET considers the priority of each object, the

important objects will be transmitted earlier. Although the waveforms of the “file” are

almost the same in Figure 6-9 and Figure 6-10, the waveforms of the other objects are

quite different. In Figure 6-10, the alarm objects and condition objects are transmitted

immediately after they are queued. This will help the administrator or operator to judge

the status of the network or the system can stop the robots or machines immediately

after the emergency alarms. Thus, with the RTNET, communication objects with high

priority will be sent first, and will not be jammed in the queue, as shown in Figure 6-9.

6.6 Summary

In this chapter, the RTNET is designed and implemented for distributed control and

computation for the proposed humanoid robot and other control systems. After

considering the requirements of networking, the network communications are

categorized into five objects, and a unified communication approach that works

efficiently with embedded applications is provided. These objects also make RTNET

suitable for robotic systems or for network based equipment.

120

The scheduling mechanism is provided to send and receive communications with

priority in background and to achieve the goal of real-time communication. A

corresponding network management is also provided to monitor the performance and

traffic of the network communication and to resolve traffic jams in the networks.

RTNET has been verified and implemented on the proposed humanoid robot. Its

performance is quite satisfactory.

121

Chapter 7 Implementation

In this dissertation, a generalized method for COG trajectory optimization is

proposed. Two humanoid robots are used as simulation and experiment platform; one is

a human-sized humanoid robot and the other is a small-sized humanoid robot.

Small-sized robots are constrained by its limited space and the control accuracy of RC

servo motors (radio control motors), but they can be manufactured and assembled

quickly to test control algorithms. On the other hand, human-sized humanoid robot have

enough space to install DC motors, driver boards, sensors, and embedded computer, but

they are very expensive and cost a long time to manufacture and assemble. With these

two robots, the proposed optimized walking pattern generator can be implemented and

tested.

In this chapter, the specifications of the robots used in this dissertation are shown

in section 7.1, the real-time planning/control architecture are described in section 7.2,

and section 7.3 shows and discusses settings and results of the experiments using the

proposed methods in this dissertation. The performances of the methods in this

dissertation are verified.

7.1 Specifications of the Proposed Humanoid Robots

Specifications of the two robots are described in this section. The photos of the two

robots are shown in Figure 7-1 and Figure 7-2. The physical specifications of the

proposed human-sized and small-sized humanoid robots are shown as Table 7-1.

122

Figure 7-1. Human-sized humanoid robot

Figure 7-2. Small-sized humanoid robot

123

Table 7-1 Physical specifications of the proposed robots

 Human-sized Robot Small-sized Robot

Height 1450 (mm) 430 (mm)

Weight 68.0 (Kg) 1.8 (Kg)

Mechanism material 7075 aluminum alloy 5052 aluminum alloy

Motor type
DC brushed

servo motors
RC servo motors

Reducer
Harmonic drives,

belts and pulleys
Gears in the RC motors

Controller interface USB and CAN-Bus RS232

Because of the limited bandwidth of the RS232 interface, algorithms can be tested

quickly by using the small-sized robot, but for real-time control, human-sized robot

must be used. The human-sized robot has more DOFs than the small-sized robot; it is

more complicated and can achieve more tasks. Table 7-2 shows the arrangement of

DOFs of the two robots.

Table 7-2 Arrangement of degrees of freedom

 Human-sized Robot Small-sized Robot

Head 0 (LED Array) 2

Arms 12 (6×2) 8 (4×2)

Hands 24 (12×2) 0

Torso 2 2

Legs 12 (6×2) 12 (6×2)

Total 50 DOFs 24 DOFs

124

Compared with the small-sized robot, in addition to walking and arm motions, the

human-sized robot has DOFs in its head and hands to achieve facial expressions and

grasping motions.

7.2 Real-time Planning/Control System of Humanoid Robots

Chapter 6 describes the networking system of humanoid robots; high level

communications and protocols are proposed. On the other hand, how the robot

generates the walking patterns and how it communicates with local controllers are

described and proposed in this section. The real-time planning and control system of

humanoid robots are proposed and implemented on the robot.

7.2.1 Real-time Planning and Control Architecture

Figure 7-3 Shows the real-time planning and control system.

Figure 7-3. Real-time planning and control system

In Figure 7-3, the IK solver, LQSI controller, and the Cz optimization and training

are proposed and described in chapters 3, 4, and 5. The Cz optimization and training

125

needs some iteration to converge; it is an offline training procedure. After the training,

the optimized Cz trajectory can be saved and sent to the LQSI controller. The ZMP

trajectory and the Cz trajectory are sent to the LQSI controller and the COG trajectories

in sagittal and lateral directions are solved. The 3D COG trajectory and the trajectories

of the end-effectors of the robot are the inputs to the IK solver. Finally, the IK solver

solves the joint trajectories of the robot and the real-time planning phase ends here. The

joint trajectories are sent to the C32 controllers through USB interface and be stored in a

FIFO (first-in-first-out) queue. C32 controllers send the joint trajectories and receive

sensor feedback signals with C30 controllers every 5ms. The real-time control phase

ends here. Except the training phase, the whole robot planning and control system is

real-time and can be processed in the order of millisecond.

The proposed robot control system is a combined centralized and distributed

control system. A mini-ITX (17cm×17cm) personal computer with Intel CoreTM I7 870

CPU is used as the centralized part to execute walking pattern generation and motion

planning. It is faster than the computer used in chapter 4 and provides more

computation power for real-time computation. On the other hand, the distributed 16-bit

dsPIC30F4011 controllers and their 32-bit master PIC32MX795F512H are all running

state-machines when the robot is powered on. They are always checking their state and

executing commands. As shown in chapter 6, dsPIC30F4011 is the local controller and

PIC32MX795F512H is the USB-to-CAN-Bus adaptor. They will be described in the

follow sections.

7.2.2 State Machine Architecture of C30 Controllers

Figure 7-4 shows the architecture and how the state machine of C30 local

controllers works.

126

Figure 7-4. C30 state machine

In the state machine architecture, two types of states are defined. One is primary

state and the other is secondary state. Computation of primary states is more time

consuming and the secondary states are lighter and faster. One primary and one

secondary state in each C30 controllers can be set at the same time; this helps the C30

controller to process two tasks alternately. Small-sized or emergent signals will not be

jammed by time consuming tasks. The primary states contains the IDLE, PID Control,

and Mechanism Initialization states and the secondary states contains the IDLE, Set

Encoder, Initialize Parameters, Set Parameter, and Reading Sensors. Each C30

controller controls a motor with the onboard SA57 H-bridge power amplifier using PID

control. SA57 H-bridge power amplifier can sustain 60V voltage and 8A continuous

current; it is quite enough to be used to drive the motors of the robot legs. The sampling

rate of PID update is set as 5 KHz and it is fast enough to control the motor without

oscillation. The C30-SA57 motor control module is shown in Figure 7-5. C30

127

controllers also read the sensors near to them, such as the encoders of the motors, limit

switches, and temperature sensors.

Figure 7-5. C30-SA57 motor control module

The baud rate of the CAN-Bus in each local network is 1Mbps. Since the standard

package size of the CAN-Bus is 107bits, the theoretical value of transmission per

second is 9345 times/second. The tested value of transmission per second is about 5200

times/second. For a six-node local CAN-Bus such as robot leg or robot arm, the

maximum command update and data receive rate for each node is 5200/6 = 867

times/second. The command update and data receive from and back to C32 boards are

both set as 200 times/second (5ms interval). Because the bandwidth required is 400

times/second and the CAN-Bus bandwidth is capable of 867 times/second, the

128

bandwidth of the CAN-Bus is fast enough for controlling the motor and receiving

sensor data of each node.

7.2.3 State Machine Architecture of C32 Controllers

Figure 7-6 shows the architecture and how the state machine of C32 controllers

works. The photograph of the C32 controller is shown in Figure 6-3.

Figure 7-6. C32 state machine and the FIFO queue

The state machine architecture of the C32 controllers is similar to that of the C30

controllers. Different from the C30 controllers, C32 controllers focus on the

coordination between the main personal computer and the local controllers. C32

controllers do not have to control motors and initialize the mechanisms, thus only the

primary state are designed in its state machine architecture. The states of C32 include

IDLE, Set PID, Set Initialize Mechanism, Set Encoder, Set PWM Limit, Initial

Parameters, Set Parameters, Read Sensors, etc. These states help the computer to set the

command and the states of C30 local controllers and read local sensors.

If the motors in local network are controlled by the main personal computer

directly, asynchronous and time shifting problem will occur. The asynchronous problem

129

occurs because the personal computer can only control the local motors through RS232

or USB if no other devices are installed to the computer. Without specially defined

protocol and circuit, RS232 and USB must send the command one-by-one to the motors.

The time shift problem is since the timing control precision of a personal computer is

about 1~2ms, the sampling period will be longer or shorter. To solve these problems, a

control FIFO queue is allocated in each C32 controller. It is designed that the personal

computer processes motion planning and solves IK for four time steps in advance and

then sends the four future joint trajectories to the C32 FIFO queue. This procedure

triggers every 20ms and the C32 controller sends joint trajectories to all local nodes

every 5ms. With the control FIFO queue, the encoder commands of local controllers can

be updated with precise time interval. The C32 USB-to-CAN-Bus adaptor uses 12Mbps

baud rate in the USB side and 1Mbps in the CAN-Bus side. The test results show the

USB side can execute the transmission of 512Bytes package for about 500 times per

second. It is also enough for achieving the uploading/downloading requirement for

controlling a humanoid robot. Because the CAN-Bus transmits signal through broadcast,

all nodes in the local network can receive the trigger signals to change their target

encoder position at the same time. Simultaneous motion control can be achieved using

CAN-Bus. Thus, with the control FIFO queue in C32 controllers, the asynchronous and

time shifting problem of controlling local nodes using personal computer directly is

solved.

7.3 Experiments

In this section, the experiment results using the proposed walking pattern generator

and control system are discussed. The performances of LQSI controller using optimized

and constant Cz trajectories are also compared. The experiment settings is shown as

130

Table 7-3. Settings of the experiments

 Experiment 1 Experiment 2 Experiment 3

Scenario Straight walking Straight walking Robot hung on a shaft

Period per step 6 seconds per step 6 seconds per step 6 seconds per step

Double support phase 1.8 seconds 1.8 seconds 1.8 seconds

Single support phase 4.2 seconds 4.2 seconds 4.2 seconds

Cz trajectory Constant Optimized Robot hung on a shaft

Average Cz per step 497.56mm 507.34mm Robot hung on a shaft

Pattern generator LQSI LQSI LQSI

Table 7-3 shows the settings of the experiments, experiments 1 and 2 are used to

compare the performance between the walking patterns with constant and optimized Cz

trajectory. Experiment 3 is used to see if the robot is hung on a shaft, how the

performance of joint angle tracking changes.

In each experiment, all segments of the input ZMP trajectory are connected

smoothly using 9-degree polynomials to ensure the trajectories are totally differentiable.

By doing this the robot can move smoother than just setting the ZMP position directly

under the center position of the stance foot.

7.3.1 Tracking Performance of Joint Angles

The tracking performances of joint angles are compared using the sensor feedback

data in experiments 2 and 3. In the experiments, all settings are the same except the

walking status of the robot. In experiment 2, the robot walks on the ground; in

experiment 3, the robot is hung on a shaft. Since the motors of robot legs do not need to

support the weight of the robot, joint load in experiment 3 is smaller than experiment 2.

Therefore the joint angle tracking performance is better in experiment 3. Since the

131

results of each leg are very similar, only the joint angle tracking results of left leg is

shown in the following figures.

