Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6854Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 羅俊雄 | |
| dc.contributor.author | Chia-Hung Lin | en |
| dc.contributor.author | 林家宏 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:19:34Z | - |
| dc.date.available | 2012-06-29 | |
| dc.date.available | 2021-05-17T09:19:34Z | - |
| dc.date.copyright | 2012-06-29 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-27 | |
| dc.identifier.citation | [1] Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). Farmington Hills, Mich.: American Concrete Institute, 2005.
[2] F. J. Vecchio and M. P. Collins, 'Modified compression-field theory for reinforced concrete elements subjected to shear,' Journal of the American Concrete Institute, vol. 83, pp. 219-231, 1986. [3] M. P. Collins and D. Mitchell, Prestressed concrete structures. Englewood Cliffs, N.J.: Prentice Hall, 1991. [4] T. T. C. Hsu and R. R. H. Zhu, 'Softened membrane model for reinforced concrete elements in shear,' ACI Structural Journal, vol. 99, pp. 460-469, 2002. [5] R. R. H. Zhu and T. T. C. Hsu, 'Poisson effect in reinforced concrete membrane elements,' ACI Structural Journal, vol. 99, pp. 631-640, 2002. [6] M. Mansour and T. T. C. Hsu, 'Behavior of reinforced concrete elements under cyclic shear. II: Theoretical model,' Journal of Structural Engineering, vol. 131, pp. 54-65, 2005. [7] Y. L. Mo, 'Analysis and design of low-rise structural walls under dynamically applied shear forces,' ACI Structural Journal, vol. 85, pp. 180-189, 1988. [8] G. Ozcebe and M. Saatcioglu, 'Hysteretic shear model for reinforced concrete members,' Journal of structural engineering, vol. 115, pp. 132-148, 1989. [9] W. Ritter, 'Die bauweise hennebique,' Schweizerische Bauzeitung, vol. 33, pp. 59-61, 1899. [10] E. Morsch, Der eisenbetonbau: seine theorie und anwendung. Stuttgart: Verlag Konrad Wittner, 1912. [11] C. L. Wu, S. J. Hwang, Y. S. Yang, and R. S. Su, 'Shake Table Tests on Reinforced Concrete Short Columns Failing in Shear,' National Center for Research on Earthquake Engineering, Taiwan NCREE-07-033, 2007. [12] A. H. Nilson, D. Darwin, and C. W. Dolan, Design of concrete structures, 13th ed.: McGraw Hill, 2003. [13] F. Taucer, E. Spacone, F. C. Filippou, B. E. E. R. C. University of California, T. California. Dept. of, and F. National Science, A fiber beam-column element for seismic response analysis of reinforced concrete structures. Berkeley, Calif.: Earthquake Engineering Research Center, College of Engineering, University of California, 1991. [14] F. McKenna, G. L. Fenves, and M. H. Scott. (2004, 4/29). OpenSees: open system for earthquake engineering simulation. Available: http://opensees.berkeley.edu [15] R. D. Cook, Concepts and applications of finite element analysis, 4th ed. New York: Wiley, 2002. [16] J. H. Kim, J. B. Mander, and Multidisciplinary Center for Earthquake Engineering Research (U.S.), Truss modeling of reinforced concrete shear-flexure behavior. Buffalo, N.Y.: Multidisciplinary Center for Earthquake Engineering Research, 1999. [17] S. Mazzoni, F. McKenna, M. H. Scott, G. L. Fenves, and e. al. (2006, 4/29). OpenSees users manual version 2.0. [18] B. B. Welch, K. Jones, and J. Hobbs, Practical programming in Tcl/Tk, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2003. [19] J. B. Mander, M. J. N. Priestley, and R. Park, 'Theoretical stress-strain model for confined concrete,' Journal of structural engineering, vol. 114, pp. 1804-1826, 1988. [20] T. Paulay and M. J. N. Priestley, Seismic design of reinforced concrete and masonry buildings. New York: Wiley, 1992. [21] R. Park, M. J. N. Priestley, and W. D. Gill, 'Ductility of square-confined concrete columns,' vol. 108, pp. 929-950, 1982. [22] D. C. Kent and R. Park, 'Flexural Members with Confined Concrete,' Journal of the Structural Division, vol. 91, pp. 1969-1990, July 1971. [23] J. C. McCormac and J. K. Nelson, Design of reinforced concrete, 7th ed. Hoboken, NJ: John Wiley, 2006. [24] K. C. Chang and H. F. Chang, 'Seismic analysis of reinforced concrete columns of bridge and research about retrofit of FRP,' National Center for Research on Earthquake Engineering, Taiwan1999. [25] K. C. Chang and F. S. Chung, 'Seismic retrofit study of RC columns lap-spliced at plastic hinge zone,' National Center for Research on Earthquake Engineering, Taiwan2000. [26] Y. Ryu, T. Nakamura, and M. Yoshimura, Eds., RC column's loss of axial load carrying capacity (Summaries of Technical Papers of Annual Meeting. Japan: Architectural Institute of Japan, 2001, p.