Figure 7-7. Tracking results of hip yaw axis

In Figure 7-7, since the robot is walking straightly, the command input of yaw axis

is zero. The local controllers use PID control to track the command reference. Thus the

encoder feedback in experiments 2 and 3 has steady state errors. In addition, because the

motors must support the body weight of the whole robot, the tracking error is larger in

experiment 2.

Figure 7-8. Tracking results of hip roll axis

Figure 7-8 shows the tracking results of hip roll axis. As we can see, in the swing

phase, the tracking errors of experiments 2 and 3 are similar since the loading of the hip

132

roll axis in both experiments are similar. Different from the swing phase, since the

loading of the axis in single support phase is larger in experiment 2, the tracking error is

also larger. The tracking performances of the other axes have the same characteristics as

the hip roll axis. They are shown in Figure 7-9 to Figure 7-12. In the figures, since the

values of errors are much smaller than the values of joint angles, they cannot be seen

very clearly. To show the magnitude of the errors, their mean absolute errors will be

listed in Table 7-4.

Figure 7-9. Tracking results of hip pitch axis

Figure 7-10. Tracking results of knee pitch axis

Figure 7-11. Tracking results of ankle pitch axis

Figure 7-12. Tracking results of ankle roll axis

133

The torques on the axes can be seen as the disturbances to local PID controllers.

Thus the tracking errors in experiment 2 are larger than that in experiment 3. The same

result can be observed by calculating the mean absolute error in experiments 2 and 3, as

shown in Table 7-4.

Table 7-4. Mean absolute joint trajectory tracking error in experiments 2 and 3

 Experiment 2 (Ground) Experiment 3 (Hung on shaft)

Axis 01–Left Hip Yaw 0.073 degrees 0.030 degrees

Axis 02–Left Hip Roll 0.299 degrees 0.234 degrees

Axis 03–Left Hip Pitch 0.258 degrees 0.239 degrees

Axis 04–Left Knee Pitch 0.342 degrees 0.213 degrees

Axis 05–Left Ankle Pitch 0.244 degrees 0.214 degrees

Axis 06–Left Ankle Roll 0.254 degrees 0.232 degrees

Axis 07–Right Hip Yaw 0.043 degrees 0.044 degrees

Axis 08–Right Hip Roll 0.308 degrees 0.231 degrees

Axis 09–Right Hip Pitch 0.250 degrees 0.235 degrees

Axis 10–Right Knee Pitch 0.321 degrees 0.204 degrees

Axis 11–Right Ankle Pitch 0.274 degrees 0.201 degrees

Axis 12–Right Ankle Roll 0.420 degrees 0.355 degrees

In Table 7-4, only the hip yaw axis has larger mean absolute error in experiment 3.

It is because the yaw axes use smaller motors than other axes. The mechanism design of

the yaw axes also causes larger friction forces. Due to these two reasons, the PID

controller can only give voltage commands that can overcome the friction forces when

the error is large enough. The position errors of yaw axis are too small to be eliminated

by a PID controller in experiments 2 and 3. Except this, the mean absolute errors are

larger in experiment 2 because the loading is larger.

Generally, the tracking performances in the experiments can achieve stable robot

walking. PID control algorithm is capable of local joint trajectory tracking, but for even

better performance, more complex local joint controllers must be used in the future to

134

improve the tracking performance, such as impedance control, current control, and

torque control.

7.3.2 Tracking Performance of COG trajectory

The tracking performances of COG trajectories are compared using the sensor

feedback data in experiments 1 and 2. Using the encoder feedback joint trajectories, the

COG trajectory of the robot can be calculated and estimated. Figure 7-13 and Figure

7-14 show the COG trajectories in 3D directions in experiments 1 and 2.

Figure 7-13. COG trajectory in experiment 1 (LQSI with constant Cz)

Figure 7-14. COG trajectory in experiment 2 (LQSI with optimized Cz)

135

The COG tracking performances of the proposed real-time control system has been

tested many times. The trends of the errors are slightly different in each test, but they

are all bounded and the robot can complete the whole walking motion in these tests. The

main reason that the errors have different trend is the initial placement of the robot.

Each time the robot is released and placed on the ground from the shaft, the landing

status is slightly different. This makes the COG and ZMP trajectories shift slightly left

or right. Figure 7-15 shows the robot and the shaft.

Figure 7-15. The robot and the shaft

In Figure 7-13 and Figure 7-14, the COG trajectory tracking errors are the

combined effect of joint tracking errors. The tracking performance of joint controller

directly affects the tracking performance of COG trajectory. Because the tracking

performances of the LQSI controller with optimized or constant Cz trajectories are

similar, only the COG errors of experiment 2 are discussed in the following. By

discussing the tracking performance of COG trajectory, several future works that can

improve the performance are found.

136

Figure 7-16. Sagittal COG trajectory tracking in experiment 2

Figure 7-17. Lateral COG trajectory tracking in experiment 2

Figure 7-16 shows the sagittal COG trajectory tracking results in experiment 2.

The COG trajectory follows the desired COG trajectory with some oscillation. In each

137

single support phase, the desired COG trajectory is almost constant, and the feedback

COG trajectory oscillates slightly around the desired value. Since PID controller is used

as local controller to track the motor position, feed-forward compensation must be used

to eliminate the effect of time delay. The steady state error is caused from the friction of

the robot joints. This can be improved by designing an online COG feedback observer

to achieve closed loop COG feedback control.

In Figure 7-17, the same problems occur as in Figure 7-16, such as the steady state

error and tracking error. Excepting these problems, it is observed that a small COG shift

occurred when the robot entering double support phase and prepare to stop walking. The

robot place the right foot on the ground and the COG shifts left about 2.5mm. This is

because that when the right foot is landing, it also pushes the robot left. An undesired

disturbance occurs when switching to double support phase. To solve this, a landing

controller or mechanism dealing with the landing problem must be used in the future.

Figure 7-18. Vertical COG trajectory in experiment 2

In Figure 7-18, another point that can be improved for the COG tracking

performance is observed. In all experiments, the vertical COG trajectories calculated

from encoder feedback are all lower than the command reference. The reason is quickly

found: the gravity force. The gravity force pulls the robot lower. For PID controllers, it

is an unknown disturbance. Thus the gravity force causes a steady state error in vertical

direction. This problem can be fixed by using gravity compensation control. To achieve

138

this, the torque/current control must be implemented as joint controller and the sensor

used for measuring torque/current must be installed.

7.3.3 Tracking Performance of ZMP trajectory

The ZMP tracking performance is discussed in the following this section. The

feedback ZMP trajectory can be calculated using the six-axis force/torque sensor

installed in the ankle of the robot legs. Figure 7-19 to Figure 7-22 show the force and

torque data collected form the six-axis force/torque sensor in experiments 1 and 2. Since

the original data from the sensor are very noisy, the data shown in the figures are

filtered using Kalman filter.

In Figure 7-19 and Figure 7-20, left support phase, right support phase and double

support can be observed clearly. The loading in z direction of the sensor installed in

each leg becomes larger when the corresponding leg is the support leg. The forces in x

and y directions cause the COG shifting in horizontal directions; they are relatively

smaller than the force in z direction.

Figure 7-19. Force data (LQSI with constant Cz trajectory)

139

Figure 7-20. Force data (LQSI with optimized Cz trajectory)

Figure 7-21. Torque data (LQSI with constant Cz trajectory)

Figure 7-22. Torque data (LQSI with optimized Cz trajectory)

140

In the single support phases in Figure 7-21 and Figure 7-22, the value change of

torque trajectories on the stance ankle in x and y directions can be observed in the figure.

They are generated by the gravity force and the desired COG motion. In double support

phases, since the legs are both contacting with the ground, the torques are distributed on

both feet. The relationship between the torque trajectories cannot be observed by our

eyes directly. The combined results of all forces and torques will be discussed using the

ZMP trajectory in the following.

Figure 7-23. Lateral ZMP in experiment 1 (LQSI with constant Cz)

Figure 7-24. Sagittal ZMP in experiment 1 (LQSI with constant Cz)

141

Figure 7-25. Lateral ZMP in experiment 2 (LQSI with optimized Cz)

Figure 7-26. Sagittal ZMP in experiment 2 (LQSI with optimized Cz)

Figure 7-23 to Figure 7-26 show the sagittal and lateral ZMP trajectories using

LQSI controller with constant and optimized Cz trajectory. The input ZMP trajectories

in the experiments are moving under the robot foot. They are not always located in the

center of the robot foot. This will reduce the walking stability slightly but get smoother

walking patterns. Also, since the ZMP trajectories are always located in the support

polygon of the robot, the robot can still walk stably. In the figures, the feedback ZMP

trajectories can track the ZMP reference with some oscillations and small time delay.

The oscillations are caused by the noise of the six-axis force/torque sensor and the

142

impact when each time the swing foot touches the ground. Better data processing of the

sensor signals and a six-axis force/torque sensor with lower noise can be used to

improve the ZMP feedback signal. And force/impedance control can be used to reduce

the impact when the swing foot is landing in the future. With the ZMP tracking results,

the LQSI controller is capable to generate COG/ZMP walking patterns with both

constant and varying Cz trajectories. The stability of the walking pattern generated with

LQSI controller is verified.

7.3.4 Calculated Knee Joint Torque

The knee joint torque can be estimated by using the sensor feedback of six-axis

force/torque sensor and the equations of Newton-Euler dynamics. The knee torque

trajectories with constant and optimized Cz trajectory are compared in this section.

Using the Newton-Euler dynamics Eqns. (2-19)-(2-28) and the encoder trajectories, the

knee torque trajectories in experiments 1 and 2 are calculated as shown in Figure 7-27

and Figure 7-28.

Figure 7-27. Left knee torque in experiments 1 and 2

143

Figure 7-28. Right knee torque in experiments 1 and 2

The figures show the torque trajectories for two steps during the robot walking

period. The total time is 12 seconds. Left leg is the stance lag in the beginning and the

right leg becomes the stance leg since the 6th second. Because the walking pattern with

optimized Cz trajectory has smaller knee joint rotation. Thus the knee joint is straighter

and the joint torque is also smaller. The comparison of torque trajectories in experiments

1 and 2 are shown in Table 7-5.

Table 7-5. Comparison of torque performance

 Experiment 1
(Constant Cz)

Experiment 2
(Optimized Cz)

Improvement

Average Cz per step 497.56mm 507.34mm

Mean absolute torque

(whole period)
17.535N-m 14.901N-m 15.02%

Mean absolute torque

(swing phase)
7.110N-m 5.623N-m 20.91%

Mean absolute torque

(support phase)
27.960N-m 24.180N-m 13.52%

In Table 7-5, the mean absolute torque of the knee joints of both legs are calculated

and compared. In the table, the values are the summations of absolute torque value of

both knee joints in the whole period, swing phase, and support phase. For example, the

144

mean absolute torque for support phase is the mean absolute torque of all the torque

values of both left and right leg in their own support phase. The walking pattern with

optimized Cz trajectory has better performance because of the straighter knee joint

motion. With the experiment results, the improvement by using the optimized Cz

trajectory is verified.

7.4 Summary

In this chapter, the specification, control architecture, and the experiment results

are presented and discussed. The two robots shown in this chapter are used as control

plant in the simulations and experiments in the whole dissertation. The real-time control

architecture can update control commands and read sensors in every 5 millisecond.

Using the proposed humanoid robot and the real-time control system, the performances

of the LQSI controller and the optimized Cz trajectory are verified by analyzing the

results of the experiments in this chapter.

145

Chapter 8 Conclusions and Future Works

The whole robot control and planning system are described and discussed in

previous chapters. This chapter summarizes the whole dissertation in section 8.1. The

main ideas and structures of all methods proposed in this dissertation are shown in this

section. Section 8.3 shows the future works. This dissertation mainly discusses the

kinematics, dynamics, and control of humanoids. Many other interesting topics such as

artificial intelligence, machine vision, human-robot interaction, and the control of more

difficult motion such as jumping and running can be implemented based on the concepts

and theories proposed and discussed in this dissertation. Finally, section 8.2 is the

conclusion of this dissertation. This dissertation ends here. It is exciting and delightful if

the concepts and theories in this dissertation can help more researchers to implement or

to compare their control systems.

8.1 Summary

In this dissertation, the walking pattern generation and its optimization are most

focused. After the introduction in chapter 1, chapter 2 shows the basic knowledge used

in the whole robot kinematics and dynamics control system. The following three

chapters are all based on chapter 2. In chapter 3, the concept of the Fixed-Leg-Motion

Jacobian is proposed and the global Jacobian matrix used to control the whole robot is

designed. In chapter 4, the LQSI controller is proposed to generate optimized COG

trajectories in sagittal and lateral directions. In addition to chapter 4, chapter 5 shows a

method based on Newton-Euler method to optimize the COG height trajectory. Using

the techniques and theories in chapters 4 and 5, 3D COG trajectory optimization is

146

achieved. The next two chapters are the implementation parts of the dissertation.

Chapter 6 describes the networking system can be used among different robot, personal

computers, and workstations. The networking system is also used in local networks for

robot control such as robot arms, hands, and legs. Chapter 7 describes the two robots

used as simulation and implementation platforms in the dissertation, and also shows the

detailed implementation of the proposed real-time planning and control system. The

main theories and topics in this dissertation are listed below.

Fixed-Leg-Motion Jacobian and Global Jacobian

Fixed-Leg-Motion Jacobian matrix describes the relationship between each joint of

the stance leg and each component of the kinematics and dynamics of the end-effectors.

In chapter 3, the Fixed-Leg-Motion Jacobian is firstly proposed for the relationship

between joint and end-effector position and orientation. After deriving this, the COG

Jacobian and momentum Jacobian are also derived. The Fixed-Leg-Motion Jacobian is

also applied to these Jacobian methods.

The concept of Fixed-Leg-Motion Jacobian is extended form the level of

kinematics to dynamics. Compared with other methods to find the Jacobian describing

the linearized relationship between the stance leg and other end-effectors,

Fixed-Leg-Motion Jacobian is easy and fast since it uses the physical meaning of the

equations to find the partial derivatives. After constructing all Jacobian matrices of the

head, arms, legs, COG, and momentum, the global Jacobian matrix can be built to solve

IK for the whole robot. With the global Jacobian matrix, whole body motion control can

be achieved. The positions of the end-effector of the arms, head, swing leg, and COG,

the orientation of the end-effector of the arms, head, and both legs, and finally the

angular momentum in z direction of the proposed robots are controlled in this

dissertation.

147

LQSI Controller

The LQSI controller is a linear quadratic control based controller with state

incremental performance index. Since the humanoid robot is modeled as an inverted

pendulum model, the robot model can be written in state-space form. The state matrices

are constant matrices if the COG height is constrained to a constant value. Based on the

view of potential energy, to constrain the COG height seems energy-saving. However,

robot must cost energy to maintain its posture. The power consumption of the robot

directly related to the joint torque and the current pass the motors. On the other hand,

when using a walking pattern with constant COG height, the robot must bend the knee

of stance leg while the swing leg rises.

Humans will not do this when normal walking because the knee sustain larger

torque in order to keep the same COG height. Thus the changeable COG height

trajectory is needed for more energy-saving and more human-like walking patterns.

When the input COG height trajectory is not a constant, the state matrices of the

inverted pendulum also become time varying. The inverted pendulum model also

becomes a nonlinear time varying model. Optimal control can deal with nonlinear

tracking problems well. By using ZOH method, the proposed LQSI controller can

generate walking patterns with changeable COG height trajectory, as shown in chapter 4.

At this stage, walking pattern generation with arbitrary assigned COG height trajectory

is achieved. COG trajectories in sagittal and lateral directions are optimized using the

LQSI controller. COG height trajectory is optimized with the method proposed in

chapter 5.

3D COG Trajectory Optimization

For smooth walking, the arbitrarily assigned trajectories to the LQSI controller

must be smooth and continuous, so the optimized trajectory should be also smooth and

148

continuous. In fact, smooth and continuous COG height trajectories can be generated

according to the status of the ground directly. Robot can raise their COG when stepping

onto stair or walk over a small obstacle. To decide COG height trajectory directly has

several advantages: fast, easy, and modifications can be done with tuning some simple

parameters. On the other hand, optimization of COG height trajectory is required when

humanoid robots need to repeat the same trajectory many times. For example, walking,

it is the most repeated function for humanoid robots. As humanoid robots become more

common in the future, optimization of walking or other motions are required in order to

reduce the power consumption for longer operation of the batteries like the notebooks

nowadays. The optimization of COG height trajectory in this dissertation is to minimize

a cost function including the square of torque and the cost function of joint limit. The

differentiation of the cost function with respect to the COG height is the index to update

the COG height trajectory but it cannot be found directly. To find the differentiation, the

derivative of the joint angles with respect to the COG height is calculated first. This is

done by using the physical meaning of the pseudoinverse of the global Jacobian matrix

of the robot. The second step is to calculate the derivative of the joint torques and the

cost of joint limit with respect to the joint angles, by using the equations of

Newton-Euler dynamics. Using the results of these two steps, the derivative of the cost

function can be found, and the optimization can be processed by updating the COG

height trajectory until it converges. Using a personal computer with Intel CoreTM i5

CPU, the procedure of the COG height training costs about two minutes until the COG

height trajectory converges. The trained COG height trajectory can be input to the

proposed planning and control system to achieve walking pattern generation and control

with optimized 3D COG trajectory.

Networking and Implementation

149

The networking and implementation of the proposed humanoid robot are described

in chapters 6 and 7. The networking system of the robot is based on a priority oriented

networking algorithm, RTNET, to achieve real-time control and communication.

RTNET checks the priority of each communication and data to decide whether the

interrupts when transmitting data should be triggered or not in order to let the data with

higher priority can be transmitted earlier. RTNET can be used to achieve

communication among personal computers, workstations, and robots through Ethernet

and it can also be used to control local nodes and read local sensors through CAN-Bus.

Detailed descriptions of RTNET are shown in chapter 6 and detailed descriptions

of implementation using PIC C32 and PIC C30 are discussed in chapter 7. Chapter 7

also shows the specifications of robot platforms and how the state machines of each

controller works in the proposed robot system. The state machines always wait for

commands from higher level controllers and execute their assigned missions

periodically. In the proposed control system, FIFOs are used as control buffer to

improve the time accuracy of motion control and sensor reading. Using the algorithm

and methods shown in these two chapters, real-time control and communication for

robots can be achieved.

8.2 Conclusions

In this dissertation, several algorithms and methods for walking pattern generator

are proposed. A global Jacobian matrix is proposed for solving IK with whole body

motion constraints. The concept of Fixed-Leg-Motion Jacobian is proposed for

simplifying the construction of the global Jacobian matrix; no complex computation and

coordinate transformation is required with the Fixed-Leg-Motion Jacobian method.

Based on the proposed IK solver, the proposed LQSI controller serves as the COG/ZMP

walking pattern generator of the humanoid robots to generate COG patterns satisfying

150

the COG/ZMP equations. In addition, since the proposed LQSI controller can generate

horizontal COG patterns in real-time with arbitrarily assigned COG height and 3D ZMP

trajectories, real-time walking pattern generation can be achieved. Based on the LQSI

controller and the whole robot motion solver, the proposed pattern generator can

generate walking patterns with varying COG height and ground status. This enables the

optimization of the COG patterns including vertical direction. Using the idea of cost

function and Newton-Euler dynamics, a COG height optimization method is proposed

in this dissertation.

Besides of the walking pattern generation algorithm proposed in this dissertation, a

real-time control system is also built. By designing and implementing the architecture of

local control networks and state machines, real-time robot walking pattern generation

and control can be achieved. Simulation and experiment parts in this dissertation also

show the performance of the proposed methods. By using the algorithms and methods

in this dissertation as motion generation and control engines, many further researches

can be carried out. The future works parts shows the researches can be developed

directly using the results in this dissertation. There are still many interesting and

exciting researches waiting to be developed. It is gratifying if the algorithms and

methods in this dissertation can contribute to the development of robot technology, and

we hope the robot technology can become better by continuing our works in the future.

8.3 Future Works

America and Japan are the two main pioneer countries of robotics research. Many

new and novel robot technologies are from these two countries. By comparing these

researches as benchmarks, the quality of our research and the parts must be improved

can also be found. Another advantage to compare these researches is that we can find

and use mature and well-known technologies to save time of research and discover new

151

techniques and topics based on these technologies, as Newton said: “If I have seen a

little further it is by standing on the shoulders of Giants.” Based on the comparison of

existing researches and our current research results and the view of future applications,

there are several future works to extend and improve the proposed algorithm and

methods, including momentum planning and control, jumping and running control using

LQSI controller, optimized COG height trajectory database, sensor fusion and stability

control, force/impedance control and joint control, and autonomous navigation.

Momentum Planning and Control

In this dissertation, the only constraint of angular momentum in z direction is

applied in the IK solver to reduce the slipping of robot in z direction. If the trajectory of

angular momentum in z direction can be planned well, the robot can turn smoother and

more natural. However, to further improve the motion behaviors in other directions of

translation and rotation, a good planning mechanism is required or the motion behaviors

solved by the IK solver will become even worse than the IK solver without momentum

constraints. Thus a good planner for linear and angular momentum trajectories must be

built before more momentum constraints are added and applied to the IK solver.

Jumping and Running Control Using LQSI Controller

Since the proposed LQSI controller can solve COG patterns with ground and COG

height change, the control architecture can be used for jumping and running control. To

achieve this, modifications of the proposed LQSI controller are required. The first idea

for modification is to change the method of discretization. In the proposed LQSI

controller, ZOH discretization is used to discretize the continuous nonlinear state-space

model of the inverted pendulum model. It is quite enough for robot walking because the

COG height does not varying very severely. As shown in chapter 4, the proposed LQSI

controller failed when the maximum acceleration is 8337mm/s2 (the gravity acceleration

152

is 9810mm/s2); it is expected better to use a triangular hold to discretize the state-space

model because it can fit the original curve better, as shown in Figure 8-1.

Figure 8-1. Zero order hold and triangular hold for COG height

In Figure 8-1, the drawback of using ZOH method is exaggerated by choosing a

large sampling time. Although the performance of ZOH method can be improved by

choosing a small sampling time, triangular hold method can always fit the original

curve better.

The LQSI controller can generate walking patterns except flying phase when

running and jumping. In the flying phase, since the robot cannot use any reaction force

from ground to change the state of COG, the only thing the robot can do is to prepare

landing. The LQSI controller does not work in this phase. New control algorithms must

be used in flying phase in the future to achieve running and jumping control. When the

robot is preparing to take off, the vertical acceleration will approach the magnitude of

gravity acceleration and then exceed it. The robot will take off when the COG speed is

larger than the speed of feet stretching in vertical direction. If the feet of the robot reach

the joint limit before the COG is accelerated fast enough, the robot cannot jump and run

well. On the other hand, if the robot takes off too early (if the motors of the robot can

153

accelerate the COG in a short time); the robot also cannot jump well. To find a balance

between the COG speed and the feet stretching speed, a good planner of COG and feet

speeds for running and jumping must be designed and proposed in the future.