^pp. Pages. [27] M. Jun, M. Bunno, K. Nagayama, M. Maeda, A. Tasai, and M. Nagata, Eds., An evaluation of residual seismic capacity of reinforced concrete buildings base on the damage of columns part 1. outline of the test and results (Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, 2001, p.^pp. Pages. [28] K. Nitta, M. Hirabayashi, N. Hanai, H. Umemura, and T. Ichinose, Eds., Size effect on strength deterioration of RC members (part1: outline of experiment) (Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, 2005, p.^pp. Pages. [29] M. Hirabayashi, K. Nishimura, N. Hanai, T. Ichinose, and H. Umemura, Eds., The influence of loading history and reinforcement on strength deterioration of RC members (part1: outline of experiment) (Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, 2004, p.^pp. Pages. [30] M. Hirabayashi, K. Nitta, N. Hanai, H. Umemura, and T. Ichinose, Eds., Size effect on strength deterioration of RC members (part2: results in normal-strength specimens) (Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, 2005, p.^pp. Pages. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6854 | - |
| dc.description.abstract | 本論文開發一單軸循環桁架模型用以預測鋼筋混凝土柱承受循環剪力之實際行為。經由應用物件導向程式設計,使用者可輕鬆將本模型與現有撓曲分析程式碼結合用以分析鋼筋混凝土柱承受軸力、撓曲、剪力時的複雜行為。單軸循環桁架模型分析結果將會反覆載重實驗結果比對結果成功預測破壞模式與遲滯行為。除此之外,本研究另開發一簡易預測模式用以直接快速預測鋼筋混凝土柱的破壞模式。此模式估測鋼筋混凝土柱的剪力容量並將之與側推分析得到的撓曲容量比較藉以決定其破壞模式。 | zh_TW |
| dc.description.abstract | A uniaxial cyclic truss model (UCTM) is developed to simulate the hysteretic behavior of reinforced concrete columns under cyclic shear. Object-oriented programming methods are used to combine the proposed UCTM easily with any other developed flexural analysis methods to predict the response of RC columns under axial-flexural-shear loading. Analytical results obtained using UCTM are compared with the test result of reinforced concrete column specimens subjected to cyclic loading. It is shown that the UCTM can successfully predict the failure mode of a reinforced concrete column. Hysteretic relationships in UCTM can agree satisfactorily with experimental data. This thesis also proposes a simplified procedure to predict the failure mode of RC columns rapidly. The procedure is to evaluate the nominal shear strength of an RC column by UCTM and compares it to its peak lateral force that is obtained from pushover analysis, and thereby determines its failure mode. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:19:34Z (GMT). No. of bitstreams: 1 ntu-101-D91521009-1.pdf: 1444011 bytes, checksum: 083f467c1e8c49fd421443660824d67c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 History and Background of Shear Analysis 1 1.2 Summary of Shear Prediction 3 1.2.1 1 point shear value 4 1.2.2 Uniaxial linear shear analysis 4 1.2.3 Multiaxial linear shear analysis 4 1.2.4 Uniaxial nonlinear shear analysis 5 1.2.5 Multiaxial nonlinear shear analysis 5 1.3 Research Significance 5 Chapter 2 Uniaxial Cyclic Truss Model 7 2.1 Analytical Method 7 2.1.1 Brief introduction to truss model 7 2.1.2 Concept of uniaxial cyclic truss model (UCTM) 7 2.2 Uniaxial Cyclic Truss Model 8 2.3 Solution Techniques 10 2.3.1 Dimensions of elements 10 2.3.2 Displacement field, degrees of freedom, strain field, and uniaxial strain/stress 11 2.3.3 Tangent stiffness 13 2.3.4 Shear Force 15 2.3.5 Defining column section using UCTM 15 Chapter 3 Objective-Oriented Programming Methods 16 3.1 Open System for Earthquake Engineering Simulation (OpenSees) 16 3.2 Introduction to the Tcl command language 16 3.3 OpenSees Interpreter 17 3.4 Applying UCTM using OpenSees [14] 17 3.4.1 Introducing a new material into OpenSees 17 3.4.2 Material Abstractions 17 3.4.3 UniaxialMaterial Interface 19 3.5 Combining UCTM with Fiber Element Method 24 3.6 Materials For Building UCTM 25 3.6.1 Steel 25 3.6.2 Concrete 25 3.7 Hysteretic Characteristics Of Uniaxial Cyclic Truss Model 28 Chapter 4 Comparisons Of UCTM With Experiments 30 4.1 SY AND LY 30 4.2 N18C 30 4.3 H-19 AND F-19 31 4.4 BMRS 31 4.5 BMR2 (FLEXURAL FRACTURE DOMINATED) 31 Chapter 5 Predicting Failure Behavior of Reinforced Concrete Columns Subjected to Cyclic Loading 33 5.1 Shear Capacity of an RC Column 33 5.2 Flexural Capacity 37 5.3 Failure Mode Prediction 37 Chapter 6 Conclusions 39 REFERENCE 41 LIST OF FIGURES Fig. 1–A parametric model simulating failure behavior of an RC column 51 Fig. 2–The truss mechanism of strut and tie model 52 Fig. 3–D zone and B zone of strut and tie model 53 Fig. 4–Comparison of analytical and experimental shear strength 54 Fig. 5–Comparison of normalized analytical and experimental shear strength 55 Fig. 6–Lateral View of experimental configuration of a shaking table test specimen. 