Optimized COG Height Trajectory Database

Since the proposed COG height trajectory optimization method can optimize the

COG height trajectory with given 3D ZMP trajectory. Natural walking with optimized

joint torques can be achieved. Due to large computational cost, real-time COG height

optimization cannot be achieved. Each execution of optimization costs around two

minutes on a personal computer with Intel CoreTM i5 CPU.

An idea to achieve real-time optimized 3D COG trajectory walking is to construct

an optimized COG database. By training the optimized 3D COG trajectory under

different 3D ZMP inputs, a database can be collected. This is like the technique of

human motion capture, but can be used on different robots because it is a model based

method. Different models of different robots can be input to the optimization engine,

thus the proposed algorithm can be used on a legged robot which is not human-like.

When using a database, searching and interpolation algorithms become important. How

to search and interpolate the trajectories in the optimized 3D COG trajectory database

will be the key to achieve real-time 3D optimized COG trajectory and walking pattern

generation in the future.

Sensor Fusion and Stability Control

For walking control, the most used sensors used to improve walking stability are

force sensors and IMUs (inertial measurement unit). Force sensors are used to measure

the ground reaction forces and the ZMP position for feedback control. IMUs are used to

measure the rotation and acceleration of the robot. Many researchers [16][53][54]

proposed their methods to stabilize their robot using these two sensors. Different form

the view of stabilizing the robot, the localization and obstacle avoidance are also

154

important for robots. Laser range finders and cameras are used to achieve localization

and obstacle avoidance of humanoid robots [72][80][96]. Although humanoid robots

can walk stably with offline generated walking patterns and known environments, they

are still far from walking stably in unknown environments. A humanoid robot must

know the information and status of the environment around it and a powerful artificial

intelligence is required for walking fully autonomously. To know the information of the

environment, many sensors are required. Humans use their eyes and feet to see and to

feel the shape and condition of the environment. Similar sensors such as cameras and

force sensors can be used to achieve the same thing. On the other hand, the cooperation

of eyes and semicircular canals in the ears can further stabilize human walking. For a

humanoid robot, this can be achieved by the cooperation of cameras and IMUs. There

are many other types of sensors can be used on humanoid robots, such as low-cost

infrared sensors (photoelectric distance sensors), ultrasonic sensors, or Microsoft Kinet.

Most researches nowadays use just one kind of sensor to stabilize the robot; the

improvements of robot walking are also limited by the sensors. Multi-sensor fusion

algorithms and techniques can be discussed in the future in order to further improve the

robustness of robot walking for different environments.

Force/Impedance Control and Joint Control

In the experiment parts in chapter 7, several future works are found by observing

the experiment results in order to improve the tracking performance and the walking

stability of the robot.

The first point must be improved is the joint tracking error and the COG tracking

error. Since the local joint controllers are PID controllers, when the joint angle

command is sent to each joint controller, the joint will move when the error is large

enough to generate a large enough voltage input for overcoming the joint friction. This

causes a time delay when controlling the robot. Tuning the P gain of the controller

155

larger can reduce the time delay and have better tracking performance, but the

oscillation of the robot also become larger. In order to solve this problem, feed-forward

control and control algorithms considering the friction in the model can be used. The

joint tracking performance directly affects the COG tracking performance. COG

tracking performance can also be improved by improving the joint tracking

performance.

The second point must be improved is the ZMP feedback and tracking performance.

Since the force and torque feedback signals are very noisy, the captured data must be

filtered before being used. To use the data for feedback control, a better data processing

and filtering algorithm or a sensor with higher signal/noise ratio can be used to solve

this problem. The landing impact problem of swing foot is also observed. It affects the

stability of walking more when the robot is walking faster. This problem can also be

improved by improving the joint tracking performance. We can further improve this

problem by applying force/impedance control when the swing foot is landing.

In some recent researches, the topics of COG/ZMP feedback control [8][88] and

force/impedance control [113][129] are discussed for many purposes. We can also

improve the performance of the proposed walking control system based on existing

methods. By improving the joint tracking performance and applying force/impedance

control methods, the robot can have better walking stability. Better stability and more

robustness for long-term operation of humanoid robot can be achieved in the future.

Autonomous Navigation

Autonomous navigation algorithms are very mature and complete. In the last two

decades, SLAM (simultaneous localization and mapping) and motion planning

[19][20][43] are widely discussed on mobile robot platforms. It is rarely discussed on

humanoid robot since the development time is faster and maintenance cost is lower for

mobile robots. It is much faster and easier for developing core algorithms and

156

techniques on a mobile robot. On the other side, researches of humanoid robots focus on

the mobility in these years. The mobility of humanoid robots becomes more capable and

even better than mobile robot in some environments. In addition, the weight and price

of laser range finders become lighter and cheaper. Because of these reasons,

autonomous navigation becomes more important and more possible for humanoid

robots if the robots need to go farther. The only gap of autonomous navigation

algorithms must be overcome from mobile robots to humanoid robots is the difference

of their motion patterns. The position and orientation of the cameras or laser sensors

installed on the humanoid robot will wave when the robot is walking or even running.

This is different form the motion of mobile robots. To achieve autonomous navigation

of humanoid robots, SLAM or visual SLAM and motion planning algorithms can be

used and implemented in the future.

157

REFERENCES

[1] A. Albers, S. Brudniok, J. Ottnad, C. Sauter, K. Sedchaicham, “Upper Body of a
New Humanoid Robot - The Design of ARMAR III,” IEEE/RAS Int. Conf. on
Humanoid Robots, Genova, Italy, pp. 308-313, 2006.

[2] M. Arbulu and C. Balaguer, Real-Time Gait Planning for Rh-1 Humanoid Robot,
Using Local Axis Gait Algorithm, IEEE/RAS Int. Conf. on Humanoid Robots, PA,
USA, pp. 563-568, 2007.

[3] M. Arbulu, C. Balaguer, C. Monge, S. Martinez, and A. Jardon, “Aiming for
Multibody Dynamics on Stable Humanoid Motion with Special Euclideans
Groups,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan,
pp. 691-697, 2010.

[4] M. D. Ardema, “Kinetics of the Mass Center of a Rigid Body,” in Newton-Euler
Dynamics, 1st ed., NY, USA, Springer Science+Bisness LLC, 2005, ch. 6, pp.
135-164.

[5] Y. Ayaz, T. Owa, T. Tsujita, A. Konno, K. Munawar and M. Uchiyama, “Footstep
Planning for Humanoid Robots Among Obstacles of Various Types,” IEEE/RAS
Int. Conf. on Humanoid Robots, Paris, France, pp. 361-366, 2009.

[6] A. Austermann, S. Yamada, K. Funakoshi, and M. Nakano, “How Do Users
Interact with a Pet-Robot and a Humanoid?” CHI 2010: ACM Conf. on Human
Factors in Computing Systems, Atlanta, GA, USA, pp. 3727-3732, 2010.

[7] L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and E. Yoshida,
“Real-time Replanning Using 3D Environment for Humanoid Robot,” IEEE/RAS
Int. Conf. on Humanoid Robots, Bled, Slovenia, pp. 584-589, 2011.

[8] R. Beranek, H. Fung, and M. Ahmadi, “A Walking Stability Controller with
Disturbance Rejection Based on CMP Criterion and Ground Reaction Force
Feedback,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, CA, USA, pp.
2261-2266, 2011.

[9] S. R. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares methods,” Typeset manuscript,
available from http://math.ucsd.edu/~sbuss/ResearchWeb , pp. 1-19, 2009.

[10] S. R. Buss, and J. S. Kim, “Selectively Damped Least Squares for Inverse
Kinematics,” Journal of Graphics Tools, Vol. 10, No. 3, pp. 37-49, 2004.

[11] J. Butzke and M. Likhachev, “Planning for Multi-robot Exploration with
Multiple Objective Utility Functions,” IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, San Francisco, USA, pp. 3254-3259, 2011.

158

[12] S. L. Cardenas-Maciel, O. Castillo, L. T. Aguilar, “Generation of Walking
Periodic Motions for a Biped Robot via Genetic Algorithms,” Applied Soft
Computing, Vol. 11, Issue 8, pp. 5306–5314, 2011.

[13] R. Chalodhorn, K. F. MacDorman and M. Asada, “Humanoid Robot Motion
Recognition and Reproduction,” Advanced Robotics, Vol. 23, No. 3, pp. 349-366,
2009.

[14] T. F. Chan, and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme
for Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Trans. On
Robotics and Automation, Vol. 11, No. 2, pp. 286-292, 1995.

[15] S. L. Chang, J. J. Lee, and H. C. Yen, “Kinematic and Compliance Analysis for
Tendon-Driven Robotic Mechanisms with Flexible Tendons,” Mechanism and
Machine Theory, Vol. 40-6, pp. 728-739, 2005.

[16] B. K. Cho, J. H. Kim, and J. H. Oh, “Online balance controllers for a hopping
and running humanoid robot,” Advanced Robotics, Vol. 25, No. 9-10, pp.
1209-1225, 2011.

[17] Y. Choi, D. Kim and B. J. You, “On the Walking Control for Humanoid Robot
based on the Kinematic Resolution of CoM Jacobian with Embedded Motion,”
IEEE Int. Conf. on Robotics and Automation, Orlando, Florida, pp. 2655-2660,
2006.

[18] Y. Choi, B. J. You and S. R. Oh, “On the Stability of Indirect ZMP Controller for
Biped Robot Systems,” IEEE/RSJ Int. Conf. on intelligent Robots and Systems,
Sendai, Japan, pp. 1966-1971, 2004.

[19] S. Y. Chung and H. P. Huang, “Predictive Navigation by Understanding Human
Motion Patterns,” Int. Journal of Advanced Robotic Systems, Vol.8, No. 1, pp.
52-64, 2011.

[20] S. Y. Chung and H. P. Huang, “SLAMMOT-SP: Simultaneous SLAMMOT and
Scene Prediction,” Advanced Robotics, Vol. 24, No. 7, pp. 979-1002, 2010.

[21] John, J. Craig, “Manipulator dynamics,” in Introduction to Robotics Mechanics
and Control, 3rd ed. NJ, USA, Pearson Education, Inc., 2005, ch. 6, pp. 165-192.

[22] C. Connolly, “Motoman Markets Co-operative and Humanoid Industrial Robots,”
Industrial Robot: An Int. Journal, Vol. 36, Issue 5, pp.417-420, 2009.

[23] S. Coros, P. Beaudoin, and M. van de Panne, “Generalized Biped Walking
Control,” proceeding of ACM SIGGRAPH 2010 conf., pp. 1-9, 2010.

[24] A. Cuenca, J. Salt, A. Sala, and R. Piza, “A Delay-Dependent Dual-Rate PID
Controller Over an Ethernet Network,” IEEE Trans. on Industrial Infomatics, Vol.
7, No. 1, pp. 18-29, 2011.

159

[25] S. Czarnetzki, S. Kerner, O. Urbann, “Observer-based Dynamic Walking Control
for Biped Robots,” Robotics and Autonomous Systems, Vol. 57, Issue 8, pp.
839-845, 2009.

[26] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fujimaru, and C.
Goerick, “Online Transfer of Human Motion to Humanoids,” Int. Journal of
Humanoid Robotics, Vol. 6, No. 2, pp. 265-289, 2009.

[27] B. Dasgupta and T. S. Mruthyunjaya, “A Newton-Euler Formulation for the
Inverse Dynamics of the Stewart Platform Manipulator,” Mechanism and
Machine Theory, Vol. 33, No. 8, pp. 1135-1152, 1998.

[28] T. Doi, R. Hodoshima, S. Hirose, Y. Fukuda, T. Okamoto, and J. Mori,
“Development of a Quadruped Walking Robot to Work on Steep Slopes, TITAN
XI (Walking Motion with Compensation for Compliance),” IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Aichi, Japan, pp. 3413-3418, 2005.

[29] A. G. Erdman, G. N. Sandor, and S. Kota, “Displacement and Velocity Analysis,”
in Mechanism Design Analysis and Synthesis Volumn I, 4th ed., NJ, USA,
Pearson Education, Inc., 2001, ch.3, pp. 119-187.

[30] R. Featherstone and D. Orin, “Robot Dynamics: Equations and Algorithms,”
IEEE Int. Conf. Robotics Automation, CA, USA, pp. 826-834, 2000.

[31] J. P. Ferreira, M. Crisostomo, A. P. Coimbra, “ZMP Trajectory Reference for the
Sagittal Plane Control of a Biped Robot Based on a Human CoP and Gait,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, USA, pp.
1588-1593, 2009.

[32] E. Furutani, T. Hagiwara and M. Araki, “Two-degree-of-freedom Design Method
of State-predictive LQI Servo Systems,” IEE Proc. Control Theory &
Application, Vol. 149, No. 5, pp.365-378, 2002.

[33] S. A. Gard, S. C. Miff, and A. D. Kuo, “Comparison of Kinematic and Kinetic
Methods for Computing the Vertical Motion of the Body Center of Mass During
Walking,” Human Movement Science, Vol. 22, No. 6, pp. 597-610, 2004.

[34] M. Griffis and J. Duffy, “A Forward Displacement Analysis of a Class of Stewart
Platforms,” Journal of Robotic Systems, Vol. 6, Issue 6, pp. 703-720, 1989.

[35] J. S. Gutmann, E. Eade, P. Fong, and M. E. Munic, “Vector Field
SLAM---Localization by Learning the Spatial Variation of Continuous Signals,”
IEEE Trans. on Robotics, Vol. PP, Issue 99, pp. 1-18, 2012.

[36] K. Harada, H. Hirukawa, F. Kanehiro,K. Fujiwara, K. Kaneko, S. Kajita, and M.
Nakamura, “Dynamical Balance of a Humanoid Robot Grasping an
Environment,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai,
Japan, pp. 1167-1173, 2004.

160

[37] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi and H.
Hirukawa, “Real-time Planning of Humanoid Robot’s Gait for Force Controlled
Manipulation,” IEEE Int. Conf. on Robotics & Automation New Orleans, USA,
pp. 616-622, 2004.

[38] K. Harada, S. Kajita, K. Kaneko and H. Hirukawa, “An Analytical Method on
Real-time Gait Planning for a Humanoid Robot,” IEEE-RAS/RSJ Int. Conf. on
Humanoid Robots (Humanoids 2004), Los Angeles, USA, pp. 640-655, 2004.

[39] K. Harada, M. Morisawa, K. Miura, S. Nakaoka, K. Fujiwara, K. Kaneko, and S.
Kajita, “Kinodynamic Gait Planning for Full-Body Humanoid Robots,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France, pp.
1544-1550, 2008.

[40] K. Hashimoto, Y. Takezaki, K. Hattori, H. Kondo, T. Takashima, H. O. Lim, and
A. Takanish, “A Study of Function of Foot’s Medial Longitudinal Arch Using
Biped Humanoid Robot,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Taipei, Taiwan, pp. 2206-2211, 2010.

[41] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda
Humanoid Robot,” IEEE Trans. on Robotics and Automation, Leuven, Belgium,
pp. 1321-1326, 1998.

[42] R. Hodoshima, Y. Fukumura, H. Amano and S. Hirose, “Development of
Track-changeable Quadruped Walking Robot TITAN X: Design of Leg Driving
Mechanism and Basic Experiment,” IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Taipei, Taiwan, pp. 3340-3345, 2010.

[43] Y. F. Huang and K. Gupta, “RRT-SLAM for Motion Planning with Motion and
Map Uncertainty for Robot Exploration,” IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Nice, France, pp. 1077-1082, 2008

[44] K. H. Hyun, E. H. Kim and Y. K. Kwak, “Emotional Feature Extraction Method
Based on the Concentration of Phoneme Influence for Human–Robot Interaction,”
Advanced Robotics, Vol. 24, No. 1-2, pp. 47-67, 2010.

[45] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, M. Inaba and H. Inoue, “A
Fast Dynamically Equilibrated Walking Trajectory Generation Method of
Humanoid Robot,” Autonomous Robots, Vol. 12, Issue 1, 71–82, 2002.

[46] S. Kagami, J. Kuffner, K. Nishiwaki, K. Okada, M. Inaba, and H. Inoue,
“Humanoid Arm Motion Planning using Stereo Vision and RRT Search,” IEEE
Int. Conf. on Intelligent Robots and Systems, pp. 2167-2172, 2003.

[47] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H.
Hirukawa, “Biped Walking Pattern Generation by using Preview Control of

161

Zero-Moment Point,” Proc. of the 2003 IEEE Int. Conf. on Robotics &
Automation, Taipei, Taiwan, pp. 1620-1626, 2003.

[48] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara and H.
Hirukawa, “Biped Walking Pattern Generator Allowing Auxiliary ZMP Control,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, pp.
2993-2999, 2006.

[49] T. Katayama, T. Ohki, T. Inoue and T. Kato, “Design of an Optimal Controller
for a Discrete-time System Subject to Previewable Demand,” Int. Journal of
Control, Vol. 41, No. 3, pp. 677-699, 1985.

[50] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H.
Hirukawa, “Resolved Momentum Control: Humanoid Motion Planning based on
the Linear and Angular Momentum,” IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, Las Vegas, Nevada, pp. 1644-1650, 2003.

[51] D. W. Kim, N. H. Kim, and G. T. Park, “ZMP Based Neural Network Inspired
Humanoid Robot Control,” Nonlinear Dynmics, Vol. 67, No. 1, pp. 793–806,
2012.

[52] J. Y. Kim and Y. S. Kim, “Walking Pattern Mapping from Imperfect Motion
Capture Data onto Biped Humanoid Robots,” Int. Journal of Humanoid Robotics,
Vol. 7, Issue 1, pp. 127–156, 2010.

[53] M. S. Kim and J. H. Oh, “Posture Control of a Humanoid Robot with a
Compliant Ankle Joint,” Int. Journal of Humanoid Robotics, Vol. 7, No. 1, pp.
5-29, 2010.

[54] K. Matsumoto and A. Kawamura, “The Direction Control of a Biped Robot
Using Gyro Sensor Feedback,” IEEE Int. Workshop on Advanced Motion Control,
Nagaoka, Japan, pp. 137-142, 2010.

[55] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara and H.
Hirukawa, “Biped Walking Pattern Generator Allowing Auxiliary ZMP Control,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, pp.
2993-2999, 2006.

[56] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori and K. Akachi, “Humanoid
Robot HRP-3,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Acropolis Convention Center, Nice, France, pp. 2471-2478, 2008.

[57] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K.
Akachi and T. Isozumi, “Humanoid Robot HRP-2,” IEEE Int. Conf. on Robotics
& Automation, New Orieans, LA, pp. 1083-1090, 2004.

162

[58] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokohama, K. Akachi, T. Kawasaki, S. Ota,
and T. Isozumi,“Design of prototype humanoid robotics platform for HRP,”
IEEE/RSJ Int. Conf. on Intelligent Robots and System, 2002, pp. 2431-2436.

[59] K. Kaneko, K. Miura, F. Kanehiro, M. Morisawa, S. Nakaoka, and S. Kajita,
“Cybernetic Human HRP-4C,” IEEE/RAS Int. Conf. on Humanoid Robots, Paris,
France, pp. 7-14, 2009.

[60] D. W. Kim, N. H. Kim and G. T. Park, “ZMP Based Neural Network Inspired
Humanoid Robot Control,” Nonlinear Dynamics, Vol. 67, Issue 1, pp. 1-14,
2011.

[61] D. Kim, S. J. Seo and G. T. Park, “Zero-moment Point Trajectory Modeling of a
Biped Walking Robot using an Adaptive Neuro-fuzzy System,” IEE Proc.
Control Theory Appl., Vol. 152, No. 4, pp. 441-426, 2005.

[62] H. Kimura, Y. Fukuoka, Y. Hada and K. Takase, “Three-dimensional Adaptive
Dynamic Walking of a Quadruped-rolling Motion Feedback to CPGs Controlling
Pitching Motion -,” IEEE Int. Conf. on Robotics Automation, Washington, DC,
pp. 2228-2233, 2002.

[63] C. A. Klein, C. J. Caroline, and S. Ahmed, “A New Formulation of the Extended
Jacobian Method and its Use in Mapping Algorithmic Singularities for
Kinematically Redundant Manipulators,” IEEE Trans. on Robotics and
Automation, Vol. 11, No. 1, pp. 50-55, 1995.

[64] L. Krammer, W. Granzer, W. Kastner, “A New Approach for Robot Motion
Planning using Rapidly-exploring Randomized Trees,” IEEE Int. Conf. on
Industrial Informatics, Caparica, Lisbon, pp. 263-268, 2011.

[65] P. Kulkarni, D. Goswami, P. Guha, and A. Dutta, “Path Planning for a Statically
Stable Biped Robot Using PRM and Reinforcement Learning,” Journal of
Intelligent & Robotic Systems, Vol. 47, Issue 3, pp. 197-214, 2006.

[66] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, “Online Footstep
Planning for Humanoid Robots,” IEEE Int. Conf. on Robotics and Automation,
Taipei, Taiwan, pp. 932-937, 2003.

[67] A. D. Kuo, “The Six Determinants of Gait and the Inverted Pendulum Analogy:
A Dynamic Walking Perspective,” Human Movement Science, Vol. 26, Issue 4,
pp. 617-656, 2007.

[68] Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, and J. Yamaguchi, “A Small Biped
Entertainment Robot Exploring Attractive Applications,” IEEE Int. Conf. on
Robotics & Automation, pp. 471-476, 2003.

[69] O. Kurt and K. Erbatur, “Biped Robot Reference Generation with Natural ZMP
Trajectories,” Int. Workshop on Advanced Motion Control, pp. 403-410, 2006.

163

[70] V. Lebastard, Y. Aoustin, F. Plestan, and L. Fridman, “An Alternative to the
Measurement of Five-links Biped Robot Absolute Orientation: Estimation Based
on High Order Sliding Mode,” Modern Sliding Mode Control Theory: New
Perspectives and Applications, Vol. 375, pp. 363-380, 2008.

[71] B. J. Lee, D. Stonier, Y. D. Kim, J. K. Yoo, and J. H. Kim, “Modifiable Walking
Pattern of a Humanoid Robot by Using Allowable ZMP Variation,” IEEE Trans.
on Robotics, Vol. 24, No. 4, pp. 917-925, 2008.

[72] J. H. Lee, K. Abe, T. Tsubouchi, R. Ichinose, Y. Hosoda, and K. Ohba,
“Collision-Free Navigation Based on People Tracking Algorithm with Biped
Walking Model,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice,
France, pp. 2983-2989, 2008.

[73] H. Y. Lee and C. G. Liang, “Displacement Analysis of the General Spatial 7-Link
7R Mechanism,” Mechanism and Machine Theory, Vol. 23, No. 3, pp. 219-226,
1988.

[74] F. L. Lewis and V. L. Syrmos, “Optimal Control of Discrete-time Systems,” and
“The Tracking Problem and Other LQR Extensions,” in Optimal Control, 2nd ed.
NJ, USA, John Wiley & Sons, Inc., ch.2, pp. 27-55 and 229-235, 1995.

[75] Y. Li, C. Li, P. Chen, “Research and Design of Control System for a Tracked
SAR Robot Under Coal Mine,” IEEE Int. Conf. on Automation and Logistics, pp.
1957-1961, 2009.