56 Fig. 7–Analytical prediction of relationship between lateral force and displacement of a shaking table test specimen 57 Fig. 8–Truss model of a cantilever beam subjected to lateral force. 58 Fig. 9–Typical fracture mode of RC column in cyclic test: (a) Flexural failure (b) Shear failure. 59 Fig. 10–RC column subjected to lateral force on top and bottom. 60 Fig. 11–Equilibrium diagrams of internal forces in UCTM (undeformed). 61 Fig. 12–Equilibrium diagrams of internal forces in UCTM (deformed). 62 Fig. 13–Components of internal forces in UCTM. 63 Fig. 14–Equilibrium diagrams of shear forces in UCTM. 64 Fig. 15–Uniaxial cyclic truss model (UCTM). 65 Fig. 16–Projected area of the concrete struts in the direction parallel to DE onto the transverse steel element CD. 66 Fig. 17–Schematic drawing of “Section Aggregator”. 67 Fig. 18–Application of UCTM to a RC column. 68 Fig. 19–Concrete02 [17] 69 Fig. 20–ReinforcingSteel [17] 70 Fig. 21–Core and cover concrete. 71 Fig. 22–Lateral view of experimental configuration. 72 Fig. 23–Analytical prediction of relationship between shear force and rotational angle- Section A1 73 Fig. 24–Analytical prediction of relationship between shear force and rotational angle- Section A2 74 Fig. 25–Analytical prediction of relationship between shear force and rotational angle- Section B1 75 Fig. 26–Analytical prediction of relationship between shear force and rotational angle- Section B2 76 Fig. 27–Framework of OpenSees. 77 Fig. 28–Material class hierarchy. [14] 78 Fig. 29–Flexural and shear models connected in series. 79 Fig. 30–Comparison of analytical and test results for specimen SY. 80 Fig. 31–Comparison of analytical and test results for specimen LY. 81 Fig. 32–Comparison of analytical and test results for specimen N18C. 82 Fig. 33–Comparison of analytical and test results for specimen H-19. 83 Fig. 34–Comparison of analytical and test results for specimen F-19. 84 Fig. 35–Lateral View of experimental configuration of specimen BMRS. 85 Fig. 36–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycles 1-2: (a) cycle 1 (b) cycle 2. 86 Fig. 37–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycles 3-4: (a) cycle 3 (b) cycle 4. 87 Fig. 38–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycles 5-6: (a) cycle 5 (b) cycle 6. 88 Fig. 39–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycles 7-8: (a) cycle 7 (b) cycle 8. 89 Fig. 40–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycles 9-10: (a) cycle 9 (b) cycle 10. 90 Fig. 41–Comparison of analytical and experimental hysteretic loops associated with lateral force-displacement relationship of specimen BMRS for cycle 11. 91 Fig. 42–Comparison of analytical and experimental lateral force-displacement hysteretic loops for specimen BMR2. 92 LIST OF TABLES Table 1–Assumed input parameters of “ReinforcingSteel” material 44 Table 2–Assumed input parameters of “Concrete02” material 45 Table 3–Properties of cross-sections of the RC column 46 Table 4–Material properties of all specimens 47 Table 5–Sectional properties and calculated strength of core concrete 48 Table 6–Failure predicted by simplified UCTM 49 Table 7–Failure predicted by simplified UCTM 50 | |
| dc.language.iso | en | |
| dc.title | 受剪混凝土柱之單軸循環桁架模型 | zh_TW |
| dc.title | Uniaxial Cyclic Truss Model of Reinforced Concrete Columns Under Shear | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張國鎮,蔡克銓,蔡益超,黃震興,黃世建 | |
| dc.subject.keyword | 單軸循環桁架模型,鋼筋混凝土柱,剪力, | zh_TW |
| dc.subject.keyword | UCTM,Uniaxial cyclic truss model,Reinforced Concrete,RC column,Shear, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-06-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf | 1.41 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