[76] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior
of Multibody Mechanisms,” IEEE Trans. systems, Man, and Cybernetics, Vol. 7,
No. 12, 1977.

[77] C. L. Lai, P.L. Hsu, and B. C. Wang, “Design of the Adaptive Smith Predictor for
the Time-varying Network Control System,” SICE Annual Conf. pp. 2933-2938,
2008.

[78] X. Liu, X. Gong, and Y. Liu, “Research on Salinity Detecting Based on
Embedded CAN-Ethernet Gateway,” Int. Conf. on Measuring Technology and
Mechatronics Automation, pp. 257-260, 2009.

[79] Q. Liu, X. Tang, and J. Zhou, “Delay and Stability Analysis of Networked Robot
System,” IEEE Int. Conf. on Control and Automation, pp. 2903-2906, 2007.

[80] O. Lorch, A. Albert, J. Denk, M. Gerecke, R. Cupec, J. F. Seara, W. Gerth, and G.
Schmidt, “Experiments in Vision-guided Biped Walking,” IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 2484-2490, 2002.

[81] R. Marin, G. Leon, R. Wirz, J. Sales, J.M. Claver, P.J. Sanz, and J. Fernandez,
“Remote Programming of Network Robots Within the UJI Industrial Robotics

164

Telelaboratory: FPGA Vision and SNRP Network Protocol,” IEEE Trans. on
Industrial Electronics, Vol. 56, No. 12, pp. 4806-4816, 2009.

[82] P. Marti, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid, “Runtime
Allocation of Optional Control Jobs to a Set of CAN-based Networked Control
Systems,” IEEE Trans. on Industrial Infomatics, Vol. 6, No. 4, pp. 503-520,
2010.

[83] T. Matsubara, J. Morimoto, J. Nakanishi, S. H. Hyon, J. G. Hale, and G. Cheng,
“Learning to Acquire Whole-body Humanoid CoM Movements to Achieve
Dynamic Tasks,” IEEE Int. Conf. on Robotics and Automation, Roma, Italy, pp.
2688-2693, 2007.

[84] J. L. Meriam and L. G. Kraige, “Introduction to Three-dimensional Dynamics of
rigid Bodies,” in Endineering Mechanics, Dynamics, 5th ed. NJ, USA, John
Wiley & Sons, Inc., ch.7, pp. 515-590.

[85] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance Analysis of a
Master/Slave Switched Ethernet for Military Embedded Applications,” IEEE
Trans. on Industrial Infomatics, Vol. 6, No. 4, pp. 534-547, 2010.

[86] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. W. Naouar,
“FPGAs in Industrial Control Applications,” IEEE Trans. on Industrial
Infomatics, Vol. 7, No. 2, pp. 224-243, 2011.

[87] M. Morisawa, S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, H.
Hirukawa, “Pattern Generation of Biped Walking Constrained on Parametric
Surface,” IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp.
2405-2410, 2005.

[88] M. Morisawa, K. Kaneko, F. Kanehiro, S. Kajita, K. Fujiwara, K. Harada, and H.
Hirukawa, “Motion Planning of Emergency Stop for Humanoid Robot by State
Space Approach,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Beijing, China, pp. 2986-2992, 2006.

[89] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity
Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems,
Measurement and Control, Vol. 108, pp. 163-171, 1986.

[90] Y. Nishida, T. Sonoda, and K. Ishii, “Jacobian Matrix Derived from Cross
Product and its Application into High Power Joint Mechanism Analysis,”
Journal of Bionic Engineering, Vol. 7, pp. S218–S223, 2010.

[91] K. Nishiwaki and S. Kagami, “Online Walking Control System for Humanoids
with Short Cycle Pattern Generation,” The Int. Journal of Robotics Research, pp.
729-742, 2009.

165

[92] K. Nishiwaki and S. Kagami, “Simultaneous Planning of CoM and ZMP based
on the Preview Control Method for Online Walking Control,” IEEE/RAS Int.
Conf. on Humanoid Robots, Bled, Slovenia, pp. 745-751, 2011.

[93] K. Nishiwaki, T. Sugihara, S, Kagami, F. Kanehiro, M. Inaba, and H. Inoue,
“Design and Development of Research Platform for Perception-action
Integration in Humanoid Robot: H6,” IEEE/RSJ Int. Conf. on Intelligent Robots
and System, pp.1559-1564, 2000.

[94] K. D. Nguyen, I. M. Chen, Z. Luo, S. H. Yeo and H.B.L. Duh , “A Body Sensor
Network for Tracking and Monitoring of Functional Arm Motion,” IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pp. 3862-3867, 2009.

[95] M. Nohmi, D. N. Nenchev and M. Uchiyama, “Momentum Control of a Tethered
Space Robot Through Tether Tension Control,” IEEE Int. Conf. on Robotics &
Automation, Leuven, Belgium, pp. 920-925, 1998

[96] N. Oda, J. Yoneda and T. Abe, “Visual Feedback Control of ZMP for Biped
Walking Robot,” IEEE Int. Conf. on Industrial Electronics Society, Melbourne,
Australia, pp. 4543-4548, 2011.

[97] K. Ogata, K. Terada, and Y. Kuniyoshi, “Falling Motion Control for Humanoid
Robots while Walking,” IEEE/RAS Int. Conf. on Humanoid Robots, PA, USA, pp.
306-311, 2007.

[98] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. O. Lim and A.
Takanishi, “Development of a New Humanoid Robot WABIAN-2,” IEEE Int.
Conf. on Robotics and Automation, Florida, pp. 77-81, 2006.

[99] Y. Ogura, T. Kataoka, H. Aikawa, K. Shimomura, H.O. Lim and A. Takanishi,
“Evaluation of Various Walking Patterns of Biped Humanoid Robot,” IEEE Int.
Conf. on Robotics and Automation, Barcelona, Spain, pp. 603-608, 2005.

[100] Y. Ogura, K. Shimomura, H. Kondo, A. Morishima, T. Okubo, and S. Momoki,
H.O. Lim and A. Takanishi, “Human-like Walking with Knee Stretched,
Heel-contact and Toe-off Motion by a Humanoid Robot,” IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Beijing, China, pp. 3976-3981, 2006.

[101] J. H. Oh, D. Hanson, W. S. Kim, I. Y. Han, J. Y. Kim and I. W. Park, “Design of
Android type Humanoid Robot Albert HUBO,” IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Beijing, China, pp. 1428-1433, 2006.

[102] E. J. Ong and A. Hilton, “Learnt Inverse Kinematics for Animation Synthesis,”
Graphical Models, Vol. 68, Issue 5-6, pp. 472-483, 2006.

[103] S. Parasuraman and L. S. Pe, “Bio-mechanical Analysis of Human Joints and
Extension of the Study to Robot,” World Academy of Science, Engineering and
Technology, Issue 39, pp. 1-6, 2008.

166

[104] I. W. Park and J. Y. Kim, “Fourier Series-Based Walking Pattern Generation for a
Biped Humanoid Robot,” IEEE/RAS Int. Conf. on Humanoid Robots, TN, USA,
pp. 461-467, 2010.

[105] I. W. Park, J. Y. Kim and J. H. Oh, “Online Biped Walking Pattern Generation for
Humanoid Robot KHR-3(KAIST Humanoid Robot - 3: HUBO),” IEEE/RAS Int.
Conf. on Humanoid Robots, Italy, pp. 398-403, 2006.

[106] I. W. Park, J. Y. Kim and J. H. Oh, “Online Walking Pattern Generation and Its
Application to a Biped Humanoid Robot —KHR-3 (HUBO),” Advanced
Robotics, Vol. 22, No. 2-3, pp. 159-190, 2008.

[107] F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Abba, “Stable Walking of a
7-DOF Biped Robot,” IEEE Trans. on Robotics and Automation, Vol. 19, No. 4,
pp. 653-668, 2003.

[108] N. Shafii, M. H. S. Javadi, B. Kimiaghalam, “A Truncated Fourier Series with
Genetic Algorithm for the control of Biped Locomotion,” IEEE/ASME Int. Conf.
on Advanced Intelligent Mechatronics, Singapore, pp. 1781-1785, 2009.

[109] S. K. Saha, “A Unified Approach to Space Robot Kinematics,” IEEE Trans. on
Robotics and Automation, Vol. 12, No. 3, pp. 401-405, 1996.

[110] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki and K.
Fujimura, “The Intelligent ASIMO: System Overview and Integration,”
IEEE/RAS Int. Conf. on Intelligent Robots and Systems, Switzerland, pp.
2478-2483, 2002.

[111] U. Saranl, A. Avc, and M. C. Ozturk, “A Modular Real-time Fieldbus
Architecture for Mobile Robotic Platforms,” IEEE Trans. on Instrumentation
and Measurement, Vol. 60, No. 3, pp. 916-927, 2011.

[112] M.O.F. Sarker, C. H. Kim, S. Back, and B. J. You, “An IEEE-1394 Based
Real-time Robot Control System for Efficient Controlling of Humanoids,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1416-1421, 2006.

[113] T. Sato, S. Sakaino, and K. Ohnishi, “Trajectory Planning and Control for Biped
Robot with Toe and Heel Joints,” IEEE Int. Workshop on Advanced Motion
Control, Nagaoka, Japan, pp. 129-136, 2010.

[114] T. Sato, S. Sakaino, and K. Ohnishi, “Walking Stabilization Control using Virtual
Plane Method for Biped Robots,” IEEJ Trans. on Industry Applications, Vol. 130,
Issue 5, pp. 685-691, 2010.

[115] J. J. Scarlett, and R. W. Brennan, “Evaluating a New Communication Protocol
for Real-time Distributed Control,” Robotics and Computer-Integrated
Manufacturing, Vol. 27, Issue 3, pp. 627–635, 2011.

167

[116] J. Schmitt, H. Haupt, M. Kurrat, A. Raatz, “Disassembly Automation for
Lithium-ion Battery Systems using a Flexible Gripper,” IEEE Int. Conf. on
Advanced Robotics, Tallinn, Estonia, pp. 291-297, 2011.

[117] K. Seto, D. Fuji, H. Hiramathu and Tonu Watanabe, “Motion and Vibration
Control of Three Dimensional Flexible Shaking Table using LQI Control
Approach,” Proc. of the American Control Conf., Anchorage, pp. 3040-3045,
2002.

[118] M. Y. Shieh, K. H. Chang, C. Y. Chuang and Y. S. Lia, “Development and
Implementation of an Artificial Neural Network based Controller for Gait
Balance of a Biped Robot,” IEEE Industrial Electronics Society, Taipei, Taiwan,
pp. 2778-2782, 2007.

[119] T. Sonoda, K. Ishii, and D. Isobe, “Dynamics Computation of Link Mechanisms
Employing COG Jacobian,” IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics, Xian, China, pp. 482-487, 2008.

[120] S. Staicu, “Recursive modelling in dynamics of Delta parallel robot,” Robotica,
Vol. 27, Issue 2, pp. 199-207, 2009.

[121] B. J. Stephens and C. G. Atkeson, “Push Recovery by Stepping for Humanoid
Robots with Force Controlled Joints,” IEEE/RAS Int. Conf. on Humanoid Robots
Nashville, TN, USA, pp. 52-59, 2010.

[122] T. Sugihara and Y. Nakamura, “Boundary Condition Relaxation Method for
Stepwise Pedipulation Planning of Biped Robots,” IEEE Trans. on robotics, Vol.
25, No. 3, pp. 658-669, 2009.

[123] T. Sugihara and Y. Nakamura, “Enhancement of Boundary Condition Relaxation
Method for 3D Hopping Motion Planning of Biped Robots,” IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 444-449, 2007.

[124] T. Sugihara and Y. Nakamura, “Whole-body cooperative balancing of humanoid
robot using COG Jacobian,” IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 2575-2580, 2002.

[125] W. Suleiman, F. Kanehiro, K. Miura and E. Yoshida, “Enhancing Zero Moment
Point-Based Control Model: System Identification Approach,” Advanced
Robotics, Vol. 25, No 3, pp. 427-446, 2011.

[126] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real Time Motion Generation and
Control for Biped Robot -1st Report: Walking Gait Pattern Generation-,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1084-1091, St. Louis,
USA, 2009.

[127] T. Takenaka, T. Matsumoto, T. Yoshiike, and S. Shirokura, “Real Time Motion
Generation and Control for Biped Robot -2nd Report: Running Gait Pattern

168

Generation-,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis,
USA, pp. 1594-1600, 2009.

[128] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real Time Motion Generation and
Control for Biped Robot -3rd Report: Dynamics Error Compensation-, IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, St. Louis, USA, pp. 1092-1099,
2009.

[129] T. Takubo, K. Inoue, and T. Arai, “Pushing an Object Considering the Hand
Reflect Forces by Humanoid Robot in Dynamic Walking,” IEEE Int. Conf. on
Robotics and Automation, Barcelona, Spain, pp. 1706-1711, 2005.

[130] K. Tchon, “Optimal Extended Jacobian Inverse Kinematics Algorithms for
Robotic Manipulators,” IEEE Trans. on Robotics, Vol. 24, No. 6, pp. 1440-1445,
2008.

[131] G. Tevatia, and S. Schaal, “Inverse Kinematics for Humanoid Robots,” IEEE Int.
Conf. on Robotics and Automation, pp. 294-299, 2000.

[132] S. Thomas, “Dynamics of Spacecraft and Manipulators,” Simulation, ISSN
0037-5497, July, 1991.

[133] L. W. Tsai, “Position Analysis of Serial Manipulators,” in Robot Analysis: the
mechanics of serial and parallel manipulators, 1st ed. NJ, USA, John Wiley &
Sons, Inc., 1999, ch. 2, pp. 55-85.

[134] F. Tungadi and L. Kleeman, “Autonomous Loop Exploration and SLAM with
Fusion of Advanced Sonar and Laser Polar Scan Matching,” Robotica, Vol. 30,
Issue 1, pp. 91-105, 2012.

[135] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann,
“Humanoid Motion Planning for Dual-Arm Manipulation and Re-Grasping
Tasks,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, USA,
pp. 2464-2470, 2009.

[136] M. Vukobratovic and B. Borovac, “Zero-Moment Point - Thirty Five Years of Its
Life,” Int. Journal of Humanoid Robotics, Vol. 1, Issue 1, pp. 157-173, 2004.

[137] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector
Formulations and Damped Least Squares Methods,” IEEE Trans. on Systems,
Man, and Cybernetics, Vol. SMC-16, No. 1, pp. 93-101, 1986.

[138] X. Wang and J. K. Mills, “Dynamic Modeling of a Flexible-link Planar Parallel
Platform using a Substructuring Approach” Mechanism and Machine Theory, Vol.
41, Issue 6, pp. 671-687, 2006.

[139] M. Xu, and W. Zhu, “A Research and Design of Ethernet Real-Time Application
Bus Based on FPGA.” Int. Conf. on Embedded Computing Scalable Computing
and Communications, pp. 42-46, 2009.

169

[140] K. Yamamoto and Y. Nakamura, “Switching Control and Quick Stepping Motion
Generation Based on the Maximal CPI Sets for Falling Avoidance of Humanoid
Robots,” IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska, USA,
pp. 3292-3297, 2010.

[141] L. Yang, C. M. Chew, A. N. Poo, and T. Zielinska, “Adjustable Bipedal Gait
Generation using Genetic Algorithm Optimized Fourier Series Formulation,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing , China, pp.
4435-4440, 2006.

[142] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” The Int. Journal of
Robotics Research, Vol. 4, No. 2, pp. 3-9, 1985.

[143] T. Yoshikawa and O. Khati, “Compliant Motion Control for a Humanoid Robot
in Contact with the Environment and Human,” IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Nice, France, pp. 1544-1550, 2008.

[144] B. J. You, M. Hwangbo, S. O. Lee, S. R. Oh, Y. D. Kwon, and S. Lim,
“Development of a Home Service Robot 'ISSAC',” IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 2630-2635, 2003.

[145] W. You, M. X. Kong, L. N. Sun, and C.C. Guo, “Control System Design for High
Payload Industrial Robot via High Speed Communication Bus and Real-time
System,” Key Engineering Materials, Vol. 464, 2011 pp. 272-278, 2011.

[146] S. W. Yu, “Walking Pattern Analysis and Control of a Humanoid Robot,” Master
Thesis, Department of Mechanical Engineering, National Taiwan University, pp.
28-30, 2006.

[147] Z. Yu, Q. Huang, J. Li, X. Chen, and K. Li, “Computer Control System and
Walking Pattern Control for a Humanoid Robot,” IEEE/ASME Int. Conf. on
Advanced Intelligent Mechatronics, pp. 1018-1023, 2008.

[148] R. Zaier and S. Kanda, “Adaptive Locomotion Controller and Reflex System for
Humanoid Robots,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Acropolis Convention Center, Nice, France, pp. 2492-2497, 2008.

[149] W. Zijlstra and A.L. Hof, “Displacement of the Pelvis During Human Walking:
Experimental Data and Model Predictions,” Gait & Posture, Vol. 6, Issue 3, pp.
249-267, 1997.

[150] W. Zhang, W. Ren, Y. Qin, S. Chen, and B. Yang, “The Implementation of
CAN—Ethernet Communication System on the Missile Simulation and
Detection Platform,” Int. Conf. on Computer-Aided Industrial Design and
Conceptual Design, pp. 642-645.

170

[151] W. Zhang, Y. Yang, and J. Wang, “A dsPIC-based Excitation Control System for
Synchronous Generator,” Int. Conf. on Mechatronics and Automation, pp.
3844-3848, 2007.

[152] V. Zordan, “Angular Momentum Control in Coordinated Behaviors,” MIG'10
Proceedings of the Third int. conf. on Motion in games, Springer-Verlag Berlin,
Heidelberg, pp. 1-12, 2010.

[153] http://world.honda.com/ASIMO/
[154] http://www.bostondynamics.com/
[155] http://www.netlib.org/clapack/

http://world.honda.com/ASIMO/
http://www.bostondynamics.com/
http://www.netlib.org/clapack/

171

APPENDIX A

PROOF AND DERIVATION OF LQSI CONTROLLER

The proof and derivation that the LQSI controller can minimize the performance

index is described here. More detailed and basic derivation methods can be referred to

[74]. Recall the performance index of LQSI control in Eq. (4-23) and the constraint in

Eq. (4-24).

𝐽 =
1
2
�((𝑥𝑘+1 − 𝑥𝑘)𝑇𝑄𝑚(𝑥𝑘+1 − 𝑥𝑘)
∞

𝑘=𝑖

+ (𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘)

(4-23)

𝑓𝑘 = 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘 (4-24)

Thus the Hamiltonian can be designed as Eq. (A-1).

𝐻𝑘 =
1
2

((𝑥𝑘+1 − 𝑥𝑘)𝑇𝑄𝑚(𝑥𝑘+1 − 𝑥𝑘)

+ (𝐶𝑘𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐵𝑘𝑇𝑅𝐵𝑘) + 𝜆𝑘+1𝑇 𝑓𝑘

(A-1)

where 𝜆𝑘 denotes the Lagrange multiplier. And 𝑥𝑘+1 − 𝑥𝑘 in the equation can be

rewritten as Eq. (A-2).

𝑥𝑘+1 − 𝑥𝑘 = 𝐴𝑘𝑥𝑘 − 𝑥𝑘 + 𝐵𝑘𝐵𝑘 = 𝐴𝐼,𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘 (A-2)

From reference [74], to minimize the performance index, the following Eqns. must be

satisfied.

𝜕𝐻𝑘
𝜕𝐵𝑘

= 0 (A-3)

𝜕𝐻𝑘
𝜕𝑥𝑘

= 𝜆𝑘 (A-4)

With Eq. (A-3), we can find Eq. (A-5).

𝜕𝐻𝑘
𝜕𝐵𝑘

= 0 = 𝐵𝑘𝑇𝑄𝑚�𝐴𝐼,𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘� + 𝑅𝐵𝑘 + 𝐵𝑘𝑇𝜆𝑘+1 (A-5)

172

Rearranging the Eq. (A-5), we have

𝐵𝑘 = −(𝑅 + 𝐵𝑘𝑇𝑄𝑚𝐵𝑘)−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘𝑥𝑘 − (𝑅 + 𝐵𝑘𝑇𝑄𝑚𝐵𝑘)−1𝐵𝑘𝑇𝜆𝑘+1

= −𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘𝑥𝑘 − 𝑀𝑘

−1𝐵𝑘𝑇𝜆𝑘+1
(A-6)

With this𝐵𝑘, the partial derivative of 𝐵𝑘 in the direction 𝑥𝑘 can be found as Eq.

(A-7).

𝑑𝐵𝑘
𝑑𝑥𝑘

= −𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘 (A-7)

From Eqns. (A-4) and (A-7), Eq. (A-8) can be obtained as follows.

𝑑𝐻𝑘
𝑑𝑥𝑘

= 𝜆𝑘 = �𝐴𝐼,𝑘 − 𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘�

𝑇
𝑄𝑚�𝐴𝐼,𝑘𝑥𝑘 + 𝐵𝑘𝐵𝑘�

− �𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘�

𝑇
𝑅𝐵𝑘 + 𝐶𝑘𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐴𝑘𝑇𝜆𝑘+1

(A-8)

Define a variable 𝑁𝑘 to simplify the Eq. (A-8) as Eq. (A-9).

𝑁𝑘 = 𝐴𝐼,𝑘 − 𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘 (A-9)

Replacing 𝐵𝑘 in Eq. (A-8) with Eq. (A-6) and after lines of work, we can find Eq.

(A-10).

𝜆𝑘 = 𝑁𝑘𝑇𝑄𝑚𝑁𝑘𝑥𝑘 + 𝐴𝐼,𝑘𝑇 𝑄𝑚𝐵𝑘𝑀𝑘
−1𝑅𝑀𝑘

−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘𝑥𝑘

+ 𝐶𝑘𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐴𝑘𝑇𝜆𝑘+1

(A-10)

The Lagrange multiplier is assumed to be decoupled as follows.

𝜆𝑘 = 𝑆𝑘𝑥𝑘 − 𝑣𝑘 (A-11)

The 𝐵𝑘 in Eq. (4-24) is also replaced with Eq. (A-6), thus Eq. (A-12) can be found.

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 − 𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑄𝑚𝐴𝐼,𝑘𝑥𝑘 − 𝐵𝑘𝑀𝑘

−1𝐵𝑘𝑇𝜆𝑘+1 (A-12)

Replacing the Lagrange multiplier with Eq. (A-11), we can solve the 𝑥𝑘+1 as Eq.

(A-13).

𝑥𝑘+1 = 𝐷𝑘−1𝑊𝑘𝑥𝑘 + 𝐷𝑘−1𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑣𝑘+1 (A-13)

where 𝐷𝑘 and 𝑊𝑘 are shown in Eqns. (4-30) and (4-31).

173

Using Eqns. (4-34) and (A-13), Eq. (A-10) can be rewritten as Eq. (A-14).

𝜆𝑘 = 𝑃𝑘𝑇𝑃𝑘𝑥𝑘 + 𝐶𝑘𝑇𝑄(𝐶𝑘𝑥𝑘 − 𝑟𝑘) + 𝐴𝑘𝑇𝑆𝑘+1𝐷𝑘−1𝑊𝑘𝑥𝑘

+ 𝐴𝑘𝑇𝑆𝑘+1𝐷𝑘−1𝐵𝑘𝑀𝑘
−1𝐵𝑘𝑇𝑣𝑘+1 − 𝐴𝑘𝑇𝑣𝑘+1

(A-14)

Thus, we can find the Eqns. (4-32) and (4-33) by separating the parts with and without

𝑥𝑘.

174

APPENDIX B

THE FINITE TIME CASE OF LQSI CONTROLLER

The 𝜙(𝑥𝑁 ,𝐵𝑁) in the performance index in Eq. (4-36) is defined as Eq. (B-1).

𝜙 =
1
2

(𝐶𝑁𝑥𝑁 − 𝑟𝑁)𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁)

+
1
2

(𝑥𝑁+1 − 𝑥𝑁)𝑇𝑄𝑚𝑁(𝑥𝑁+1 − 𝑥𝑁)
(B-1)

Using the boundary condition in Eqns. (4-37), (A-6), and (A-7), we can find Eq.

(B-2).

𝜕𝜙
𝜕𝑥𝑁

= 𝜆𝑁 = 𝐶𝑁𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁) + �𝐴𝐼,𝑁 − 𝐵𝑁𝑀𝑁
−1𝐵𝑁𝑇𝐴𝐼,𝑁�

𝑇𝑄𝑚𝑁

 ��𝐴𝐼,𝑁 − 𝐵𝑁𝑀𝑁
−1𝐵𝑁𝑇𝐴𝐼,𝑁�𝑥𝑁 − 𝐵𝑁𝑀𝑁

−1𝐵𝑁𝑇𝜆𝑁+1�

(B-2)

In Eq. (B-2), 𝜆𝑁+1 is indeterminable, so we must choose 𝑄𝑚𝑁 as zero. Thus, 𝜙 is

defined again as follows.

𝜙 =
1
2

(𝐶𝑁𝑥𝑁 − 𝑟𝑁)𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁) (B-3)

𝜕𝜙
𝜕𝑥𝑁

= 𝜆𝑁 = 𝑆𝑁𝑥𝑁 − 𝑣𝑁 = 𝐶𝑁𝑇𝑄𝑁(𝐶𝑁𝑥𝑁 − 𝑟𝑁) (B-4)

𝑆𝑁 = 𝐶𝑁𝑇𝑄𝑁𝐶𝑁 (B-5)

𝑣𝑁 = 𝐶𝑁𝑇𝑄𝑁𝑟𝑁 (B-6)

Eqns. (B-3)-(B-6) are just the same as the boundary condition of the classical

final-state-free tracking control problems. It means only the tracking error affects the

value of the cost function at the final step. Thus, the initial values, 𝑆𝑁 and 𝑣𝑁, for

backward recursion can be found. We can choose a large 𝑄𝑁 for smaller tracking error

at the final step.

BIOGRAPHY

Jiu-Lou Yan

Robotics Laboratory,
Department of Mechanical Engineering,
National Taiwan University.

Education
2007~2012

Ph.D. Student in Department of Mechanical Engineering, National Taiwan University
2006~2007

M.S. course in Department of Mechanical Engineering, National Taiwan University
2002~2006

B.S. course in Department of Mechanical Engineering, National Taiwan University

Publications

Journal paper
[1] Han-Pang Huang, Jiu-Lou Yan, and Teng-Hu Cheng, “Development and Fuzzy

Control of a Pipe Inspection Robot,” IEEE Trans. on Industrial Electronics, Vol. 57,
No. 3, March, 2010.

[2] Han-Pang Huang, Jiu-Lou Yan, and Teng-Hu Cheng,, “State-Incremental Optimal
Control of 3D COG Pattern Generation for Humanoid Robots”, Advanced Robotics,
accepted.

[3] Han-Pang Huang, Jiu-Lou Yan, and, Kenneth Yi-Wen Chao, “A Whole Body
Inverse Kinematics Solver for Humanoid Robots,” Journal of the Chinese Society
of Mechanical Engineers, accepted.

[4] Han-Pang Huang, Jiu-Lou Yan, Tz-How Huang, “Priority Based Networking for
Humanoid Robots,” IEEE Trans. on Industrial Informatics, submitted.

[5] Han-Pang Huang, Jiu-Lou Yan, and Shin-Wei Lin, “Cerebellar Model Based
Controller with Adaptive Learning Rate for Robotic Manipulators,” IEEE Journal,
in preparation.

[6] Han-Pang Huang, Jiu-Lou Yan, Yao-Joe Yang, Wen-Pin Shih, Chia-Chen Lin and
Gun-Hwa Liu, Design of a Face Robot with Facial Expressions, IEEE Journal, in
preparation.

Conference paper
[1] Jiu-Lou Yan and Han-Pang Huang, “A fast and smooth walking pattern generator

of biped robot using Jacobian inverse kinematics,” IEEE Workshop on Advanced
Robotics and Its Social Impacts, pp. 25-30, 2007.

[2] Han-Pang Huang, Shu-Wen Yu and Jiu-Lou Yan, “Walking Pattern Analysis and
Control of a Humanoid Robot,” The 13th Int. Conf. on Advanced Robotics, Jeju,
Korea, pp. 862-867, 2007.

[3] Han-Pang Huang, Jia-Yang Wu and Jiu-Lou Yan, “A Stable Walking Biped Robot
based on Combined CPG/ZMP,” Int. Forum on Systems and Mechatronics, Tainan,
Taiwan, pp. 305-310, 2007

[4] Chao-Pei Lu, Han-Pang Huang, Jiu-Lou Yan, Ting-Hu Cheng, “Development of a
Pipe Inspection Robot,” IEEE Industrial Electronics Society, Taipei, Taiwan, pp.
626-631, 2007.

[5] S.Y. Liu, T.H. Cheng, J.L. Yan and H.P. Huang, “Development of a Dexterous
Cable Driven Spine Mechanism for Humanoid Robots,” IEEE/ASME Int. Conf. on
Advanced Intelligent Mechatronics, Singapore, July 14-17, pp.1588-1593, 2009.

[6] Han-Pang Huang, Shin-Wei Lin, Jiu-Lou Yan, Tzu-Hsin Kuo and Yang-Lun Liu,
“Learning-based Controller for Robotic Manipulators with Grey Learning Rate,”
IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Budapest, Hungary
July 3-7, pp. 701-706, 2011.

[7] Kenneth Yi-Wen Chao, Jiu-Lou Yan, Meng-Ku Chi, and Han-Pang Huang,
“Natural Walking Pattern Generation for Humanoid Robots with Toe and Heel
Mechanism”, The 43rd Int. Symposium on Robotics, Taipei, Taiwan, Aug. 29-31,
2012, accepted.

[8] Han-Pang Huang and Jiu-Lou Yan, “An Inverted Pendulum Model Based
Optimized Walking Pattern Generator,” IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2012, submitted.

Book Chapter

[1] Han-Pang Huang and Jiu-Lou Yan, “A Fast and Smooth Walking Pattern Generator
for Biped Robots,” Biped Robots, INTECH open science, ISBN:
978-953-307-216-6, pp. 283-298, 2011.

	Chapter 1 Introduction
	1.1 Different Types of Robots
	1.2 Pattern Generation System for Humanoid Robots
	1.3 Control System for Humanoid Robots
	1.4 Contributions
	1.5 Overall Framework of the Dissertation

	Chapter 2 Kinematics and Dynamics
	2.1 Introduction
	2.2 Forward Kinematics
	2.3 Inverse Kinematics
	2.3.1 Robust Damped Least Squares Method (RDLS)
	2.3.2 Weighted Least-Norm Method (WLN)
	2.3.3 Robust Weighted Least Norm Method (RWLN)

	2.4 Newton-Euler Dynamics
	2.4.1 Forward Iteration
	2.4.2 Backward Iteration

	2.5 Linear Momentum and Angular Momentum
	2.5.1 Linear Momentum
	2.5.2 Angular Momentum

	2.6 Summary

	Chapter 3 Jacobian Based Inverse Kinematics Solver
	3.1 Introduction
	3.2 Conventional Jacobian Matrix
	3.3 Fixed-Leg-Motion Jacobian Matrix
	3.4 COG Jacobian
	3.4.1 Calculation of COG
	3.4.2 COG Jacobian
	3.4.3 Fixed COG Jacobian

	3.5 Momentum Jacobian
	3.5.1 Linear Momentum Jacobian
	3.5.2 Iterative Calculation of Moment of Inertia
	3.5.3 Angular Momentum Jacobian

	3.6 Global Jacobian
	3.7 Simulation
	3.8 Summary

	Chapter 4 Linear Quadratic State Incremental Control
	4.1 Introduction
	4.2 Inverted Pendulum Model and COG/ZMP Equations
	4.3 Preview Control
	4.4 Linear Quadratic State-Incremental Control (LQSI)
	4.4.1 Boundary Condition of the LQSI Controller
	4.4.2 Preview Gain of the LQSI Controller
	4.4.3 Minimum Required Future Reference Input

	4.5 Simulation and Results
	4.5.1 Simulation Using Inverted Pendulum Model
	4.5.2 Simulation Using Physical Model in ADAMS
	4.5.3 Comparison of LQSI and Preview Controller Using ADAMS
	4.5.4 Computation Complexity of the LQSI Controller

	4.6 Summary

	Chapter 5 Optimized 3D COG trajectory Generation
	5.1 Introduction
	5.2 Goal and Procedure of Optimization
	5.2.1 Performance Index
	5.2.2 Optimization Procedure

	5.3 The Derivatives with Respect to COG Height
	5.3.1 Horizontal COG Change with Respect to Vertical COG Change
	5.3.2 Derivatives of Basic Vectors
	5.3.3 Derivatives of Newton-Euler Dynamics

	5.4 Training Results
	5.5 Summary

	Chapter 6 Real-time Control Architecture of Humanoid Robots
	6.1 Introduction
	6.2 Networking for Humanoid Robot Control System
	6.2.1 Control Bus of the Humanoid Robot
	6.2.2 Joint Controllers and Nodes of the Robot
	6.2.3 Multi-Node Control Structure for the Humanoid Robot
	6.2.4 Multi-Robot Control and Communication System

	6.3 Priority Oriented Networking (PON)
	6.3.1 Objects of Network Communications
	6.3.2 Priority and Size of Network Objects
	6.3.3 Common Properties of the Network Objects

	6.4 Network Scheduling
	6.4.1 Network Scheduling Mechanism
	6.4.2 Flow Control of the Scheduling Mechanism

	6.5 Simulation and Implementation
	6.5.1 Ethernet Based RTNET
	6.5.2 CAN-Bus Based RTNET for Local Networks
	6.5.3 Performance on Data Transmission through RTNET

	6.6 Summary

	Chapter 7 Implementation
	7.1 Specifications of the Proposed Humanoid Robots
	7.2 Real-time Planning/Control System of Humanoid Robots
	7.2.1 Real-time Planning and Control Architecture
	7.2.2 State Machine Architecture of C30 Controllers
	7.2.3 State Machine Architecture of C32 Controllers

	7.3 Experiments
	7.3.1 Tracking Performance of Joint Angles
	7.3.2 Tracking Performance of COG trajectory
	7.3.3 Tracking Performance of ZMP trajectory
	7.3.4 Calculated Knee Joint Torque

	7.4 Summary

	Chapter 8 Conclusions and Future Works
	8.1 Summary
	8.2 Conclusions
	8.3 Future Works

